JPH10289839A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH10289839A
JPH10289839A JP9113347A JP11334797A JPH10289839A JP H10289839 A JPH10289839 A JP H10289839A JP 9113347 A JP9113347 A JP 9113347A JP 11334797 A JP11334797 A JP 11334797A JP H10289839 A JPH10289839 A JP H10289839A
Authority
JP
Japan
Prior art keywords
film layer
weight
layer
solid electrolytic
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9113347A
Other languages
Japanese (ja)
Inventor
Noriko Tsunoda
憲子 角田
Reiji Sato
玲司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
Original Assignee
Nitsuko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitsuko Corp filed Critical Nitsuko Corp
Priority to JP9113347A priority Critical patent/JPH10289839A/en
Publication of JPH10289839A publication Critical patent/JPH10289839A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a small-sized and large-capacity solid electrolytic capacitor by a method wherein a conductive function high-molecular film layer is formed on an anodized film layer on the surface of a valve action metal film in an electrolyte, which is an aqueous solution containing a pyrol, a borosisalicylic acid ammonium, a boric acid and a citric acid, and a conductor layer is formed on the high-molecular film layer. SOLUTION: An anodized film layer 1 is formed on the surface of an aluminium foil 3 formed with a valve action metal film with the roughened surface and a conductive function high-molecular film layer 4 is formed on the layer 1 in an electrolyte, which is an aqueous solution containing a pyrol, a borosisalicylic acid ammonium, a boric acid and a citric acid, by an electrolytic oxidation polymerization method. After that, a conductor layer 7 is formed on the layer 4, the part, which is not formed with the layer 4, of the foil 3 is cut in a prescribed length and a capacitor element 8 of a solid electrolytic capacitor is manufactured using this part as an anode terminal part and using the part, which is not formed with the layer 7, of the foil 3 as a cathode terminal part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は導電性機能高分子膜
層を電解質とする固体電解コンデンサの製造方法に関す
るものである。
The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive functional polymer film layer as an electrolyte.

【0002】[0002]

【従来の技術】近年の電子機器の小形化、高性能化、高
温・高信頼性化に伴い、この電子機器に使用される電源
部も小形化・長寿命化が急速に発展している。電源の小
形化・長寿命化のためには、特に出力平滑回路部に用い
られる出力平滑コンデンサに対して、下記のような性能
が要求される。 (1)低インピーダンスで、低等価直列抵抗(ESR)
値を有すること。
2. Description of the Related Art With the recent miniaturization, high performance, high temperature and high reliability of electronic equipment, the power supply unit used in this electronic equipment has been rapidly becoming smaller and longer lasting. In order to reduce the size and extend the life of the power supply, the following performance is required especially for the output smoothing capacitor used in the output smoothing circuit section. (1) Low impedance, low equivalent series resistance (ESR)
Have a value.

【0003】(2)高温においてコンデンサ特性値が安
定していること。
(2) Capacitor characteristic values are stable at high temperatures.

【0004】(3)小形で且つ大容量であること。(3) Small size and large capacity.

【0005】上記要求に対して、従来から二酸化マンガ
ン、TCNQ塩、導電性機能高分子膜を固体電解質とし
て用いた低インピーダンスで、低等価直列抵抗(ES
R)値を有する固体電解コンデンサが開発されて来た。
これらのコンデンサの特性は、使用した固体電解質の電
気電導度により決定され、導電性機能高分子膜を電解質
とする固体コンデンサは、他のコンデンサと比較して特
に優れている。
[0005] In response to the above requirements, a low impedance, low equivalent series resistance (ES) using manganese dioxide, TCNQ salt, and a conductive functional polymer film as a solid electrolyte has been conventionally used.
Solid electrolytic capacitors having R) values have been developed.
The characteristics of these capacitors are determined by the electric conductivity of the solid electrolyte used, and solid capacitors using a conductive functional polymer membrane as an electrolyte are particularly excellent as compared with other capacitors.

【0006】前記弁作用金属の表面に形成された陽極酸
化皮膜層上に導電性高分子膜を形成すめ方法としては、
電解質とピロールとを含む溶液中で電解酸化重合法によ
り形成する方法と、酸化剤を予め陽極酸化皮膜上に付着
させた後、該電解質とピロールとを含む液中で、化学重
合法により形成する方法とがある。
A method for forming a conductive polymer film on the anodic oxide film layer formed on the surface of the valve metal is as follows.
A method of forming by an electrolytic oxidation polymerization method in a solution containing an electrolyte and pyrrole, and a method in which an oxidizing agent is previously deposited on an anodic oxide film and then formed by a chemical polymerization method in a liquid containing the electrolyte and pyrrole. There is a way.

【0007】[0007]

【発明が解決しようとする課題】上記導電性高分子膜を
形成するのに化学重合法を用いる方法は、酸化剤として
塩化第2鉄が一般に用いられるが、弁作用金属としてア
ルミニウム箔を用いる場合塩化第2鉄は該アルミニウム
箔を溶解するという欠点がある。
In the method using a chemical polymerization method to form the conductive polymer film, ferric chloride is generally used as an oxidizing agent, but aluminum foil is used as a valve metal. Ferric chloride has the disadvantage of dissolving the aluminum foil.

【0008】また、上記電解酸化重合法による方法は、
アセトニトリル、アセトン等の非水性電解液中では、陽
極酸化膜を形成する際の印加電圧(=Vf)に対して、
電解酸化重合時の印加電圧(=V0)は、V0=(1.5
〜3.0)×Vf位が必要である。従って、電解酸化重
合時に、陽極酸化皮膜層を通して流れた電流により、該
電流の通過した場所の陽極酸化皮膜層が、局部的に結晶
化し、漏れ電流値が大きくなってしまうという欠点があ
る。この傾向は陽極酸化皮膜形成時の印加電圧(=
f)が、高い程多くなるため、高耐圧コンデンサの製
造が困難になるという欠点もあった。また、水溶液電解
液と比較して、コストが高くなるという欠点もあった。
[0008] Further, the method using the electrolytic oxidation polymerization method is as follows:
In a non-aqueous electrolyte such as acetonitrile and acetone, the applied voltage (= V f ) when forming the anodic oxide film is:
The applied voltage (= V 0 ) during the electrolytic oxidation polymerization is V 0 = (1.5
3.0) is required × V f position. Therefore, there is a disadvantage that the current flowing through the anodic oxide film layer during the electrolytic oxidation polymerization locally crystallizes the anodic oxide film layer at a location where the current has passed, resulting in a large leakage current value. This tendency is due to the applied voltage (=
Since Vf ) increases as the value increases, there is also a disadvantage that it becomes difficult to manufacture a high withstand voltage capacitor. There is also a disadvantage that the cost is higher than that of the aqueous electrolyte solution.

【0009】また、水溶液電解液中で電解酸化重合法に
より、導電性機能高分子膜を形成する場合、陽極酸化皮
膜を形成していない金属板上には、容易に形成できる
が、陽極酸化皮膜層上では、一般に用いられる電解液組
成のものでは、導電性機能高分子膜の形成は不可能であ
った。この傾向は、陽極酸化皮膜形成時の印加電圧(=
f)が高い程顕著であった。
When a conductive functional polymer film is formed by electrolytic oxidation polymerization in an aqueous electrolyte solution, it can be easily formed on a metal plate on which no anodic oxide film is formed. On the layer, it was impossible to form a conductive functional polymer film with a generally used electrolyte composition. This tendency is due to the applied voltage (=
Higher V f ) was more pronounced.

【0010】本発明は上述の点に鑑みてなされたもの
で、上記従来方法の欠点を除去し、コストの低い水溶液
電解液中で、電解酸化重合法により陽極酸化皮膜層上に
導電性機能高分子膜を形成できる固体電解コンデンサの
製造方法を提供することを目的とする。
The present invention has been made in view of the above points, and eliminates the drawbacks of the above-mentioned conventional method, and has a high conductive function on an anodized film layer by an electrolytic oxidation polymerization method in a low-cost aqueous electrolyte solution. An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor capable of forming a molecular film.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、弁作用金属の表面に陽極酸化
皮膜層を形成し、該陽極酸化皮膜層上にピロール、ボロ
ジサリチル酸アンモニウム、ホウ酸及びクエン酸を含む
水溶液の電解液中で電解酸化重合法により導電性機能高
分子膜層を形成し、該導電性機能高分子膜層上に導電体
を形成して固体電解コンデンサを製造することを特徴と
する。
According to a first aspect of the present invention, an anodic oxide layer is formed on the surface of a valve metal, and pyrrole and borodisalicylic acid are formed on the anodic oxide layer. Forming a conductive functional polymer film layer by electrolytic oxidation polymerization in an electrolytic solution of an aqueous solution containing ammonium, boric acid and citric acid, and forming a conductor on the conductive functional polymer film layer to form a solid electrolytic capacitor Is manufactured.

【0012】また、請求項2に記載の発明は、請求項1
に記載の固体電解コンデンサの製造方法において、前記
電解液は、ピロールが1〜8重量%、ボロジサリチル酸
アンモニウムが0.1〜0.5重量%、ホウ酸が0.1
〜1.0重量%、クエン酸が0.1〜2.0重量%を含
む水溶液であることを特徴する。
The invention described in claim 2 is the first invention.
In the method for producing a solid electrolytic capacitor described in 1 above, the electrolytic solution contains 1 to 8% by weight of pyrrole, 0.1 to 0.5% by weight of ammonium borodisalicylate, and 0.1% by weight of boric acid.
It is an aqueous solution containing 0.1 to 2.0% by weight of citric acid.

【0013】また、請求項3に記載の発明は、弁作用金
属の表面に陽極酸化皮膜層を形成し、該陽極酸化皮膜層
上にピロール、ボロジサリチル酸アンモニウム、ホウ
酸、クエン酸及びドデシルベンゼンスルホン酸ナトリウ
ムを含む水溶液の電解液中で電解酸化重合法により導電
性機能高分子膜層を形成し、該導電性機能高分子膜層上
に導電体を形成して固体電解コンデンサを製造すること
を特徴とする。
According to a third aspect of the present invention, an anodic oxide film layer is formed on the surface of a valve metal, and pyrrole, ammonium borodisalicylate, boric acid, citric acid and dodecylbenzene are formed on the anodic oxide film layer. Forming a conductive functional polymer film layer by an electrolytic oxidation polymerization method in an electrolytic solution of an aqueous solution containing sodium sulfonate; and forming a conductor on the conductive functional polymer film layer to produce a solid electrolytic capacitor. It is characterized by.

【0014】また、請求項4に記載の発明は、請求項3
に記載の固体電解コンデンサの製造方法において、前記
電解液は、ピロールが1〜8重量%、ボロジサリチル酸
アンモニウムが0.1〜0.5重量%、ホウ酸が0.1
〜1.0重量%、クエン酸が0.1〜2.0重量%、ド
デシルベンゼンスルホン酸ナトリウムが0.1〜0.5
重量%を含む水溶液であることを特徴とする。
The invention described in claim 4 is the third invention.
In the method for producing a solid electrolytic capacitor described in 1 above, the electrolytic solution contains 1 to 8% by weight of pyrrole, 0.1 to 0.5% by weight of ammonium borodisalicylate, and 0.1% by weight of boric acid.
-1.0% by weight, citric acid 0.1-2.0% by weight, sodium dodecylbenzenesulfonate 0.1-0.5%
It is characterized in that it is an aqueous solution containing% by weight.

【0015】また、請求項5に記載の発明は、請求項1
乃至4のいずれか1に記載の固体電解コンデンサの製造
方法において、弁作用金属の陽極酸化皮膜層を0.1〜
10重量%のボロジサリチル酸アンモニウム水溶液中で
処理した後に、前記水溶液の電解液中で電解酸化重合法
により導電性機能高分子膜層を形成したことを特徴とす
る。
The invention described in claim 5 is the first invention.
5. The method for manufacturing a solid electrolytic capacitor according to any one of items 1 to 4,
After a treatment in an aqueous solution of 10% by weight of ammonium borodisalicylate, a conductive functional polymer film layer is formed by electrolytic oxidation polymerization in an electrolytic solution of the aqueous solution.

【0016】また、請求項6に記載の発明は、請求項1
乃至5のいずれか1に記載の固体電解コンデンサの製造
方法において、導電性機能高分子膜層上に形成された導
電体はグラファイト層及び銀ペースト層から構成される
ことを特徴とする。
The invention described in claim 6 is the first invention.
6. The method for manufacturing a solid electrolytic capacitor according to any one of Items 5 to 5, wherein the conductor formed on the conductive functional polymer film layer comprises a graphite layer and a silver paste layer.

【0017】また、請求項7に記載の発明は、請求項1
乃至5のいずれか1に記載の固体電解コンデンサの製造
方法において、導電性機能高分子膜層上に形成された導
電体はハンダ付け可能な金属のメッキ層により構成され
ることを特徴とする。
The invention described in claim 7 is the first invention.
6. The method for manufacturing a solid electrolytic capacitor according to any one of Items 5 to 5, wherein the conductor formed on the conductive functional polymer film layer is formed by a solderable metal plating layer.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態例を説
明する。図2乃至図4は固体電解コンデンサの製造方法
の工程を示す図である。図2に示すように表面を粗面化
したアルミニウム箔(アルミニウムエッチド箔)3の表
面に陽極酸化皮膜層1を形成し、熱処理した後、該アル
ミニウム箔3の所定位置の周囲に帯状に絶縁性樹脂でレ
ジスト層2を形成する。
Embodiments of the present invention will be described below. 2 to 4 are views showing steps of a method for manufacturing a solid electrolytic capacitor. As shown in FIG. 2, an anodic oxide film layer 1 is formed on the surface of an aluminum foil (aluminum-etched foil) 3 whose surface is roughened, heat-treated, and then insulated in a band shape around a predetermined position of the aluminum foil 3. A resist layer 2 is formed of a conductive resin.

【0019】図3は前記アルミニウム箔3のコンデンサ
を構成する部分に導電性機能高分子膜層4を形成するた
めの電解酸化重合装置の概略構成を示す図である。容器
14に収容された水溶液の電解液5中に、対向電極6を
配置すると共に、該対向電極6に対向してアルミニウム
箔3を配置する。アルミニウム箔3を陽極とし、対向電
極6を陰極として直流安定化電源15より所定電流を通
電することにより、アルミニウム箔3の水溶液の電解液
5中に浸漬している部分の陽極酸化皮膜層1に導電性機
能高分子膜層4を形成する。
FIG. 3 is a diagram showing a schematic configuration of an electrolytic oxidation polymerization apparatus for forming a conductive functional polymer film layer 4 on a portion of the aluminum foil 3 constituting a capacitor. The counter electrode 6 is disposed in the aqueous electrolyte solution 5 contained in the container 14, and the aluminum foil 3 is disposed opposite the counter electrode 6. By applying a predetermined current from the DC stabilizing power supply 15 using the aluminum foil 3 as an anode and the counter electrode 6 as a cathode, the portion of the anodic oxide film layer 1 immersed in the electrolytic solution 5 of the aqueous solution of the aluminum foil 3 is formed. The conductive functional polymer film layer 4 is formed.

【0020】上記のように電解酸化重合法により、導電
性機能高分子膜層4を形成した後、図4に示すように、
該導電性機能高分子膜層4の上に導電体層7を形成し、
アルミニウム箔3の導電性機能高分子膜層4の形成され
ていない部分を所定の長さに切断し、この部分を陽極端
子部9、導電体層7の形成された部分を陰極端子部10
として固体電解コンデンサのコンデンサ素子8ができ
る。
After the conductive functional polymer film layer 4 is formed by the electrolytic oxidation polymerization method as described above, as shown in FIG.
Forming a conductor layer 7 on the conductive functional polymer film layer 4;
A portion of the aluminum foil 3 where the conductive functional polymer film layer 4 is not formed is cut to a predetermined length, and this portion is cut into the anode terminal portion 9 and the portion where the conductor layer 7 is formed is cut into the cathode terminal portion 10.
As a result, a capacitor element 8 of a solid electrolytic capacitor is formed.

【0021】前記導電体層7はグラファイト層及び銀ペ
ースト層で構成するか、又はハンダ付け可能な金属、例
えば、銅、錫、ハンダ、ニッケル、黄銅、青銅等のメッ
キ層で構成する。
The conductor layer 7 is composed of a graphite layer and a silver paste layer, or is composed of a plating layer of a solderable metal, for example, copper, tin, solder, nickel, brass, bronze or the like.

【0022】図5は上記構成のコンデンサ素子8を複数
個積層してチップ形の固体電解コンデンサとした構成例
を示す図である。図示するように、リードフレームの外
部陽極電極端子部11の両面にそれぞれコンデンサ素子
8、8の陽極端子部9、9を接合すると共に、外部陰極
電極端子部12の両面にそれぞれコンデンサ素子8、8
の陰極端子部10、10を接合し、該コンデンサ素子
8、8の全表面を絶縁性樹脂モールド13で覆った後、
外部陽極電極端子部11及び外部陰極電極端子部12を
絶縁性樹脂モールド13の下面に折り曲げ成形してチッ
プ形の固体電解コンデンサができる。
FIG. 5 is a diagram showing an example of a configuration in which a plurality of capacitor elements 8 having the above configuration are stacked to form a chip-type solid electrolytic capacitor. As shown in the figure, the anode terminals 9 and 9 of the capacitor elements 8 and 8 are respectively joined to both surfaces of the external anode electrode terminal portion 11 of the lead frame, and the capacitor elements 8 and 8 are respectively attached to both surfaces of the external cathode electrode terminal portion 12.
After joining the cathode terminal portions 10 and 10 and covering the entire surfaces of the capacitor elements 8 and 8 with the insulating resin mold 13,
The external anode electrode terminal portion 11 and the external cathode electrode terminal portion 12 are bent and formed on the lower surface of the insulating resin mold 13 to obtain a chip-type solid electrolytic capacitor.

【0023】上記陽極端子部9と外部陽極電極端子部1
1との接合は電気溶接又はレーザー溶接等で行い、陰極
端子部10と外部陰極電極端子部12との接合は、導電
体層7の上面層が銀ペーストである場合は銀ペーストで
行い、ハンダ可能な金属のメッキ層の場合はハンダ付け
で行う。
The above-mentioned anode terminal 9 and external anode electrode terminal 1
1 is made by electric welding or laser welding, and the cathode terminal 10 and the external cathode electrode terminal 12 are joined by silver paste when the upper surface layer of the conductor layer 7 is silver paste. In the case of a possible metal plating layer, soldering is performed.

【0024】図1は本発明の固体電解コンデンサの製造
方法で用いる水溶液の電解液の組成及び比較例の組成を
示す図である。図示するように、比較例(1)はピロー
ル=5重量%(wt・%)、ドデシルベンゼンスルホン
酸=3wt・%、純水=92wt・%の組成の電解液を
用い、比較例(2)はピロール=5wt・%、P−トル
エンスルホン酸=10wt・%、純水85wt・%の組
成の電解液を用いている。また、本発明途中ではピロー
ル=5wt・%、ボロジサリチル酸アンモニウム=0.
5wt・%、純水=94.5wt・%の組成の電解液を
用いている。
FIG. 1 is a diagram showing the composition of an aqueous electrolyte solution used in the method for manufacturing a solid electrolytic capacitor of the present invention and the composition of a comparative example. As shown in the figure, Comparative Example (1) uses an electrolytic solution having a composition of pyrrole = 5% by weight (wt.%), Dodecylbenzenesulfonic acid = 3% by weight, and pure water = 92% by weight. Uses an electrolytic solution having a composition of pyrrole = 5 wt.%, P-toluenesulfonic acid = 10 wt.%, And pure water 85 wt.%. In the course of the present invention, pyrrole = 5 wt.%, Ammonium borodisalicylate = 0.
An electrolytic solution having a composition of 5 wt% and pure water = 94.5 wt% is used.

【0025】本発明(A)はピロール=5wt・%、ボ
ロジサリチル酸アンモニウム=0.3wt・%、ホウ酸
=0.6wt・%、クエン酸=0.4wt・%、ドデシ
ルベンゼンスルホン酸ナトリウム=0.3wt・%、純
水=93.4wt・%の組成の電解液を用いている。ま
た、本発明(B)はピロール=5wt・%、ボロジサリ
チル酸アンモニウム=0.3wt・%、ホウ酸=0.6
wt・%、クエン酸=0.4wt・%、純水=93.7
wt・%の組成の電解液を用いている。
In the present invention (A), pyrrole = 5 wt.%, Ammonium borodisalicylate = 0.3 wt.%, Boric acid = 0.6 wt.%, Citric acid = 0.4 wt.%, Sodium dodecylbenzenesulfonate = An electrolytic solution having a composition of 0.3 wt.% And pure water = 93.4 wt.% Is used. In the present invention (B), pyrrole = 5 wt.%, Ammonium borodisalicylate = 0.3 wt.%, Boric acid = 0.6
wt.%, citric acid = 0.4 wt.%, pure water = 93.7
An electrolytic solution having a composition of wt.% is used.

【0026】〔実施形態例1〕図2に示すアルミニウム
箔3の導電性機能高分子膜層4を形成する部分の面積を
3mm×4mmとし、定格電圧16V、定格容量4.7
μFの固体電解コンデンサを製作するために、図1に示
す水溶液電解液をそれぞれ用いて図3に示すような装置
で電解酸化重合を行った。その結果、アルミニウム箔3
の陽極酸化皮膜層1の上に導電性機能高分子膜層4を形
成することができたのは、本発明(A)及び(B)の組
成の水溶液の電解液のみであった。
Embodiment 1 The area of the aluminum foil 3 shown in FIG. 2 where the conductive functional polymer film layer 4 is formed is 3 mm × 4 mm, the rated voltage is 16 V, and the rated capacity is 4.7.
In order to fabricate a solid electrolytic capacitor of μF, electrolytic oxidation polymerization was performed using an aqueous electrolyte solution shown in FIG. 1 and an apparatus shown in FIG. As a result, the aluminum foil 3
Only the electrolytic solution of the aqueous solution having the composition of the present invention (A) or (B) was able to form the conductive functional polymer film layer 4 on the anodic oxide film layer 1.

【0027】また、本発明途中の電解液を用いても導電
性機能高分子を形成することはできるが、製作した固体
電解コンデンサの静電容量が本発明の電解液(A)及び
(B)の電解液を用いて製作した固体電解コンデンサの
10%〜30%であったので、この電解液は本実施形態
例では採用しない。
The conductive functional polymer can be formed by using the electrolytic solution in the course of the present invention. However, the capacitance of the manufactured solid electrolytic capacitor is limited by the electrolytic solutions (A) and (B) of the present invention. Since this is 10% to 30% of the solid electrolytic capacitor manufactured using the electrolytic solution, the electrolytic solution is not used in this embodiment.

【0028】上記本発明(A)及び(B)の組成の水溶
液の電解液を用いてアルミニウム箔3の陽極酸化皮膜層
1上に導電性機能高分子膜層4を形成し、その上に導電
体層7を形成してなるコンデンサ素子8を製作し、この
コンデンサ素子8を用いて、図5に示す構成のチップ形
の固体電解コンデンサを製作した。そのコンデンサ特性
を測定した結果を図6の実施形態例1に示す。
An electroconductive functional polymer film layer 4 is formed on the anodic oxide film layer 1 of the aluminum foil 3 using an electrolytic solution of an aqueous solution having the composition of the present invention (A) or (B). A capacitor element 8 having the body layer 7 was manufactured, and a chip-type solid electrolytic capacitor having the configuration shown in FIG. 5 was manufactured using the capacitor element 8. The results of measuring the capacitor characteristics are shown in FIG.

【0029】図6に示すように、本発明(A)の組成の
水溶液の電解液で導電性機能高分子膜層4を形成した場
合(実施形態例1)、静電容量=4.1μF(周波数1
20Hz)、Tanδ=1.47%(周波数120H
z)、等価直列抵抗値=55.2mΩ(周波数100K
Hz)、漏れ電流値=0.25μAのコンデンサ特性の
固体電解コンデンサが得られた。
As shown in FIG. 6, when the conductive functional polymer film layer 4 is formed with the electrolyte of the aqueous solution having the composition of the present invention (A) (Embodiment 1), the capacitance is 4.1 μF ( Frequency 1
20 Hz), Tan δ = 1.47% (frequency 120H)
z), equivalent series resistance value = 55.2 mΩ (frequency 100K
Hz), and a solid electrolytic capacitor having a capacitor characteristic having a leakage current value of 0.25 μA was obtained.

【0030】また、本発明(B)の組成の水溶液の電解
液で導電性機能高分子膜層4を形成した場合(実施形態
例2)、静電容量=3.5μF(周波数120Hz)、
Tanδ=2.25%(周波数120Hz)、等価直列
抵抗値=75.6mΩ(周波数100KHz)、漏れ電
流値=0.55μAのコンデンサ特性の固体電解コンデ
ンサが得られた。
In the case where the conductive functional polymer film layer 4 is formed with the electrolytic solution of the aqueous solution having the composition of the present invention (B) (Embodiment 2), when the capacitance is 3.5 μF (frequency 120 Hz),
A solid electrolytic capacitor having capacitor characteristics of Tan δ = 2.25% (frequency 120 Hz), equivalent series resistance value = 75.6 mΩ (frequency 100 KHz), and leakage current value = 0.55 μA was obtained.

【0031】〔実施形態例2〕図2に示すアルミニウム
箔3の導電性機能高分子膜層4を形成する部分の面積を
3mm×4mmとし、定格電圧16V、定格容量4.7
μFの固体電解コンデンサを製作するために、アルミニ
ウム箔3の上に陽極酸化皮膜層1を形成し、熱処理を行
った後、0.1〜10.0wt・%の範囲の内、5wt
・%としてボロジサリチル酸アンモニウムを溶解した水
溶液中に10〜12分間浸漬する。この場合の水溶液の
液温は40〜80℃が最適である。その後、上記実施形
態例1と同じ方法で、導電性機能高分子膜層4、導電体
層7を形成しコンデンサ素子8を製作し、更に該コンデ
ンサ素子8を用いてチップ形の固体電解コンデンサを製
作した。そのコンデンサ特性を測定した結果を図6の実
施形態例2に示す。
Embodiment 2 The area of the aluminum foil 3 shown in FIG. 2 where the conductive functional polymer film layer 4 is formed is 3 mm × 4 mm, the rated voltage is 16 V, and the rated capacity is 4.7.
In order to manufacture a solid electrolytic capacitor of μF, after forming an anodic oxide film layer 1 on an aluminum foil 3 and performing heat treatment, 5 wt% in the range of 0.1 to 10.0 wt.
-Immerse in an aqueous solution in which ammonium borodisalicylate is dissolved as a percentage for 10 to 12 minutes. In this case, the temperature of the aqueous solution is optimally 40 to 80 ° C. Thereafter, in the same manner as in the first embodiment, the conductive functional polymer film layer 4 and the conductor layer 7 are formed to produce a capacitor element 8, and a chip-type solid electrolytic capacitor is formed using the capacitor element 8. Made. The result of measuring the capacitor characteristics is shown in FIG.

【0032】図6に示すように、本発明(A)の組成の
水溶液の電解液で導電性機能高分子膜層4を形成した場
合(実施形態例2)、静電容量=5.8μF(周波数1
20Hz)、Tanδ=0.92%(周波数120H
z)、等価直列抵抗値=12.8mΩ(周波数100K
Hz)、漏れ電流値=0.15μAのコンデンサ特性の
チップ形固体電解コンデンサが得られた。
As shown in FIG. 6, when the conductive functional polymer film layer 4 is formed with the electrolyte of the aqueous solution having the composition of the present invention (A) (Embodiment 2), the capacitance is 5.8 μF ( Frequency 1
20Hz), Tan δ = 0.92% (frequency 120H
z), Equivalent series resistance = 12.8 mΩ (frequency 100K
Hz), and a chip-type solid electrolytic capacitor having a capacitor characteristic of leakage current value = 0.15 μA was obtained.

【0033】また、本発明(B)の組成の水溶液電解液
で導電性機能高分子膜層4を形成した場合(実施形態例
2)、静電容量=4.7μF(周波数120Hz)、T
anδ=0.96%(周波数120Hz)、等価直列抵
抗値=15.7mΩ(周波数100KHz)、漏れ電流
値=0.65μAのコンデンサ特性のチップ形固体電解
コンデンサが得られた。
When the conductive functional polymer film layer 4 was formed with the aqueous electrolyte solution of the composition of the present invention (B) (Embodiment 2), the capacitance was 4.7 μF (frequency 120 Hz),
A chip-type solid electrolytic capacitor having capacitor characteristics of an δ = 0.96% (frequency 120 Hz), equivalent series resistance = 15.7 mΩ (frequency 100 KHz), and leakage current = 0.65 μA was obtained.

【0034】図6から明らかなように、本発明(A)及
び(B)の組成の水溶液電解液で導電性機能高分子膜層
4を形成した場合、実施形態例1と比較し、周波数10
0KHzにおける等価直列抵抗値(ESR値)が小さく
なっており、陽極酸化皮膜層1をボロジサリチル酸アン
モニウムを溶解した水溶液で処理した効果が大きいこと
がわかる。
As is clear from FIG. 6, when the conductive functional polymer film layer 4 was formed with the aqueous electrolyte solution of the composition of the present invention (A) or (B), the frequency was 10% lower than that of the first embodiment.
The equivalent series resistance value (ESR value) at 0 KHz is small, indicating that the effect of treating the anodic oxide film layer 1 with an aqueous solution in which ammonium borodisalicylate is dissolved is large.

【0035】なお、図1に示す本発明(A)及び(B)
の水溶液の電解液の組成は一例であり、組成はこれに限
定されるものではなく、本発明(A)の電解液において
は、ピロールが1〜8wt・%、ボロジサリチル酸アン
モニウムが0.1〜0.5wt・%、ホウ酸が0.1〜
1.0wt・%、クエン酸が0.1〜2.0wt・%、
ドデシルベンゼンスルホン酸ナトリウム0.1〜0.5
wt・%の範囲で上記特徴を失うものではない。
The present invention (A) and (B) shown in FIG.
The composition of the electrolytic solution of the aqueous solution of is an example, and the composition is not limited thereto. In the electrolytic solution of the present invention (A), 1 to 8 wt.% Of pyrrole and 0.1% of ammonium borodisalicylate are used. ~ 0.5wt.%, Boric acid 0.1 ~
1.0 wt.%, Citric acid 0.1-2.0 wt.%,
Sodium dodecylbenzenesulfonate 0.1-0.5
The above characteristics are not lost in the range of wt.%.

【0036】また、本発明(A)の電解液においても、
ピロールが1〜8wt・%、ボロジサリチル酸アンモニ
ウムが0.1〜0.5wt・%、ホウ酸が0.1〜1.
0wt・%、クエン酸が0.1〜2.0wt・%の範囲
で上記特徴を失うものではない。
Further, in the electrolytic solution of the present invention (A),
Pyrrole 1-8 wt.%, Ammonium borodisalicylate 0.1-0.5 wt.%, Boric acid 0.1-1.
The above characteristics are not lost in the range of 0 wt.% And citric acid in the range of 0.1 to 2.0 wt.%.

【0037】また、上記実施形態例では、固体電解コン
デンサに用いる弁作用金属としてアルミニウムを例に説
明したが、アルミニウムに限定されるものではなく、タ
ンタル、チタン、ニオブ等の弁作用金属でもよいことは
当然である。
In the above embodiment, aluminum is used as an example of the valve metal used for the solid electrolytic capacitor. However, the valve metal is not limited to aluminum but may be a valve metal such as tantalum, titanium, or niobium. Is natural.

【0038】[0038]

【発明の効果】以上説明したように各請求項に記載の本
発明によれば、水溶液の電解液中で電解酸化重合により
陽極酸化皮膜層上に導電性機能高分子膜層を形成できる
から、非水性電解液中で電解酸化重合により形成する従
来例に比較し、低インピーダンス、低等価直列抵抗値、
高温においてコンデンサ特性が安定し、且つ小形・大容
量の固体電解コンデンサを安価に製造できる。
As described above, according to the present invention as described above, the conductive functional polymer film layer can be formed on the anodic oxide film layer by electrolytic oxidation polymerization in an aqueous electrolyte. Compared to the conventional example formed by electrolytic oxidation polymerization in a non-aqueous electrolyte, low impedance, low equivalent series resistance,
Capacitor characteristics are stable at high temperature, and a small and large-capacity solid electrolytic capacitor can be manufactured at low cost.

【0039】また、請求項5に記載の発明によれば、陽
極酸化皮膜層を0.1〜10wt・%のボロジサリチル
酸アンモニウム水溶液中で処理した後に、水溶液の電解
液中で電解酸化重合法により導電性機能高分子膜層を形
成することにより、等価直列抵抗値の小さい固体電解コ
ンデンサを製造できる。
According to the fifth aspect of the present invention, after the anodic oxide film layer is treated in a 0.1 to 10 wt.% Aqueous solution of ammonium borodisalicylate, the electrolytic oxidation polymerization method is carried out in an aqueous solution of the aqueous solution. Thus, a solid electrolytic capacitor having a small equivalent series resistance can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解コンデンサの製造方法に用い
る水溶液の電解液の組成と比較例の水溶液の電解液の組
成を示す図である。
FIG. 1 is a diagram showing the composition of an electrolytic solution of an aqueous solution used in the method for manufacturing a solid electrolytic capacitor of the present invention and the composition of an electrolytic solution of an aqueous solution of a comparative example.

【図2】本発明の固体電解コンデンサの製造方法に用い
るアルミニウム箔の構造を示す図である。
FIG. 2 is a view showing the structure of an aluminum foil used in the method for manufacturing a solid electrolytic capacitor of the present invention.

【図3】本発明の固体電解コンデンサの製造方法に用い
る電解酸化重合装置の概略構成を示す図である。
FIG. 3 is a diagram showing a schematic configuration of an electrolytic oxidation polymerization apparatus used in the method for producing a solid electrolytic capacitor of the present invention.

【図4】本発明の固体電解コンデンサの製造方法で製造
した固体電解コンデンサ素子の構成を示す図である。
FIG. 4 is a view showing a configuration of a solid electrolytic capacitor element manufactured by the method for manufacturing a solid electrolytic capacitor of the present invention.

【図5】本発明の固体電解コンデンサの製造方法で製造
した固体電解コンデンサ素子をチップ形の固体電解コン
デンサに構成した例を示す図である。
FIG. 5 is a diagram showing an example in which a solid electrolytic capacitor element manufactured by the method for manufacturing a solid electrolytic capacitor of the present invention is configured as a chip-type solid electrolytic capacitor.

【図6】本発明の固体電解コンデンサの製造方法で製造
した固体電解コンデンサのコンデンサ特性を示す図であ
る。
FIG. 6 is a diagram showing capacitor characteristics of a solid electrolytic capacitor manufactured by the method for manufacturing a solid electrolytic capacitor of the present invention.

【符号の説明】[Explanation of symbols]

1 陽極酸化皮膜層 2 絶縁性樹脂のレジスト層 3 アルミニウム箔 4 導電性機能高分子膜層 5 水溶液の電解液 6 対向電極 7 導電体層 8 コンデンサ素子 9 陽極端子部 10 陰極端子部 11 外部陽極電極端子部 12 外部陰極電極端子部 13 絶縁性樹脂モールド 14 容器 15 直流安定化電源 DESCRIPTION OF SYMBOLS 1 Anodized film layer 2 Resist layer of insulating resin 3 Aluminum foil 4 Conductive functional polymer film layer 5 Electrolyte of aqueous solution 6 Counter electrode 7 Conductive layer 8 Capacitor element 9 Anode terminal part 10 Cathode terminal part 11 External anode electrode Terminal part 12 External cathode electrode terminal part 13 Insulating resin mold 14 Container 15 DC stabilized power supply

フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 5/55 C08K 5/55 C08L 65/00 C08L 65/00 Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 5/55 C08K 5/55 C08L 65/00 C08L 65/00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 弁作用金属の表面に陽極酸化皮膜層を形
成し、該陽極酸化皮膜層上にピロール、ボロジサリチル
酸アンモニウム、ホウ酸及びクエン酸を含む水溶液の電
解液中で電解酸化重合法により導電性機能高分子膜層を
形成し、該導電性機能高分子膜層上に導電体を形成した
ことを特徴とする固体電解コンデンサの製造方法。
An anodic oxide film layer is formed on a surface of a valve metal, and an electrolytic oxidative polymerization method is carried out on the anodic oxide film layer in an electrolytic solution of an aqueous solution containing pyrrole, ammonium borodisalicylate, boric acid and citric acid. A method for producing a solid electrolytic capacitor, comprising: forming a conductive functional polymer film layer by the method described above; and forming a conductor on the conductive functional polymer film layer.
【請求項2】 前記電解液は、ピロールが1〜8重量
%、ボロジサリチル酸アンモニウムが0.1〜0.5重
量%、ホウ酸が0.1〜1.0重量%、クエン酸0.1
〜2.0重量%を含む水溶液であることを特徴とする請
求項1に記載の固体電解コンデンサの製造方法。
2. The electrolyte according to claim 1, wherein the electrolytic solution contains 1 to 8% by weight of pyrrole, 0.1 to 0.5% by weight of ammonium borodisalicylate, 0.1 to 1.0% by weight of boric acid, and 0.1 to 1.0% by weight of citric acid. 1
2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the aqueous solution contains an aqueous solution containing about 2.0% by weight.
【請求項3】 弁作用金属の表面に陽極酸化皮膜層を形
成し、該陽極酸化皮膜層上にピロール、ボロジサリチル
酸アンモニウム、ホウ酸、クエン酸及びドデシルベンゼ
ンスルホン酸ナトリウムを含む水溶液の電解液中で電解
酸化重合法により導電性機能高分子膜層を形成し、該導
電性機能高分子膜層上に導電体を形成したことを特徴と
する固体電解コンデンサの製造方法。
3. An electrolytic solution of an aqueous solution comprising an anodic oxide film layer formed on the surface of a valve metal and comprising pyrrole, ammonium borodisalicylate, boric acid, citric acid and sodium dodecylbenzenesulfonate on the anodic oxide film layer. A method for producing a solid electrolytic capacitor, comprising: forming a conductive functional polymer film layer by an electrolytic oxidation polymerization method therein; and forming a conductor on the conductive functional polymer film layer.
【請求項4】 前記電解液は、ピロールが1〜8重量
%、ボロジサリチル酸アンモニウムが0.1〜0.5重
量%、ホウ酸が0.1〜1.0重量%、クエン酸が0.
1〜2.0重量%、ドデシルベンゼンスルホン酸ナトリ
ウムが0.1〜0.5重量%を含む水溶液であることを
特徴とする請求項3に記載の固体電解コンデンサの製造
方法。
4. The electrolytic solution according to claim 1, wherein the electrolytic solution contains 1 to 8% by weight of pyrrole, 0.1 to 0.5% by weight of ammonium borodisalicylate, 0.1 to 1.0% by weight of boric acid, and 0 to 10% by weight of citric acid. .
The method for producing a solid electrolytic capacitor according to claim 3, wherein the aqueous solution contains 1 to 2.0% by weight and 0.1 to 0.5% by weight of sodium dodecylbenzenesulfonate.
【請求項5】 前記弁作用金属の陽極酸化皮膜層を0.
1〜10重量%のボロジサリチル酸アンモニウム水溶液
中で処理した後に、前記水溶液の電解液中で電解酸化重
合法により導電性機能高分子膜層を形成したことを特徴
とする請求項1乃至4のいずれか1に記載の固体電解コ
ンデンサの製造方法。
5. The method according to claim 1, wherein the anodic oxide film layer of the valve action metal has a thickness of 0.1 mm.
The conductive functional polymer film layer is formed by an electrolytic oxidation polymerization method in an electrolytic solution of the aqueous solution after treating in a 1 to 10% by weight aqueous solution of ammonium borodisalicylate. A method for manufacturing a solid electrolytic capacitor according to any one of the preceding claims.
【請求項6】 前記導電性機能高分子膜層上に形成され
た導電体はグラファイト層及び銀ペースト層から構成さ
れることを特徴とする請求項1乃至5のいずれか1に記
載の固体電解コンデンサの製造方法。
6. The solid electrolyte according to claim 1, wherein the conductor formed on the conductive functional polymer film layer comprises a graphite layer and a silver paste layer. Manufacturing method of capacitor.
【請求項7】 前記導電性機能高分子膜層上に形成され
た導電体はハンダ付け可能な金属のメッキ層により構成
されることを特徴とする請求項1乃至5のいずれか1に
記載の固体電解コンデンサの製造方法。
7. The method according to claim 1, wherein the conductor formed on the conductive functional polymer film layer is formed by a solderable metal plating layer. Manufacturing method of solid electrolytic capacitor.
JP9113347A 1997-04-14 1997-04-14 Manufacture of solid electrolytic capacitor Pending JPH10289839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9113347A JPH10289839A (en) 1997-04-14 1997-04-14 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9113347A JPH10289839A (en) 1997-04-14 1997-04-14 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH10289839A true JPH10289839A (en) 1998-10-27

Family

ID=14609957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9113347A Pending JPH10289839A (en) 1997-04-14 1997-04-14 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH10289839A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037466A (en) * 2008-08-06 2010-02-18 Japan Carlit Co Ltd:The Electrolytic solution for electropolymerization for forming electroconductive polymer, electroconductive polymer, solid electrolytic capacitor using the same, and method for manufacturing the capacitor
WO2011108254A1 (en) * 2010-03-01 2011-09-09 国立大学法人東京工業大学 Polymerization fluid, process for production thereof, transparent film made from the polymerization fluid, and transparent electrode
WO2012118162A1 (en) * 2011-03-01 2012-09-07 日本ケミコン株式会社 Polymerization solution, conductive polymer film obtained from polymerization solution, and solid eletrolytic capacitor
WO2012118161A1 (en) * 2011-03-01 2012-09-07 日本ケミコン株式会社 Polymerization solution, conductive polymer film obtained from said polymerization solution, polymer electrode, and solid electrolyte capacitor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037466A (en) * 2008-08-06 2010-02-18 Japan Carlit Co Ltd:The Electrolytic solution for electropolymerization for forming electroconductive polymer, electroconductive polymer, solid electrolytic capacitor using the same, and method for manufacturing the capacitor
US8927683B2 (en) 2010-03-01 2015-01-06 Nippon Chemi-Con Corporation Polymerization fluid, method for producing the polymerization fluid, transparent film and transparent electrode made from the polymerization fluid
WO2011108254A1 (en) * 2010-03-01 2011-09-09 国立大学法人東京工業大学 Polymerization fluid, process for production thereof, transparent film made from the polymerization fluid, and transparent electrode
JP5794640B2 (en) * 2010-03-01 2015-10-14 国立大学法人東京工業大学 Polymerization solution and production method thereof, transparent film and transparent electrode obtained from this polymerization solution
WO2012118161A1 (en) * 2011-03-01 2012-09-07 日本ケミコン株式会社 Polymerization solution, conductive polymer film obtained from said polymerization solution, polymer electrode, and solid electrolyte capacitor
EP2682413A1 (en) * 2011-03-01 2014-01-08 Nippon Chemi-Con Corporation Polymerization solution, conductive polymer film obtained from said polymerization solution, polymer electrode, and solid electrolyte capacitor
US20140016248A1 (en) * 2011-03-01 2014-01-16 Nippon Chemi-Con Corporation Polymerization solution, conductive polymer film obtained from the polymerization solution, and solid electrolytic capacitor
CN103403055A (en) * 2011-03-01 2013-11-20 日本贵弥功株式会社 Polymerization solution, conductive polymer film obtained from said polymerization solution, polymer electrode, and solid electrolyte capacitor
EP2682413A4 (en) * 2011-03-01 2015-01-28 Nippon Chemicon Polymerization solution, conductive polymer film obtained from said polymerization solution, polymer electrode, and solid electrolyte capacitor
WO2012118162A1 (en) * 2011-03-01 2012-09-07 日本ケミコン株式会社 Polymerization solution, conductive polymer film obtained from polymerization solution, and solid eletrolytic capacitor
JP5885084B2 (en) * 2011-03-01 2016-03-15 日本ケミコン株式会社 Polymerization liquid, conductive polymer film, polymer electrode using the polymerization liquid, and method for producing solid electrolytic capacitor
JP6060893B2 (en) * 2011-03-01 2017-01-18 日本ケミコン株式会社 Polymerization liquid, conductive polymer film obtained from the polymerization liquid, and solid electrolytic capacitor
US9558891B2 (en) 2011-03-01 2017-01-31 Nippon Chemi-Con Corporation Polymerization solution, conductive polymer film obtained from the polymerization solution, and solid electrolytic capacitor
US9562293B2 (en) 2011-03-01 2017-02-07 Nippon Chemi-Con Corporation Polymerization solution, conductive polymer film obtained from the polymerization solution, polymer electrode, and solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US6999303B2 (en) Solid electrolytic capacitor and process for its fabrication
JP2003059763A (en) Method of manufacturing solid electrolytic capacitor
JP2950670B2 (en) Solid electrolytic capacitors
JP2004087872A (en) Solid electrolytic capacitor
JP2001044080A (en) Solid electrolytic capacitor and manufacture thereof
JPH10289839A (en) Manufacture of solid electrolytic capacitor
JP3459573B2 (en) Method for manufacturing solid electrolytic capacitor
JP3314480B2 (en) Solid electrolytic capacitors
JPH0362298B2 (en)
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
JPH10289838A (en) Solid state electrolytic capacitor
JPH02238613A (en) Solid electrolytic capacitor
JPH0553051B2 (en)
JP3433478B2 (en) Solid electrolytic capacitors
JPH02224316A (en) Manufacture of solid electrolytic capacitor
JP2006294843A (en) Solid electrolytic capacitor and its manufacturing method
JP2003257788A (en) Solid electrolytic capacitor and its producing method
JP4678094B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH10125558A (en) Solid-state capacitor using conductive functional high polymer film as solid electrolyte
WO2022118785A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JPH1187180A (en) Manufacture of solid electrolytic capacitor
JPH05304056A (en) Manufacture of solid electrolytic capacitor
JPH0366810B2 (en)
JP5116130B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2924310B2 (en) Manufacturing method of capacitor