JPH1029043A - Continuous casting method for steel, and mold therefor - Google Patents
Continuous casting method for steel, and mold thereforInfo
- Publication number
- JPH1029043A JPH1029043A JP18504896A JP18504896A JPH1029043A JP H1029043 A JPH1029043 A JP H1029043A JP 18504896 A JP18504896 A JP 18504896A JP 18504896 A JP18504896 A JP 18504896A JP H1029043 A JPH1029043 A JP H1029043A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- plating
- copper plate
- lattice
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鋳型内のメニスカ
ス付近における凝固シェルの不均一凝固に起因して発生
する鋳片表面の縦割れ及び鋳片ヘコミを防止し、表面性
状に優れた鋳片を製造する連続鋳造方法及び連続鋳造用
鋳型に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cast slab having excellent surface properties, which prevents vertical cracks and skewing of the cast slab surface caused by uneven solidification of a solidified shell near a meniscus in a mold. And a continuous casting mold for producing the same.
【0002】[0002]
【従来の技術】鋼の連続鋳造において、鋳片表面に発生
する縦割れ及び鋳片ヘコミ(以下、鋳片ヘコミを「ディ
プレッション」と記す)は圧延後の製品疵となるので、
その発生機構や防止対策が検討されてきた。これらの検
討結果から、縦割れ及びディプレッションは、凝固直後
にδ→γ変態に伴う収縮が生じる、炭素濃度が0.09
〜0.22wt.%の中炭素鋼及びオーステナイト系ステン
レス鋼で発生し易いこと、縦割れ及びディプレッション
は鋳型内での初期凝固における凝固シュル厚の不均一性
により鋳型内で発生すること、更に、この凝固シェル厚
の不均一性は鋳型内抜熱量に左右されることが知られて
いる。2. Description of the Related Art In continuous casting of steel, vertical cracks and slab dents generated on the slab surface (hereinafter, slab dents are referred to as "depression") become product defects after rolling.
The mechanism of occurrence and preventive measures have been studied. From these examination results, it was found that the vertical cracking and the depression caused the shrinkage due to the δ → γ transformation immediately after the solidification.
~ 0.22wt.% Medium carbon steel and austenitic stainless steel, easy to occur, vertical cracks and depression are generated in the mold due to non-uniformity of solidified Schull thickness in initial solidification in the mold. It is known that the non-uniformity of the solidified shell thickness depends on the heat removal in the mold.
【0003】鋼の成分は用途により規定されるので、縦
割れやディプレッションの発生し易い成分範囲を避ける
ことはできず、そのため、縦割れやディプレッションを
防止するため、鋳型内抜熱量を制御して不均一凝固を改
善する技術が行われ、その結果が報告されている。[0003] Since the composition of steel is determined by the application, it is not possible to avoid a range of components in which vertical cracking and depletion are likely to occur. Therefore, in order to prevent vertical cracking and depletion, the amount of heat removed from the mold is controlled. Techniques have been implemented to improve heterogeneous solidification and the results have been reported.
【0004】山地等は、「材料とプロセス、vol.6,No.1
(1993)-287」(以下、「先行技術1」と記す)にて、鋳
型に添加するモールドパウダーの凝固温度を上げ、鋳型
と凝固シェル間に形成されるモールドパウダーの固着層
を厚くして、熱伝導抵抗を増加させ、鋳型での緩冷却を
図り、その結果、不均一凝固が改善され、ディプレッシ
ョンの防止が可能になったと報告している。[0004] Yamachi et al., "Materials and Processes, vol. 6, No. 1
(1993) -287 "(hereinafter referred to as" prior art 1 "), by increasing the solidification temperature of the mold powder added to the mold and increasing the thickness of the mold powder fixing layer formed between the mold and the solidified shell. He reported that the heat conduction resistance was increased and the mold was cooled slowly, resulting in improved uneven solidification and prevention of depletion.
【0005】中井等は、「鉄と鋼、vol.73,No.3(1987),
498 」(以下、「先行技術2」と記す)にて、鋳型銅板
表面に幅0.8mm、深さ0.3〜0.4mm、ピッチ0.
9mmの溝を縦方向に設け、鋳型銅板と凝固シェル間にエ
アーギャップを強制的に作り、その結果、メニスカス近
傍の抜熱量を30〜40%減少させることが可能にな
り、鋳片縦割れが防止されたと報告している。[0005] Nakai et al., "Iron and steel, vol. 73, No. 3 (1987),
498 "(hereinafter referred to as" prior art 2 ") on the surface of the mold copper plate with a width of 0.8 mm, a depth of 0.3 to 0.4 mm, and a pitch of 0.1 mm.
A 9 mm groove is provided in the vertical direction to forcibly create an air gap between the mold copper plate and the solidified shell. As a result, it is possible to reduce the heat removal in the vicinity of the meniscus by 30 to 40%. Reported that it was prevented.
【0006】特開平1−289542号公報(以下、
「先行技術3」と記す)では、メニスカス近傍の鋳型銅
板表面に格子状の溝を、深さ0.5〜1.0mm、幅0.
5〜1.0mm、間隔5〜10mmで設け、溝に異種金属
(Ni,Cr)もしくはセラミックを充填し、鋳型の冷
却能に部分的な強弱を与えることで、鋳片表面割れが防
止されたとしている(以下、先行技術3に開示された鋳
型を、「格子溝鋳型」と記す)。先行技術3の手法は、
弱冷部である溝部において初期凝固シェルの形成を僅か
に遅らせ、一定間隔でシェルの薄い箇所を残し、この部
分で凝固収縮時の歪を吸収させる。そして、鋳型銅板と
凝固シェルとを密着させて、エアーギャップの生成を防
止し、鋳型内で均一な抜熱を確保し、凝固シェルを均一
に成長させようとするものである。[0006] Japanese Patent Laid-Open No. 1-289542 (hereinafter, referred to as
In "Prior art 3"), a lattice-like groove is formed on the surface of a mold copper plate near the meniscus by a depth of 0.5 to 1.0 mm and a width of 0.1 mm.
The grooves were filled with dissimilar metals (Ni, Cr) or ceramics at a distance of 5 to 1.0 mm, and the grooves were filled with different kinds of metals (Ni, Cr) or ceramics, thereby giving partial strength to the cooling ability of the mold, thereby preventing the slab surface cracks. (Hereinafter, the mold disclosed in Prior Art 3 is referred to as a “lattice groove mold”). The technique of Prior Art 3 is as follows.
The formation of the initially solidified shell is slightly delayed in the groove portion, which is a weakly cooled portion, and thin portions of the shell are left at regular intervals, and the strain during solidification contraction is absorbed in this portion. Then, the mold copper plate and the solidified shell are brought into close contact with each other to prevent generation of an air gap, secure uniform heat removal in the mold, and grow the solidified shell uniformly.
【0007】[0007]
【発明が解決しようとする課題】先行技術1では、融点
の高いモールドパウダーを使用することで不均一凝固を
改善している。しかし、融点の高いモールドパウダーを
使用すると、鋳型〜凝固シェル間に厚いモールドパウダ
ーの固着層が生じ、緩冷却には有効であるが、鋳型〜凝
固シェル間の潤滑剤でもあるモールドパウダーの消費量
が少なくなるため、高速鋳造時には鋳型と凝固シェルと
の焼き付きによる拘束性ブレークアウトの危険があり、
実施困難である。In the prior art 1, uneven solidification is improved by using a mold powder having a high melting point. However, when a mold powder having a high melting point is used, a thick layer of the mold powder is formed between the mold and the solidified shell, and the consumption of the mold powder which is effective for slow cooling but is also a lubricant between the mold and the solidified shell. During high-speed casting, there is a risk of restraint breakout due to seizure between the mold and the solidified shell,
Difficult to implement.
【0008】先行技術2では、鋳造開始時、溶鋼を鋳型
内に注ぎ上げる際に溝内に溶鋼が入り込み、凝固シェル
と鋳型とが焼き付いてブレークアウトの原因になるとい
った問題がある。The prior art 2 has a problem that at the start of casting, when molten steel is poured into a mold, the molten steel enters the groove, and the solidified shell and the mold are seized to cause a breakout.
【0009】先行技術3では、溝の幅が1mm以下であ
り、小さすぎるのが問題である。これについては後述す
る実機試験の結果からも明らかように、溝幅が小さいた
めに金属を充填した溝部と溝のない部分との鋳型銅板の
温度差は小さくて、従って、溝部の部分的な抜熱量の差
に及ぼす影響が小さいことが判っている。又、溝内の異
種金属もしくはセラミックの剥離といった問題もある。In prior art 3, the width of the groove is 1 mm or less, which is problematic in that it is too small. As can be seen from the results of the actual machine test described below, the temperature difference of the mold copper plate between the groove portion filled with metal and the portion without the groove is small due to the small groove width, and therefore, the partial removal of the groove portion. It has been found that the effect on the difference in calorific value is small. There is also a problem such as the separation of different metals or ceramics in the grooves.
【0010】このように従来技術にはそれぞれ問題点が
あり、完全な方策とはいえない。本発明は、上記事情に
鑑みなされたもので、その目的とするところは、鋳片の
縦割れやディプレッションを防止し、表面性状に優れた
鋳片を製造できる連続鋳造方法及び連続鋳造用鋳型を提
供するものである。As described above, the prior arts have respective problems and cannot be said to be a complete measure. The present invention has been made in view of the above circumstances, and an object thereof is to prevent a vertical crack and depletion of a slab and to provide a continuous casting method and a continuous casting mold capable of producing a slab having excellent surface properties. To provide.
【0011】[0011]
【課題を解決するための手段】本発明による鋼の連続鋳
造方法は、少なくとも長辺銅板表面に、銅より低熱伝導
度の異種金属又は合金の格子状の鍍金を、格子間隔aを
10〜40mm、鍍金幅bを0.2a≦b≦0.5a(m
m)、厚みを0.5mm以上で、格子の配列が鋳片引抜き
方向に対して傾斜して施した銅板製鋳型を用いて、融点
が1100℃以下で、且つ1300℃での粘性η(pois
e )が、鋳片引抜き速度Vc(m/min.)との関係におい
て、(1)式を満足するモールドパウダーを用いること
を特徴とするものである。 η≦0.3Vc+1.5 ………(1)The continuous casting method of steel according to the present invention is characterized in that at least the surface of a long-side copper plate is coated with a grid-like plating of a dissimilar metal or alloy having a lower thermal conductivity than copper and a grid spacing a of 10 to 40 mm. , Plating width b is set to 0.2a ≦ b ≦ 0.5a (m
m), using a copper plate mold having a thickness of 0.5 mm or more and a lattice array inclined with respect to the direction of drawing the slab, the melting point is 1100 ° C. or less, and the viscosity η (pois
e) is characterized by using a mold powder satisfying the expression (1) in relation to the slab drawing speed Vc (m / min.). η ≦ 0.3Vc + 1.5 (1)
【0012】又、本発明による鋼の連続鋳造用鋳型は、
銅板表面に銅より低熱伝導度の異種金属又は合金の格子
状の鍍金を、格子間隔aを10〜40mm、鍍金幅bを
0.2a≦b≦0.5a(mm)、厚みを0.5mm以上
で、格子の配列が鋳片引抜き方向に対して傾斜して施し
た長辺銅板を有することを特徴とするものである。The continuous casting mold for steel according to the present invention comprises:
The copper plate surface is plated with a lattice of a dissimilar metal or alloy having a lower thermal conductivity than copper, the lattice spacing a is 10 to 40 mm, the plating width b is 0.2a ≦ b ≦ 0.5a (mm), and the thickness is 0.5 mm. As described above, the arrangement of the lattices is characterized by having the long-side copper plate provided inclining with respect to the slab-drawing direction.
【0013】そして、鋳型の耐用性を向上させるため
に、異種金属による格子状鍍金と長辺銅板との接触面を
曲面として施すことが望ましい。[0013] In order to improve the durability of the mold, it is desirable that the contact surface between the lattice plating made of dissimilar metal and the long side copper plate be formed as a curved surface.
【0014】図1に本発明に係る連続鋳造用鋳型の構成
要素である長辺銅板の概要を示す。図中、1は鋳型の長
辺銅板、2は長辺銅板1の内面に格子状に施された銅よ
り熱伝導度の低い異種金属の鍍金部である。鍍金部2
は、鍍金格子の配列が鋳型の鋳片引抜き方向に対し、角
度θ(以下、角度を「傾角」と記す)だけ傾斜して施さ
れている。銅より熱伝導度の低い異種金属としては、ニ
ッケル、クロム、及びこれら金属の合金が最適である。FIG. 1 shows an outline of a long side copper plate which is a component of the casting mold for continuous casting according to the present invention. In the drawing, reference numeral 1 denotes a long-side copper plate of a mold, and reference numeral 2 denotes a plating portion made of a dissimilar metal having a lower thermal conductivity than copper applied to the inner surface of the long-side copper plate 1 in a lattice shape. Plating part 2
Is arranged such that the arrangement of the plating grid is inclined by an angle θ (hereinafter, the angle is referred to as “inclination angle”) with respect to the direction of drawing the slab of the mold. Nickel, chromium, and alloys of these metals are optimal as dissimilar metals having lower thermal conductivity than copper.
【0015】少なくとも長辺銅板の内側に格子状の異種
金属の鍍金を、格子間隔aを10〜40mm、鍍金幅bを
0.2a≦b≦0.5a(mm)、厚みを0.5mm以上
で、格子の配列が鋳片引抜き方向に対して傾斜して施し
た連続鋳造用鋳型(以下、「格子状鍍金鋳型」と記す)
を使用すると、従来の平銅板又は全面に鍍金を施した連
続鋳造用鋳型(以下、「平板状鋳型」と記す)に比較し
て、均一な厚さの凝固シェルが得られる。その理由は以
下の通りである。At least the inside of the long-side copper plate is plated with a lattice-like dissimilar metal, the lattice spacing a is 10 to 40 mm, the plating width b is 0.2 a ≦ b ≦ 0.5 a (mm), and the thickness is 0.5 mm or more. A continuous casting mold in which the lattice arrangement is inclined with respect to the slab drawing direction (hereinafter, referred to as "lattice-plated mold")
The use of a solidified shell having a uniform thickness can be obtained as compared with a conventional flat copper plate or a continuous casting mold (hereinafter, referred to as a “plate-shaped mold”) in which the entire surface is plated. The reason is as follows.
【0016】平板状鋳型を使用した場合の不均一な凝固
シェルが生成する様子を図2の(a)に示す。図中、3
は凝固シェル、4は平板状鋳型の長辺銅板である。長辺
銅板4に冷却され溶鋼が凝固する。凝固直後に起こるδ
→γ変態に伴う大きな凝固収縮により、凝固シェル3は
変形するが、溶鋼静圧により押し戻されるため一定間隔
Lの反り返りが生じる。このとき凝固シェル3の一部が
長辺銅板4より剥離しエアーギャップ5を生成し、その
部位における抜熱量は低下し、その後の凝固が遅延す
る。その結果凝固シェルに大きな凹凸ができる。FIG. 2A shows how a non-uniform solidified shell is formed when a flat mold is used. In the figure, 3
Is a solidified shell, and 4 is a long side copper plate of a flat mold. The molten steel is cooled by the long side copper plate 4 and solidified. Δ occurs immediately after solidification
→ The solidified shell 3 is deformed by the large solidification shrinkage accompanying the γ transformation, but is warped at a constant interval L because it is pushed back by the molten steel static pressure. At this time, a part of the solidified shell 3 is peeled off from the long side copper plate 4 to form an air gap 5, the amount of heat removed at that portion decreases, and the subsequent solidification is delayed. As a result, large irregularities are formed in the solidified shell.
【0017】一方、格子間隔aを10〜40mm、鍍金幅
bを0.2a≦b≦0.5a(mm)、厚みを0.5mm以
上とした本発明の格子状鍍金鋳型の場合には、図2
(b)に示すように格子間隔a(但し、a<Lとする)
で格子状に鍍金部2を施し、強制的且つ規則的に抜熱量
の小さい部位を構成しているので、この鍍金部2におい
て凝固遅れとなるため、γ→δ変態に伴う凝固収縮によ
って起こる凝固シェル3の変形は格子間隔aの間隔毎に
生じる。従って、凝固シェル3の反り返りが小さくなる
と共に、収縮歪が凝固遅延部に集中する。収縮歪が凝固
遅延部に集中するが、微細割れを発生しない程度であ
り、鋳型と凝固シェルとの密着性が向上する。その結
果、凝固シェル3全体の大きな変形が起こらないため、
エアーギャップ5が生成されず、均一な厚さの凝固が促
進される。On the other hand, in the case of the lattice plating mold of the present invention in which the lattice spacing a is 10 to 40 mm, the plating width b is 0.2a ≦ b ≦ 0.5a (mm), and the thickness is 0.5 mm or more, FIG.
As shown in (b), lattice spacing a (where a <L)
Since the plating portion 2 is formed in a lattice shape in the manner described above, a portion with a small amount of heat removal is compulsorily and regularly formed, so that a solidification delay occurs in the plating portion 2 and solidification caused by solidification shrinkage accompanying the γ → δ transformation. The deformation of the shell 3 occurs at every lattice interval a. Therefore, the warpage of the solidified shell 3 is reduced, and the contraction strain is concentrated on the solidification delay portion. Although the shrinkage strain is concentrated on the solidification delay portion, the crack is not generated so much that the adhesion between the mold and the solidification shell is improved. As a result, large deformation of the entire solidified shell 3 does not occur,
No air gap 5 is generated, and solidification of a uniform thickness is promoted.
【0018】格子間隔aが10mm未満及び40mm超えの
場合は、後述するように鋳片の縦割れ発生率が高くなり
不適当である。If the lattice spacing a is less than 10 mm or more than 40 mm, the rate of occurrence of vertical cracks in the slab increases, as will be described later.
【0019】本発明では、異種金属を鍍金しているの
で、鋳型銅板との接合部より剥離する可能性は極めて少
ない。更に、本発明においては、格子状鍍金の配列を鋳
型の鋳片引抜き方向に対して傾斜させていること、更に
望ましくは、格子状鍍金と鋳型銅板との接触面を曲面と
することにより、繰り返しの熱応力負荷がかかる鋳型銅
板表面での鍍金剥離、接合部での鍍金剥離が皆無とな
り、銅板上の鍍金の延命を図ることが可能となる。In the present invention, since the dissimilar metal is plated, the possibility of peeling from the joint with the mold copper plate is extremely small. Further, in the present invention, the arrangement of the grid plating is inclined with respect to the direction of drawing the slab of the mold, and more desirably, the contact surface between the grid plating and the mold copper plate is made a curved surface, thereby repeating the process. In this case, there is no plating peeling on the surface of the mold copper plate to which the thermal stress load is applied and there is no plating peeling at the joint portion, and it is possible to extend the life of plating on the copper plate.
【0020】鋳造中、モールドパウダーは鋳型銅板と凝
固シェルとの間を満たしており、鋳型による不均一凝固
の改善機構も、実際はモールドパウダーを介して間接的
に行われる。モールドパウダーが高融点であると、厚い
パウダーの固着層が溶融パウダー層と鋳型銅板間に形成
され、この固着層と鋳型銅板との間にエアーギャップを
生ずる。エアーギャップでの熱伝達は対流伝熱又は放射
伝熱であり、固体中の熱伝導に比較し熱伝達が著しく低
下する。そのため、エアーギャップが生ずると、これが
鋳型内の熱伝達を支配するので、鍍金部の緩冷却効果が
減じて凝固遅れが小さくなり、上記の凝固遅れ部の効果
が減少する。During casting, the mold powder fills the space between the copper mold plate and the solidified shell, and the mechanism for improving the non-uniform solidification by the mold is actually also performed indirectly through the mold powder. When the mold powder has a high melting point, a thick powder fixing layer is formed between the molten powder layer and the mold copper plate, and an air gap is generated between the fixing layer and the mold copper plate. The heat transfer in the air gap is a convective heat transfer or a radiative heat transfer, and the heat transfer is significantly reduced as compared with the heat transfer in the solid. Therefore, when an air gap is generated, the air gap governs the heat transfer in the mold, so that the slow cooling effect of the plating portion is reduced, and the solidification delay is reduced, and the effect of the solidification delay portion is reduced.
【0021】従って、格子状鍍金鋳型の特性を十分発揮
するためには、鋳型銅板と凝固シェル間とが均一な溶融
パウダー層で満たされ、鋳型銅板側の固着層を薄くし、
エアーギャップが生じにくいモールドパウダーを使用す
ることが肝要となる。Therefore, in order to sufficiently exhibit the characteristics of the grid-plated mold, the space between the mold copper plate and the solidified shell is filled with a uniform molten powder layer, and the fixing layer on the mold copper plate side is reduced in thickness.
It is important to use mold powder that does not easily cause an air gap.
【0022】本発明では、引抜き速度Vc(m/min.)に
対して、1300℃での粘性が(1)式の範囲内である
低粘性のモールドパウダーの使用により、鋳型銅板−凝
固シェル間へのパウダーの均一流入を確保し、更に、結
晶化温度が1100℃以下の低結晶化温度のモールドパ
ウダー使用により、鋳型側の固着層の生成を抑制し、上
記に述べた鍍金部の抜熱量の差を十分に導くことができ
る。又、鋳片引抜き速度が大きいほど、鋳型と凝固シェ
ル間の凝固シェル側の温度が高くなるため、モールドパ
ウダーの実用上の粘性は引抜き速度に比例して高くな
る。In the present invention, the use of a low-viscosity mold powder having a viscosity at 1300 ° C. within the range of the formula (1) with respect to the drawing speed Vc (m / min.) Makes it possible to reduce the distance between the mold copper plate and the solidified shell. The uniform inflow of powder into the mold is ensured, and the use of a mold powder having a low crystallization temperature of 1100 ° C. or less suppresses the formation of a fixed layer on the mold side. Can be sufficiently derived. Also, the higher the slab drawing speed, the higher the temperature on the solidified shell side between the mold and the solidified shell, so that the practical viscosity of the mold powder increases in proportion to the drawing speed.
【0023】[0023]
【発明の実施の形態】図1に本発明に係る連続鋳造用鋳
型の構成要素である長辺銅板の概要を示す。図1におい
て(a)は側面図、(b)は断面図である。図中、1は
鋳型の長辺銅板、2は長辺銅板1の内面に格子状(格子
間隔amm、鍍金幅bmm、厚みcmm)に施された銅より熱
伝導度の低い異種金属の鍍金部である。以下に、本発明
に係る連続鋳造用鋳型の適用手順を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an outline of a long side copper plate which is a component of a continuous casting mold according to the present invention. 1A is a side view, and FIG. 1B is a cross-sectional view. In the drawing, reference numeral 1 denotes a long-side copper plate of a mold, and 2 denotes a plating portion of a dissimilar metal having a lower thermal conductivity than copper which is formed on the inner surface of the long-side copper plate 1 in a grid shape (a lattice interval a mm, a plating width b mm, a thickness c mm). It is. The procedure for applying the continuous casting mold according to the present invention will be described below.
【0024】銅より熱伝導度の低い異種金属としては、
ニッケル、クロム、及びこれら金属の合金の内から選択
し、鍍金用材料とする。As a dissimilar metal having a lower thermal conductivity than copper,
Nickel, chromium, and alloys of these metals are selected and used as plating materials.
【0025】鍍金部2は鋳型の鋳片引抜き方向に対し、
傾角がθだけ傾斜して施されている。傾角は15°以上
が望ましいので、15°〜45°の範囲で任意に決定す
る。尚、傾角が45°以上の範囲は、傾角45°以下の
場合と回転対称となるので(例えば、傾角60°は、傾
角30°と回転対称となる)、実質的に45°が傾角の
最大値となる。The plating part 2 is arranged in the direction of drawing the slab of the mold.
The inclination angle is given by θ. Since the inclination angle is desirably 15 ° or more, it is arbitrarily determined in the range of 15 ° to 45 °. Note that the range where the tilt angle is 45 ° or more is rotationally symmetric with the case where the tilt angle is 45 ° or less (for example, a tilt angle of 60 ° is rotationally symmetric with a tilt angle of 30 °). Value.
【0026】格子状鍍金の格子間隔aを10〜40mmの
任意の値で決定し、格子間隔aより、鍍金幅bを0.2
a≦b≦0.5a(mm)の範囲の任意の値で決定する。
鍍金厚みを0.5mm以上の任意の値とし、長辺銅板1に
決定した格子間隔amm、鍍金幅bmm、厚みcmmとなるよ
うに溝を付ける。その際、鍍金部2と長辺銅板1との接
触面が曲面となるように、溝を付けることが望ましい。
鍍金厚みは、鋳型銅板厚みに関係するが、厚くすると銅
板加工費、鍍金費が高くなるため、最大でも10mm程度
とすれば十分である。The grid spacing a of the grid plating is determined at an arbitrary value of 10 to 40 mm, and the plating width b is set to 0.2 based on the grid spacing a.
It is determined by an arbitrary value in the range of a ≦ b ≦ 0.5a (mm).
The plating thickness is set to an arbitrary value of 0.5 mm or more, and a groove is formed on the long-side copper plate 1 so as to have the determined grid spacing amm, plating width bmm, and thickness cmm. At this time, it is desirable to form a groove so that the contact surface between the plating portion 2 and the long side copper plate 1 is a curved surface.
The plating thickness is related to the thickness of the mold copper plate. However, if the thickness is large, the cost of processing the copper plate and the cost of plating will be high.
【0027】このようにして、溝を付けた長辺銅板1に
鍍金を施す。鍍金の不要な部分は鍍金されないようにマ
スキングを施す。鍍金後、鍍金部2を有する長辺銅板1
の内面全体を平滑に加工して、格子状鍍金鋳型の長辺銅
板1が完成する。In this way, plating is applied to the long-sided copper plate 1 having the groove. Unnecessary plating is masked so as not to be plated. After plating, long side copper plate 1 having plating part 2
The entire inner surface is smoothed to complete the long-sided copper plate 1 of the grid-plated mold.
【0028】尚、ここでは短辺銅板は鍍金されていない
が、短辺銅板についても長辺銅板1と同様の鍍金部2を
設けてもよい。。Although the short side copper plate is not plated here, the same plating portion 2 as the long side copper plate 1 may be provided for the short side copper plate. .
【0029】使用する連続鋳造機仕様から鋳造速度の最
大値を決めて、(1)式により使用するモールドパウダ
ーの1300℃での粘性の上限を求め、(1)式の範囲
内の粘性で且つ融点が1100℃以下のモールドパウダ
ーを使用して、上記の手法にて製作された格子状鍍金鋳
型にて、鋳造を実施する。The maximum value of the casting speed is determined from the specifications of the continuous casting machine to be used, and the upper limit of the viscosity at 1300 ° C. of the mold powder to be used is obtained by the equation (1). Using a mold powder having a melting point of 1100 ° C. or less, casting is performed with a grid-plated mold manufactured by the above method.
【0030】[0030]
(実施例1)…格子間隔、鍍金幅 適切な格子間隔aと鍍金幅bを決定するために、ニッケ
ルを鍍金材とし、傾角を45°とした格子状の鍍金を施
した鋳型を用い、炭素濃度が0.10〜0.12wt%の
中炭素鋼で、1300℃での粘性が2.0poise 、結晶
化温度が950℃のモールドパウダーにて、引抜き速度
2.0m/min.の鋳造試験を行った。(Embodiment 1) Lattice spacing, plating width In order to determine appropriate lattice spacing a and plating width b, nickel was used as a plating material, and a grid-shaped plating mold with an inclination angle of 45 ° was used. Casting test at a drawing speed of 2.0 m / min. Using a mold powder with a concentration of 0.10 to 0.12 wt% medium carbon steel having a viscosity of 2.0 poise at 1300 ° C and a crystallization temperature of 950 ° C. went.
【0031】先ず、鍍金厚さを0.5mmの一定として、
格子間隔aを1mm〜60mmの範囲で変化させた鋳型にて
鋳造し、鋳片の縦割れ発生状況を調査した。但し、鍍金
幅bは全てb=a/2とした。この結果を図3に示す。
図3に示す結果より、格子間隔aは10〜40mmが良い
ことが判明した。First, assuming that the plating thickness is constant at 0.5 mm,
Casting was performed using a mold in which the lattice spacing a was changed in the range of 1 mm to 60 mm, and the occurrence of longitudinal cracks in the slab was investigated. However, the plating width b was all b = a / 2. The result is shown in FIG.
From the results shown in FIG. 3, it was found that the lattice spacing a is preferably 10 to 40 mm.
【0032】次に、鍍金厚さを1.0mmの一定として、
格子間隔aを10mm、及び20mmの2水準とし、鍍金幅
bを変化させた鋳型にて鋳造し、鋳片の縦割れ発生状況
を調査した。この結果を図4に示す。図4に示す結果よ
り、格子間隔a=10mmのときは、鍍金幅bは2〜5m
m、格子間隔a=20mmのときは、鍍金幅bは4〜10m
mが良好であることが判明した。Next, assuming that the plating thickness is constant at 1.0 mm,
Lattice spacing a was set to two levels of 10 mm and 20 mm, and casting was performed using a mold with a varied plating width b, and the occurrence of vertical cracks in the slab was investigated. The result is shown in FIG. From the results shown in FIG. 4, when the lattice spacing a is 10 mm, the plating width b is 2 to 5 m.
m, grid width a = 20 mm, plating width b is 4-10 m
m turned out to be good.
【0033】以上より、格子間隔aと鍍金幅bとの関係
が、0.2a≦b≦0.5aを満足することが最適であ
ると言える。From the above, it can be said that it is optimal that the relationship between the lattice spacing a and the plating width b satisfies 0.2a ≦ b ≦ 0.5a.
【0034】(実施例2)…格子鍍金厚さ 適切な鍍金厚さを決定するため、格子間隔10mm、鍍金
幅5mm、傾角45°とし、鍍金厚さを0.2〜2.0mm
の範囲で変化させた鋳型を用い、炭素濃度が0.10〜
0.12wt%の中炭素鋼で、1300℃での粘性が2.
0poise 、結晶化温度が950℃のモールドパウダーに
て、引抜き速度2.0m/min.の鋳造試験を行い、鋳片の
縦割れ発生状況を調査した。図5にその結果を示す。図
5に示す結果より、鍍金厚みは0.5mm以上が最適であ
ることが判明した。即ち、0.5mm未満では、厚みが十
分でないため格子鍍金の緩冷却効果が現われない。Example 2 Lattice Plating Thickness In order to determine an appropriate plating thickness, the grid spacing was 10 mm, the plating width was 5 mm, the inclination was 45 °, and the plating thickness was 0.2 to 2.0 mm.
Using a template changed in the range, the carbon concentration is 0.10
0.12 wt% medium carbon steel with viscosity at 1300 ° C
A casting test was carried out with a mold powder having a crystallization temperature of 0 poise and a crystallization temperature of 950 ° C. at a drawing speed of 2.0 m / min. FIG. 5 shows the result. From the results shown in FIG. 5, it was found that the optimal plating thickness was 0.5 mm or more. That is, if the thickness is less than 0.5 mm, the thickness is not sufficient, so that the slow cooling effect of the grid plating does not appear.
【0035】(実施例3)…格子鍍金の配列 ニッケルを鍍金材とし、格子間隔10mm、鍍金幅5mm、
鍍金厚さ2mmの格子状鍍金を施した鋳型を使用して、鍍
金格子の配列を鋳片引抜き方向に対して変化させる試験
を行った。連続鋳造機の第1ストランドには、格子配列
が鋳片引抜き方向と一致する鋳型(傾角0°)、第2ス
トランドには、傾角が15°、30°、45°と変化さ
せた鋳型を用い、250トン/ヒートの溶鋼量を各々7
00ヒート鋳造した。Example 3 Grid Plating Arrangement Nickel is used as a plating material, grid spacing is 10 mm, plating width is 5 mm,
A test was performed in which the arrangement of the plating grid was changed in the slab drawing direction using a mold having a grid-like plating with a plating thickness of 2 mm. For the first strand of the continuous casting machine, a mold whose lattice arrangement coincides with the slab drawing direction (tilt angle 0 °) is used, and for the second strand, a mold whose tilt angle is changed to 15 °, 30 °, 45 ° is used. , 250 tons / heat of molten steel
00 heat casting.
【0036】図6に700ヒート鋳造後の長辺銅板の鍍
金面における割れ発生指数を示す。割れ発生指数は、鍍
金面でのカラーチェックを行い、傾角0°の格子状鍍金
鋳型における鍍金面での割れ発生量(総長さ)に対する
割合で示した。図6より傾角が大きくなると共に割れ発
生指数は減少し、傾角が45°の場合が鍍金面に割れ発
生が最も少なく、鋳型の延命に最適であることが判明し
た。FIG. 6 shows the cracking index on the plated surface of the long side copper plate after 700 heat casting. The crack generation index was determined by performing a color check on the plating surface and as a ratio to the amount of crack generation (total length) on the plating surface in a grid-like plating mold having a tilt angle of 0 °. As shown in FIG. 6, it was found that the crack generation index decreased as the inclination increased, and that the occurrence of cracks on the plated surface was the least when the inclination was 45 °, which was optimal for extending the life of the mold.
【0037】鋳型内溶鋼により鋳型銅板表面の温度分布
が支配され、銅板表面の温度分布に起因した熱応力が鍍
金面の割れを促進する。引抜き方向に対して格子配列を
傾斜させることで、この熱応力を小さくすることができ
る。The molten steel in the mold controls the temperature distribution on the surface of the copper plate, and the thermal stress caused by the temperature distribution on the surface of the copper plate promotes cracking of the plated surface. The thermal stress can be reduced by inclining the lattice arrangement with respect to the drawing direction.
【0038】(実施例4)…モールドパウダー粘性・結
晶化温度の影響 格子間隔10mm、鍍金幅5mm、ニッケル鍍金厚さ0.5
mm、傾角θを45°とした本発明による格子状鍍金鋳型
を用い、炭素濃度が0.10〜0.20wt%の中炭素鋼
をモールドパウダーの粘性と鋳片引抜き速度を変化させ
て、鋳片の縦割れの発生率を調査した。引抜き速度は
0.6〜3.0m/min.、モールドパウダーの1300℃
の粘性は0.5〜3.0poise 、結晶化温度は950℃
とした。Example 4 Influence of mold powder viscosity and crystallization temperature Lattice interval 10 mm, plating width 5 mm, nickel plating thickness 0.5
Using a grid-plated mold according to the present invention having a thickness of 45 mm and a tilt angle θ of 45 °, medium carbon steel having a carbon concentration of 0.10 to 0.20 wt% was cast by changing the viscosity of the mold powder and the speed of drawing the slab. The incidence of longitudinal cracks in the pieces was investigated. The drawing speed is 0.6 ~ 3.0m / min., 1300 ℃ of mold powder
Has a viscosity of 0.5 to 3.0 poise and a crystallization temperature of 950 ° C.
And
【0039】図7に引抜き速度2.2m/min.における粘
性ηと縦割れ発生率との関係を示す。図中の、は合格
(縦割れ発生率0)、●は不合格(縦割れあり)の鋳片
を示す。1300℃での粘性ηが2.0poise を超える
と不合格となる。従って、引抜き速度2.2m/min.の場
合には、1300℃での粘性ηが2.0poise 以下のモ
ールドパウダーを使用すれば良いことが判った。FIG. 7 shows the relationship between the viscosity η and the rate of occurrence of vertical cracks at a drawing speed of 2.2 m / min. In the figure, indicates a slab that is acceptable (the rate of occurrence of vertical cracks is 0), and • indicates a slab that is rejected (with vertical cracks). If the viscosity η at 1300 ° C exceeds 2.0 poise, the test is rejected. Therefore, when the drawing speed was 2.2 m / min., It was found that a mold powder having a viscosity η at 1300 ° C. of 2.0 poise or less should be used.
【0040】同様に、他の引抜き速度においても粘性と
縦割れの関係について求め、その結果を図8にまとめて
示す。ここでもモールドパウダーの結晶化温度は、95
0℃のものを使用した。図中のは合格(縦割れ発生率
0)、●は不合格(縦割れあり)である。各引抜き速度
の合格鋳片のうち最も粘性の高いものは、引抜き速度
(m/min.)に対してほぼ一直線上にあり、その直線を一
次回帰式により求めると、(2)式が得られた。 η(poise )=0.3Vc+1.5 ……(2)Similarly, the relationship between the viscosity and the vertical crack was determined at other drawing speeds, and the results are shown in FIG. Again, the crystallization temperature of the mold powder is 95
The one at 0 ° C. was used. In the figure, the result is acceptable (the rate of occurrence of vertical cracks is 0), and the symbol ● is reject (there is vertical cracks). The most viscous slab of the passing slabs at each drawing speed is almost on a straight line with respect to the drawing speed (m / min.), And when the straight line is obtained by a linear regression equation, the equation (2) is obtained. Was. η (poise) = 0.3Vc + 1.5 (2)
【0041】従って、鋳片に縦割れの発生しない範囲は
(1)式となる。 η(poise )≦0.3Vc+1.5 ……(1)Therefore, the range in which no vertical cracks occur in the slab is given by equation (1). η (poise) ≦ 0.3Vc + 1.5 (1)
【0042】次に、上記と同一の本発明による格子状鍍
金鋳型を用い、炭素濃度が0.10〜0.20wt%の中
炭素鋼にて、1300℃での粘性ηが2.2poise 、結
晶化温度が900〜1200℃の範囲で変化させたモー
ルドパウダーを用い、引抜き速度2.6m/min.及び3.
0m/min.での鋳造テストを実施して、鋳片の縦割れの発
生状況を調査した。Next, using the same grid-plated mold according to the present invention as described above, using a medium carbon steel having a carbon concentration of 0.10 to 0.20 wt%, a viscosity η at 1300 ° C. of 2.2 poise and a crystal The drawing speed was 2.6 m / min. And 3.
A casting test at 0 m / min. Was performed to investigate the occurrence of vertical cracks in the slab.
【0043】調査結果を図9に示す。図中の、△は合格
(縦割れ発生率0.1%未満)、●、▲は不合格(縦割
れ発生率0.1%以上)である。結晶化温度が1100
℃以下では良好であるが、1100℃を超えると不合格
となっている。FIG. 9 shows the results of the investigation. In the figure, Δ indicates a pass (the rate of occurrence of vertical cracks is less than 0.1%), and ● and ▲ indicate a failure (a rate of occurrence of vertical cracks of 0.1% or more). Crystallization temperature is 1100
It is good when the temperature is lower than 1 ° C, but rejected when the temperature is higher than 1100 ° C.
【0044】(実施例5)…鍍金と銅板の接合面の影響 ニッケルを鍍金材とし、格子間隔10mm、鍍金幅5mm、
鍍金厚さ1mm、傾角15°の格子状鍍金を施した鋳型を
使用して、鍍金と銅板の接合面を変更する試験を行っ
た。連続鋳造機の第1ストランドには、図10に示すよ
うに鍍金と銅板の接合部は楔状でエッジが存在する鋳
型、第2ストランドには、鍍金と銅板の接合部は鍍金幅
bの1/5の曲面で接合した鋳型を使用した。尚、この
試験では、曲面の曲率半径は1mmに相当する。(Embodiment 5) Influence of bonding surface between plating and copper plate Nickel was used as plating material, grid spacing was 10 mm, plating width was 5 mm,
Using a mold having a plating thickness of 1 mm and a grid plating with a tilt angle of 15 °, a test was conducted in which the joining surface between the plating and the copper plate was changed. As shown in FIG. 10, the joint between the plating and the copper plate has a wedge-shaped edge on the first strand of the continuous casting machine, and the joint between the plating and the copper plate has a 1/1 / plating width b on the second strand. A mold joined by a curved surface of No. 5 was used. In this test, the radius of curvature of the curved surface is equivalent to 1 mm.
【0045】図11に700ヒート鋳造後の長辺銅板の
鍍金面における割れ発生指数を示す。割れ発生指数は、
鍍金面でのカラーチェックを行い、接合部が楔状である
鍍金面でのクラック発生量(総長さ)に対する割合で示
した。図11より鍍金と銅板の接合面を曲面とすること
が、鋳型の延命に有効であることが判明した。FIG. 11 shows the crack generation index on the plated surface of the long side copper plate after 700 heat casting. The crack initiation index is
A color check was performed on the plated surface, and the result was shown as a ratio to the amount of cracks generated (total length) on the plated surface having a wedge-shaped joint. From FIG. 11, it was found that making the joining surface between the plating and the copper plate a curved surface was effective for extending the life of the mold.
【0046】(実施例6)…従来型格子溝鋳型との比較 連続鋳造機の第1ストランドに、格子間隔10mm、鍍金
幅5mm、鍍金厚さ0.5mm、傾角45°の格子状のニッ
ケル鍍金を施した本発明による格子状鍍金鋳型を搭載
し、比較として第2ストランドに先行技術3に開示され
た格子溝鋳型(格子幅0.5mm、格子間隔10mm、深さ
0.5mm、充填材ニッケル)を搭載し、炭素濃度が0.
10〜0.12wt%の中炭素鋼を鋳片引抜き速度Vc=
2.0m/min.で鋳造試験を行った。モールドパウダーは
両ストランドともに、1300℃での粘性が2.0pois
e 、結晶化温度が950℃のものを使用した。(Example 6) Comparison with a conventional lattice groove mold A grid-like nickel plating having a lattice spacing of 10 mm, a plating width of 5 mm, a plating thickness of 0.5 mm, and a tilt angle of 45 ° was applied to the first strand of the continuous casting machine. The grid-like plating mold according to the present invention, which has been subjected to the present invention, is mounted thereon, and as a comparison, the grid groove mold disclosed in Prior Art 3 (grid width 0.5 mm, grid spacing 10 mm, depth 0.5 mm, filler nickel) ) And carbon concentration of 0.
10 ~ 0.12wt% of medium carbon steel slab drawing speed Vc =
A casting test was performed at 2.0 m / min. Mold powder has a viscosity of 2.0 pois at 1300 ° C for both strands.
e. A crystallization temperature of 950 ° C. was used.
【0047】この試験では、両者鋳型の格子溝の影響を
調べるため、図12に示すように鍍金部2又はニッケル
充填部6と、それらの存在しない部分7に熱電対を取り
付け、定常状態で鋳造時の銅板温度を測定した。測定位
置は全部で4箇所あり、鋳型長辺銅板の中央部のメニス
カス近傍かつ、表面より1mmの位置に、後面より埋め込
んだ。これを図12に白丸で示す。各位置における測定
値より、2点間の温度差の平均ΔT(ΔT=T2 −
T1 )、ΔT’(ΔT=T4 −T3 )を求めた。In this test, a thermocouple was attached to the plated portion 2 or the nickel-filled portion 6 and the portion 7 where they were not present as shown in FIG. The temperature of the copper plate at that time was measured. There were a total of four measurement positions, which were embedded from the rear surface near the meniscus in the center of the long side copper plate of the mold and at a position 1 mm from the surface. This is indicated by a white circle in FIG. From the measured values at each position, the average ΔT of the temperature difference between the two points (ΔT = T 2 −
T 1 ) and ΔT ′ (ΔT = T 4 −T 3 ).
【0048】図13にその結果を示す。本発明による格
子状鍍金鋳型AではΔTの平均値が5℃を越える温度差
があるに対し、従来技術の格子溝鋳型Bでは温度差が小
さく、溝による部分的な抜熱量の差に及ぼす影響が小さ
く、従って、不均一凝固の改善効果が期待できない。FIG. 13 shows the result. In the lattice-shaped plating mold A according to the present invention, there is a temperature difference in which the average value of ΔT exceeds 5 ° C., whereas in the lattice groove mold B of the prior art, the temperature difference is small, and the influence on the difference in the amount of heat removal due to the groove is small. Therefore, the effect of improving the uneven solidification cannot be expected.
【0049】(実施例7)…中炭素鋼の鋳造 連続鋳造機の第1ストランドに、格子間隔10mm、鍍金
幅5mm、鍍金厚さ0.5mm、傾角45°の格子状のニッ
ケル鍍金を施した本発明による格子状鍍金鋳型を搭載
し、比較として第2ストランドに全面がニッケル鍍金の
平板状鋳型を搭載して、炭素濃度0.08〜0.18wt
%の中炭素鋼を、引抜き速度Vc=0.6〜3m/min.の
範囲で鋳造試験を行い、鋳片の縦割れ発生率を調査し
た。使用したモールドパウダーは両ストランドともに、
1300℃での粘性が1.6poise 、結晶化温度は95
0℃のものを使用した。図14はその結果である。格子
状鍍金鋳型は平板状鋳型に対して縦割れ抑制効果が確認
され、鋳片引抜き速度1.4m/min.以上の高速鋳造域で
はその効果が顕著である。(Example 7) Casting of medium carbon steel The first strand of the continuous casting machine was subjected to a grid-like nickel plating having a grid spacing of 10 mm, a plating width of 5 mm, a plating thickness of 0.5 mm, and a tilt angle of 45 °. A grid-type plating mold according to the present invention is mounted, and as a comparison, a flat-plate mold with nickel plating on the entire surface is mounted on the second strand, and a carbon concentration of 0.08 to 0.18 wt.
% Of medium carbon steel was subjected to a casting test at a drawing speed Vc of 0.6 to 3 m / min., And the longitudinal cracking rate of the slab was investigated. The mold powder used for both strands,
The viscosity at 1300 ° C is 1.6 poise and the crystallization temperature is 95
The one at 0 ° C. was used. FIG. 14 shows the result. The lattice plating mold has been confirmed to have an effect of suppressing vertical cracking with respect to the flat mold, and the effect is remarkable in a high-speed casting region with a slab drawing speed of 1.4 m / min or more.
【0050】(実施例8)…オーステナイト系ステンレ
ス鋼の鋳造 δ→γ変態を伴うオーステナイト系ステンレス鋼(SU
S304鋼)の鋳造に本発明の格子状鍍金鋳型を適用し
た。連続鋳造機の第1ストランドにニッケルを鍍金材と
し、格子間隔10mm、鍍金幅5mm、鍍金厚さ0.5mm、
傾角45°の格子状鍍金を施した鋳型を使用し、第2ス
トランドに比較として従来の全面にニッケル鍍金を施し
た平板状鋳型を使用して、1300℃での粘性が2.0
poise 、結晶化温度が950℃のモールドパウダーに
て、引抜き速度2.2m/min.でSUS304鋼を鋳造
し、デプレッション発生数を調査した。(Example 8) Casting of austenitic stainless steel Austenitic stainless steel with δ → γ transformation (SU
(S304 steel) was applied with the lattice plating mold of the present invention. Nickel is used as a plating material on the first strand of the continuous casting machine, lattice spacing 10 mm, plating width 5 mm, plating thickness 0.5 mm,
Using a mold plated with a grid-like plating at an inclination of 45 °, using a conventional flat mold plated with nickel over the entire surface as compared with the second strand, the viscosity at 1300 ° C. is 2.0.
SUS304 steel was cast at a draw speed of 2.2 m / min. with a mold powder having a crystallization temperature of 950 ° C. and the number of depletions was investigated.
【0051】この結果を図15に示す。図15より、本
発明の格子状鍍金鋳型はSUS304鋼でも良好な結果
が得られた。尚、SUS316鋼でも同様な試験によ
り、本発明の格子状鍍金鋳型の効果を確認している。FIG. 15 shows the result. FIG. 15 shows that the grid-plated mold of the present invention obtained good results even with SUS304 steel. In addition, the effect of the grid-plated mold of the present invention was confirmed by a similar test for SUS316 steel.
【0052】[0052]
【発明の効果】以上のように本発明によれば、長辺銅板
内面に格子状のニッケル鍍金を鋳片引抜き方向に傾斜し
て施した鋳型銅板と適切なモールドパウダーを併用する
ことで、鋳型の延命を達成すると共に、メニスカス付近
における凝固シェル不均一凝固に起因する縦割れやデプ
レッションを防止し、高速鋳造時においても優れた表面
性状を有する鋳片を得ることができた。As described above, according to the present invention, an appropriate mold powder is used in combination with a mold copper plate in which lattice-like nickel plating is applied to the inner surface of a long-side copper plate at an angle in the direction of drawing a slab. , And vertical cracks and depletion caused by uneven solidification of the solidified shell near the meniscus were prevented, and a slab having excellent surface properties even at the time of high-speed casting could be obtained.
【図1】本発明に係る連続鋳造用鋳型の長辺銅板の概要
を示す図で、(a)は側面図、(b)は断面図である。FIG. 1 is a view showing an outline of a long side copper plate of a continuous casting mold according to the present invention, wherein (a) is a side view and (b) is a sectional view.
【図2】本発明に係る格子状鍍金鋳型と従来の平板状鋳
型とで、凝固シェルの成長の様子を比較して示した図で
ある。FIG. 2 is a diagram showing a comparison of the growth of a solidified shell between a lattice plating mold according to the present invention and a conventional flat mold.
【図3】鋳片縦割れ発生率に及ぼす格子状鍍金の格子間
隔の影響を示した図である。FIG. 3 is a view showing the effect of the lattice spacing of lattice plating on the incidence of vertical slab cracks.
【図4】格子状鍍金の格子間隔aが10mm及び20m
mの場合について、鋳片縦割れ発生率に及ぼす鍍金幅の
影響を示した図である。[FIG. 4] Lattice interval a of lattice plating is 10 mm and 20 m.
FIG. 4 is a diagram showing the effect of plating width on the rate of occurrence of vertical slab cracks in the case of m.
【図5】鋳片縦割れ発生率に及ぼす格子状鍍金の鍍金厚
さの影響を示した図である。FIG. 5 is a diagram showing the influence of the plating thickness of lattice plating on the occurrence rate of vertical slab cracks.
【図6】鋳型の鍍金面における割れ発生指数に及ぼす格
子配列の鋳片引抜き方向との傾斜角度(傾角)の影響を
示した図である。FIG. 6 is a diagram showing the effect of the inclination angle (inclination angle) of the lattice arrangement with the slab drawing direction on the crack generation index on the plating surface of the mold.
【図7】本発明の格子状鋳型を用い、鋳片引抜き速度
2.2m/min.で鋳造した時の、1300℃におけるモー
ルドパウダー粘性と縦割れ発生率との関係を示した図で
ある。FIG. 7 is a view showing the relationship between mold powder viscosity at 1300 ° C. and the rate of occurrence of vertical cracks when casting is performed at a slab drawing speed of 2.2 m / min. Using the lattice-shaped mold of the present invention.
【図8】本発明の格子状鋳型を用い、0.6〜3.0m/
min.の鋳片引抜き速度において、1300℃におけるモ
ールドパウダー粘性と縦割れ発生率との関係を示した図
である。FIG. 8: Using the lattice mold of the present invention, 0.6 to 3.0 m /
FIG. 3 is a diagram showing the relationship between mold powder viscosity at 1300 ° C. and the rate of occurrence of vertical cracks at a slab drawing speed of min.
【図9】本発明の格子状鋳型を用い、鋳片引抜き速度
2.6m/min.と3.0m/min.の時の、モールドパウダー
の結晶化温度と鋳片縦割れ発生率との関係を示した図で
ある。FIG. 9 shows the relationship between the crystallization temperature of mold powder and the rate of occurrence of vertical cracks in the slab when the slab drawing speed is 2.6 m / min. And 3.0 m / min. Using the lattice-shaped mold of the present invention. FIG.
【図10】本発明の格子状鋳型における格子状鍍金と鋳
型銅板との接合部を示した図であり、(a)は接合部が
楔状である鋳型、(b)は接合部が鍍金幅bの(1/
5)Rの曲面で接合した鋳型である。FIGS. 10A and 10B are views showing a joint between the grid plating and the copper mold plate in the lattice mold of the present invention, wherein FIG. 10A shows a mold having a joint having a wedge shape, and FIG. Of (1 /
5) A mold joined with a curved surface of R.
【図11】本発明の格子状鍍金において、鍍金面におけ
る割れ発生指数に及ぼす鍍金面と鋳型銅板との接合部形
状の影響を示した図である。FIG. 11 is a view showing the influence of the shape of the joint between the plating surface and the mold copper plate on the crack generation index on the plating surface in the grid plating of the present invention.
【図12】本発明の格子状鋳型と従来の格子溝鋳型にお
いて、鋳型銅板の測温のため熱伝対を設置した位置を示
した図である。FIG. 12 is a view showing a position where a thermocouple is installed for measuring a temperature of a mold copper plate in the lattice mold of the present invention and a conventional lattice groove mold.
【図13】本発明の格子状鋳型と従来の格子溝鋳型にお
いて、鋳造中の測温結果を比較して示した図である。FIG. 13 is a diagram showing a comparison between temperature measurement results during casting in the lattice-shaped mold of the present invention and a conventional lattice groove mold.
【図14】炭素濃度0.08〜0.18wt%の中炭素鋼
において、本発明の実施例と従来例とで、鋳片縦割れ発
生率と引抜き速度との関係を比較して示した図である。FIG. 14 is a diagram showing a comparison between the relationship between the rate of occurrence of vertical cracks in slabs and the drawing speed between the example of the present invention and the conventional example in medium carbon steel having a carbon concentration of 0.08 to 0.18 wt%. It is.
【図15】SUS304鋼において、鋳片のデプレッシ
ョン発生数を、本発明の実施例と従来例とで比較して示
した図である。FIG. 15 is a diagram showing the number of depletions of a slab of SUS304 steel in an example of the present invention and a conventional example.
1;長辺銅板 2;鍍金部 1: long side copper plate 2: plating part
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西町 龍三 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 村上 洋 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Ryuzo Nishimachi, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Nihon Kokan Co., Ltd. (72) Inventor Hiroshi Murakami 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Honko Co., Ltd.
Claims (4)
伝導度の異種金属又は合金の格子状の鍍金を、格子間隔
aを10〜40mm、鍍金幅bを0.2a≦b≦0.5a
(mm)、厚みを0.5mm以上で、格子の配列が鋳片引抜
き方向に対して傾斜して施した銅板製鋳型を用いて、融
点が1100℃以下で、且つ1300℃での粘性η(po
ise )が、鋳片引抜き速度Vc(m/min.)との関係にお
いて、(1)式を満足するモールドパウダーを用いるこ
とを特徴とする鋼の連続鋳造方法。 η≦0.3Vc+1.5 ………(1)1. At least on the surface of a long side copper plate, grid-like plating of a dissimilar metal or alloy having lower thermal conductivity than copper, lattice spacing a is 10 to 40 mm, plating width b is 0.2a ≦ b ≦ 0.5a.
(Mm), using a copper plate mold having a thickness of 0.5 mm or more and a lattice array inclined with respect to the direction of drawing the slab, the melting point is 1100 ° C. or less, and the viscosity η at 1300 ° C. ( po
ise), using a mold powder that satisfies the formula (1) in relation to the slab drawing speed Vc (m / min.). η ≦ 0.3Vc + 1.5 (1)
の接触面を曲面としたことを特徴とする請求項1に記載
の鋼の連続鋳造法。2. The continuous casting method of steel according to claim 1, wherein a contact surface between the grid-plated metal of a dissimilar metal and the long side copper plate is a curved surface.
又は合金の格子状の鍍金を、格子間隔aを10〜40m
m、鍍金幅bを0.2a≦b≦0.5a(mm)、厚みを
0.5mm以上で、格子の配列が鋳片引抜き方向に対して
傾斜して施した長辺銅板を有することを特徴とする鋼の
連続鋳造用鋳型。3. A copper plate surface is plated with a lattice of a dissimilar metal or alloy having a lower thermal conductivity than copper, and the lattice spacing a is 10 to 40 m.
m, having a plating width b of 0.2a ≦ b ≦ 0.5a (mm), a thickness of 0.5 mm or more, and having a long-side copper plate with a lattice arrangement inclined with respect to the slab drawing direction. Features A continuous casting mold for steel.
の接触面を曲面としたことを特徴とする請求項3に記載
の鋼の連続鋳造用鋳型。4. The continuous casting mold for steel according to claim 3, wherein a contact surface between the grid-plated metal of a different kind of metal and the long side copper plate is a curved surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18504896A JPH1029043A (en) | 1996-07-15 | 1996-07-15 | Continuous casting method for steel, and mold therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18504896A JPH1029043A (en) | 1996-07-15 | 1996-07-15 | Continuous casting method for steel, and mold therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1029043A true JPH1029043A (en) | 1998-02-03 |
Family
ID=16163892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18504896A Pending JPH1029043A (en) | 1996-07-15 | 1996-07-15 | Continuous casting method for steel, and mold therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1029043A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104395015A (en) * | 2012-06-27 | 2015-03-04 | 杰富意钢铁株式会社 | Continuous casting mold and method for continuous casting of steel |
JP2015096277A (en) * | 2013-10-10 | 2015-05-21 | Jfeスチール株式会社 | Continuous casting method for steel |
JP2015107522A (en) * | 2013-10-22 | 2015-06-11 | Jfeスチール株式会社 | Casting mold for continuous casting and continuous casting method of steel |
WO2018074406A1 (en) * | 2016-10-19 | 2018-04-26 | Jfeスチール株式会社 | Continuous casting mold and method for continuous casting of steel |
TWI630962B (en) * | 2015-07-22 | 2018-08-01 | Jfe鋼鐵股份有限公司 | Continuous casting mold and steel continuous casting method |
KR102033639B1 (en) * | 2018-06-29 | 2019-11-08 | 주식회사 포스코 | Mold for casting |
JP2020075282A (en) * | 2018-11-09 | 2020-05-21 | Jfeスチール株式会社 | Mold and method for steel continuous casting |
-
1996
- 1996-07-15 JP JP18504896A patent/JPH1029043A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2839901A4 (en) * | 2012-06-27 | 2015-06-03 | Jfe Steel Corp | Continuous casting mold and method for continuous casting of steel |
CN105728673A (en) * | 2012-06-27 | 2016-07-06 | 杰富意钢铁株式会社 | Continuous casting mold and method for continuous casting of steel |
CN105728673B (en) * | 2012-06-27 | 2018-04-03 | 杰富意钢铁株式会社 | The continuous casing of continuously casting casting mold and steel |
US10792729B2 (en) | 2012-06-27 | 2020-10-06 | Jfe Steel Corporation | Continuous casting mold and method for continuous casting of steel |
CN104395015A (en) * | 2012-06-27 | 2015-03-04 | 杰富意钢铁株式会社 | Continuous casting mold and method for continuous casting of steel |
JP2015096277A (en) * | 2013-10-10 | 2015-05-21 | Jfeスチール株式会社 | Continuous casting method for steel |
JP2015107522A (en) * | 2013-10-22 | 2015-06-11 | Jfeスチール株式会社 | Casting mold for continuous casting and continuous casting method of steel |
CN109475930A (en) * | 2015-07-22 | 2019-03-15 | 杰富意钢铁株式会社 | The continuous casing of continuous casting mold and steel |
TWI630962B (en) * | 2015-07-22 | 2018-08-01 | Jfe鋼鐵股份有限公司 | Continuous casting mold and steel continuous casting method |
JPWO2018074406A1 (en) * | 2016-10-19 | 2018-10-18 | Jfeスチール株式会社 | Continuous casting mold and steel continuous casting method |
CN109843473A (en) * | 2016-10-19 | 2019-06-04 | 杰富意钢铁株式会社 | The continuous casing of continuous casting mold and steel |
EP3530373A4 (en) * | 2016-10-19 | 2019-08-28 | JFE Steel Corporation | Continuous casting mold and method for continuous casting of steel |
WO2018074406A1 (en) * | 2016-10-19 | 2018-04-26 | Jfeスチール株式会社 | Continuous casting mold and method for continuous casting of steel |
US11020794B2 (en) | 2016-10-19 | 2021-06-01 | Jfe Steel Corporation | Continuous casting mold and method for continuously casting steel |
CN109843473B (en) * | 2016-10-19 | 2022-01-28 | 杰富意钢铁株式会社 | Continuous casting mold and method for continuous casting of steel |
KR102033639B1 (en) * | 2018-06-29 | 2019-11-08 | 주식회사 포스코 | Mold for casting |
JP2020075282A (en) * | 2018-11-09 | 2020-05-21 | Jfeスチール株式会社 | Mold and method for steel continuous casting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR850001152B1 (en) | Method of and apparatus for strip casting | |
JPH1029043A (en) | Continuous casting method for steel, and mold therefor | |
TWI268821B (en) | Adjustment of heat transfer in continuous casting molds in particular in the region of the meniscus | |
EP3488947B1 (en) | Continuous steel casting method | |
JP6365604B2 (en) | Steel continuous casting method | |
CN109689247B (en) | Method for continuously casting steel | |
JP6787359B2 (en) | Continuous steel casting method | |
JP6740924B2 (en) | Continuous casting mold and steel continuous casting method | |
CN109843473B (en) | Continuous casting mold and method for continuous casting of steel | |
JPH0994634A (en) | Water cooling mold for continuous casting | |
JPH07284896A (en) | Method for continuously casting steel and mold for continuous casting | |
JP4055522B2 (en) | Molded copper plate for continuous casting mold and manufacturing method thereof | |
JPH0333424B2 (en) | ||
JPH11156511A (en) | Steel slab continuous casting method | |
JPH038863B2 (en) | ||
JPH09103845A (en) | Austenitic stainless steel thin slab and its production | |
JPH02247059A (en) | Method and device for controlling curved short wall side in mold for continuous casting | |
JP5566972B2 (en) | Continuous casting mold | |
JPH0270358A (en) | Mold for continuous casting | |
JP2001347353A (en) | Method for continuously casting steel | |
KR200188747Y1 (en) | Device of continuous thin slab casting for twin roll type | |
JPS6143134B2 (en) | ||
JP3380425B2 (en) | Twin drum type continuous casting drum | |
JP3147803B2 (en) | Continuous casting method | |
JP6146346B2 (en) | Mold for continuous casting of steel and continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20011106 |