JPH10287711A - Production of water-containing polyvinyl alcohol gel and production of molding on which enzyme or microorganism is immobilized - Google Patents

Production of water-containing polyvinyl alcohol gel and production of molding on which enzyme or microorganism is immobilized

Info

Publication number
JPH10287711A
JPH10287711A JP9108333A JP10833397A JPH10287711A JP H10287711 A JPH10287711 A JP H10287711A JP 9108333 A JP9108333 A JP 9108333A JP 10833397 A JP10833397 A JP 10833397A JP H10287711 A JPH10287711 A JP H10287711A
Authority
JP
Japan
Prior art keywords
aqueous solution
gel
pva
water
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9108333A
Other languages
Japanese (ja)
Other versions
JP3908327B2 (en
Inventor
Masatoshi Kasai
将利 河西
Takashi Nakajima
中島  隆
Hiroshi Noguchi
博司 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Chemical Co Ltd
Original Assignee
Unitika Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Chemical Co Ltd filed Critical Unitika Chemical Co Ltd
Priority to JP10833397A priority Critical patent/JP3908327B2/en
Publication of JPH10287711A publication Critical patent/JPH10287711A/en
Application granted granted Critical
Publication of JP3908327B2 publication Critical patent/JP3908327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a water-containing gel having excellent mechanical strengths by reacting a diacetoneacrylamide-copolymermodified polyvinyl alcohol resin containing a specified amount of diacetoneacrylamide units with a water-soluble hydrazine compound in an aqueous solution. SOLUTION: An aqueous solution containing 100 pts.wt. diacetoneacrylamide- copolymer-modified polyvinyl alcohol resin containing 0.1-15 mol% diacetoneacrylamide units is mixed with an aqueous solution containing 0.1-30 pts.wt. water-soluble hydrazine compound (e.g. hydrazine hydrate) and 0.05-1.0 mol/l of a polyvalentmetal-ion-containing compound (e.g. calcium chloride), and the resulting mixture is reacted to form a water-containing gel. An aqueous solution of a mixture of the modified polyvinyl alcohol resin with a water-soluble high-molecular polysaccharide (sodium alginate) containing an enzyme or microorganisms is mixed with an aqueous solution of a mixture of a water-soluble hydrazine compound with a polyvalent-metal-ion-containing compound, and the resulting mixture is reacted to form a gel containing immobilized enzyme or microorganisms.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成形性および強度
に優れたポリビニルアルコール系含水ゲルおよび酵素・
微生物固定化成形物の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a polyvinyl alcohol-based hydrogel having excellent moldability and strength, and an enzyme / hydrogel.
The present invention relates to a method for producing a microorganism-immobilized molded article.

【0002】[0002]

【従来の技術】含水ゲルは生体組織への損傷が少なく、
物質透過性に富んでいるなどの理由から、目、皮膚、関
節などの生体材料や薬物の徐放性担体などの医用材料、
および保水剤、保冷剤として研究され、実用化されてい
る。また、近年、含水ゲルに酵素や微生物を固定化し
て、生体触媒としての利用が検討されている。
2. Description of the Related Art A hydrogel has little damage to living tissues,
Medical materials such as biomaterials such as eyes, skin and joints, and sustained-release carriers for drugs, because they are rich in substance permeability
It has been studied and put to practical use as a water retention agent and a cooling agent. In recent years, studies have been made to immobilize enzymes and microorganisms on hydrogels and use them as biocatalysts.

【0003】ポリビニルアルコール(以下、PVAと略
記する)系樹脂を用いた含水ゲルは、含水率が高いこ
と、成形物の柔軟性が高く機械的強度が高いこと、生体
との親和性が高いことなどの点で有用な素材である。
A water-containing gel using a polyvinyl alcohol (hereinafter abbreviated as PVA) resin has a high water content, a high flexibility of a molded product, a high mechanical strength, and a high affinity with a living body. It is a useful material in such respects.

【0004】PVA系含水ゲルを製造する方法としては
種々の方法が知られている。例えば、PVA水溶液を凍
結し、脱水を行う方法(特開昭58−36630号公
報)、PVA水溶液の凍結、融解を繰り返す方法(特開
昭59−56446号公報)などが提案されているが、
これらの方法は、PVA水溶液を凍結させるための設備
が必要であったり、操作が複雑で、長時間を必要とした
り、また、ゲルの耐水性や強度をコントロ−ルすること
が困難であり、工業的に有利な方法ではない。また、従
来よりPVA水溶液を飽和ほう酸水溶液と接触させてゲ
ル化する方法、PVA水溶液にアルデヒド化合物を反応
させてゲル化する方法などが知られている。前者はpH
が8.0以上で反応を行う必要があり、得られたゲルは
pHの変化により溶解してしまうという欠点があり、後
者はpHを4.0以下にしないと、ゲル化しないことか
ら、使用できる用途が限定され、含水ゲルに酵素や微生
物を固定化する際には、適用が困難である。
Various methods are known for producing PVA-based hydrogel. For example, a method of freezing and dehydrating a PVA aqueous solution (JP-A-58-36630) and a method of repeating freezing and thawing of a PVA aqueous solution (JP-A-59-56446) have been proposed.
These methods require equipment for freezing the PVA aqueous solution, are complicated in operation, require a long time, and it is difficult to control the water resistance and strength of the gel. It is not an industrially advantageous method. In addition, a method of gelling a PVA aqueous solution by contacting the same with a saturated boric acid aqueous solution and a method of gelling a PVA aqueous solution by reacting an aldehyde compound have been known. The former is pH
It is necessary to carry out the reaction at a pH of 8.0 or more, and the obtained gel has a drawback that it is dissolved due to a change in pH, and the latter does not gel unless the pH is adjusted to 4.0 or less. Possible applications are limited, and immobilization of enzymes and microorganisms on hydrogels is difficult to apply.

【0005】[0005]

【発明が解決しようとする課題】上記の方法で得られる
ゲルを微生物や酵素の生体触媒担体として利用する場
合、凍結やpH調整を行うことにより微生物や酵素の活
性を低下させてしまうという問題があった。
When the gel obtained by the above method is used as a biocatalyst carrier for microorganisms and enzymes, there is a problem that the activities of the microorganisms and enzymes are reduced by freezing and pH adjustment. there were.

【0006】本発明は、微生物や酵素の活性を低下させ
ることなく、機械的強度、柔軟性に優れた工業的に有利
なPVA系樹脂の含水ゲルの製造方法を提供することを
目的とするものである。
An object of the present invention is to provide an industrially advantageous method for producing a hydrogel of a PVA resin which is excellent in mechanical strength and flexibility without lowering the activity of microorganisms and enzymes. It is.

【0007】[0007]

【課題を解決するための手段】本発明は、水溶液中でジ
アセトンアクリルアミド単位を0.1〜15モル%含有
するジアセトンアクリルアミド共重合PVA系樹脂に水
溶性ヒドラジン化合物を反応せしめることを特徴とする
PVA系含水ゲルの製造方法、その含水ゲル中に酵素・
微生物を固定せしめることを特徴とする酵素・微生物固
定化成形物の製造方法、更には、ジアセトンアクリルア
ミド共重合変性PVA系樹脂と酵素・微生物の他に少な
くとも1種類の多価金属イオンとの接触によりゲル化能
を有する水溶性高分子多糖類を含有する混合水溶液を多
価金属イオンとヒドラジン化合物を含有する水溶液中に
滴下せしめることを特徴とする酵素・微生物固定化成形
物の製造方法である。
The present invention is characterized by reacting a water-soluble hydrazine compound with a diacetone acrylamide copolymerized PVA resin containing 0.1 to 15 mol% of diacetone acrylamide units in an aqueous solution. For producing a PVA-based hydrous gel, comprising:
A method for producing an enzyme / microorganism-immobilized molded article, which comprises immobilizing microorganisms, and further comprising contacting a diacetone acrylamide copolymer-modified PVA-based resin with at least one kind of polyvalent metal ion in addition to the enzymes / microorganisms. A method for producing an enzyme / microorganism-immobilized molded article, comprising dropping a mixed aqueous solution containing a water-soluble polymer polysaccharide having a gelling ability into an aqueous solution containing a polyvalent metal ion and a hydrazine compound. .

【0008】[0008]

【発明の実施の形態】以下、本発明について具体的に説
明する。本発明で使用されるジアセトンアクリルアミド
共重合変性PVAは、脂肪酸ビニルエステルとジアセト
ンアクリルアミドとを共重合して得た重合体を鹸化する
ことにより製造することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. The diacetone acrylamide copolymer-modified PVA used in the present invention can be produced by saponifying a polymer obtained by copolymerizing a fatty acid vinyl ester and diacetone acrylamide.

【0009】上記の共重合に使用する脂肪酸ビニルエス
テルとして、ギ酸ビニル、酢酸ビニル、プロピオン酸ビ
ニル、ピバリン酸ビニルなどが挙げられ、中でも酢酸ビ
ニルが工業的に好ましいが、これに限定されるものでは
ない。
Examples of the fatty acid vinyl ester used in the above copolymerization include vinyl formate, vinyl acetate, vinyl propionate, and vinyl pivalate. Among them, vinyl acetate is industrially preferable, but is not limited thereto. Absent.

【0010】上記の脂肪酸ビニルエステルとジアセトン
アクリルアミドとの共重合方法は、従来より公知のバル
ク重合、溶液重合、懸濁重合、乳化重合などの各種の重
合方法が可能であり、中でもメタノ−ルを溶剤として用
いる溶液重合が工業的に好ましい。
The above-mentioned copolymerization method of the fatty acid vinyl ester and diacetone acrylamide may be any of various polymerization methods known in the art such as bulk polymerization, solution polymerization, suspension polymerization and emulsion polymerization. Is preferably industrially used as a solvent.

【0011】脂肪酸ビニルエステルとジアセトンアクリ
ルアミドとを共重合して得た重合体の鹸化方法は、従来
より公知のアルカリ鹸化および酸鹸化を適用することが
でき、中でも重合体のメタノ−ル溶液またはメタノ−ル
と水、酢酸メチル、ベンゼン等の混合溶液に水酸化アル
カリを添加して加アルコ−ル分解する方法が工業的に好
ましい。
As a method for saponifying a polymer obtained by copolymerizing a fatty acid vinyl ester and diacetone acrylamide, conventionally known alkali saponification and acid saponification can be applied. Industrially preferred is a method in which an alkali hydroxide is added to a mixed solution of methanol, water, methyl acetate, benzene, etc. to add alcohol and decompose.

【0012】本発明で使用されるジアセトンアクリルア
ミド共重合変性PVAは、本発明の効果を阻害しない範
囲で、脂肪酸ビニルエステルまたはジアセトンアクリル
アミドと共重合可能な、例えば、クロトン酸、アクリル
酸、メタクリル酸などの不飽和モノカルボン酸およびそ
のエステル・塩・無水物・アミド・ニトリル類、マレイ
ン酸、イタコン酸、フマル酸などの不飽和ジカルボン酸
およびその塩、マレイン酸モノメチル、イタコン酸モノ
メチル等の不飽和二塩基酸モノアルキルエステル類、炭
素数2〜30のα−オレフィン類、アルキルビニルエ−
テル類、ビニルピロリドン類とともに共重合したもので
あっても良い。この他、得られたジアセトンアクリルア
ミド共重合変性PVAを本発明の効果を阻害でアセタ−
ル化、ウレタン化、エ−テル化、グラフト化、リン酸エ
ステル化などの反応によって後変性したものでも良い。
The diacetone acrylamide copolymer modified PVA used in the present invention can be copolymerized with fatty acid vinyl ester or diacetone acrylamide, for example, crotonic acid, acrylic acid, methacrylic acid, as long as the effects of the present invention are not impaired. Unsaturated monocarboxylic acids such as acids and their esters, salts, anhydrides, amides and nitriles, unsaturated dicarboxylic acids such as maleic acid, itaconic acid and fumaric acid and salts thereof, and unsaturated monocarboxylic acids such as monomethyl maleate and monomethyl itaconate Saturated dibasic acid monoalkyl esters, α-olefins having 2 to 30 carbon atoms, alkyl vinyl ethers
It may be copolymerized with ters and vinylpyrrolidones. In addition, the obtained diacetone acrylamide copolymerized modified PVA was acetate-modified by inhibiting the effects of the present invention.
It may be post-modified by a reaction such as oxidation, urethanization, etherification, grafting, or phosphoric esterification.

【0013】本発明で使用されるジアセトンアクリルア
ミド共重合変性PVAのジアセトンアクリルアミド単位
の含有量は0.1〜15モル%の範囲であり、好ましく
は0.5〜10モル%である。ジアセトンアクリルアミ
ド単位の含有量が0.1モル%未満であると、含水ゲル
の強度は低い。また、上記含有量が15モル%を超える
と、水溶性が低下し作業に問題が生じる。
The diacetone acrylamide copolymer modified PVA used in the present invention has a diacetone acrylamide unit content in the range of 0.1 to 15 mol%, preferably 0.5 to 10 mol%. If the content of diacetone acrylamide units is less than 0.1 mol%, the strength of the hydrogel is low. On the other hand, if the content is more than 15 mol%, the water solubility is reduced, causing a problem in work.

【0014】また、本発明で使用されるジアセトンアク
リルアミド共重合変性PVAの重合度、鹸化度は種々の
ものとすることができるが、20℃における4%水溶液
粘度が3mPa・s以上、鹸化度85モル%以上が好ま
しい。
The degree of polymerization and the degree of saponification of the diacetone acrylamide copolymer-modified PVA used in the present invention can be various, but the viscosity of a 4% aqueous solution at 20 ° C. is 3 mPa · s or more, It is preferably at least 85 mol%.

【0015】本発明で使用される水溶性ヒドラジン化合
物としては、各種のものが使用され、例えばヒドラジ
ン、ヒドラジンヒドラ−ト、ヒドラジンの1水和物もし
くは塩、フェニルヒドラジン、メチルヒドラジン、エチ
ルヒドラジン、n−プロピルヒドラジン、n−ブチルヒ
ドラジン、エチレン−1,2 −ジヒドラジン、プロピレン
−1,3 −ジヒドラジン、ブチレン−1,4 −ジヒドラジン
などの芳香族もしくは脂肪族ヒドラジンおよびその塩、
安息香酸ヒドラジド、ギ酸ヒドラジド、酢酸ヒドラジ
ド、プロピオン酸ヒドラジド、n−酪酸ヒドラジド、イ
ソ酪酸ヒドラジド、n−吉草酸ヒドラジド、イソ吉草酸
ヒドラジド、ピバリン酸ヒドラジドなどのモノカルボン
酸ヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒド
ラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジ
ド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジ
ド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、
イタコン酸ジヒドラジドなどのジカルボン酸ジヒドラジ
ド、炭酸ジヒドラジンおよびN−アミノポリアクリルア
ミドなどのヒドラジノ基を有する高分子化合物などが挙
げられる。これらのヒドラジン化合物は、単独または併
用して使用してもよい。
As the water-soluble hydrazine compound used in the present invention, various compounds can be used, such as hydrazine, hydrazine hydrate, hydrazine monohydrate or salt, phenylhydrazine, methylhydrazine, ethylhydrazine, n Aromatic or aliphatic hydrazines such as -propylhydrazine, n-butylhydrazine, ethylene-1,2-dihydrazine, propylene-1,3-dihydrazine, butylene-1,4-dihydrazine and salts thereof,
Monocarboxylic acid hydrazides such as benzoic acid hydrazide, formic acid hydrazide, acetate hydrazide, propionic acid hydrazide, n-butyric acid hydrazide, isobutyric acid hydrazide, n-valeric acid hydrazide, isovaleric acid hydrazide, pivalic acid hydrazide, and oxalic acid dihydrazide. Dihydrazide, succinic dihydrazide, glutaric dihydrazide, adipic dihydrazide, sebacic dihydrazide, maleic dihydrazide, fumaric dihydrazide,
Examples thereof include dicarboxylic acid dihydrazide such as itaconic acid dihydrazide, and polymer compounds having a hydrazino group such as dihydrazine carbonate and N-aminopolyacrylamide. These hydrazine compounds may be used alone or in combination.

【0016】次に、本発明のPVA系含水ゲルの製造方
法について説明する。PVA系含水ゲルは、水溶液中で
ジアセトンアクリルアミド共重合変性PVA系樹脂と水
溶性ヒドラジン化合物を反応させて得られるが、ジアセ
トンアクリルアミド共重合変性PVAと水溶性ヒドラジ
ン化合物との混合比率はジアセトンアクリルアミド共重
合変性PVA100重量部に対して、0.1〜30重量部
が好ましい、更に好ましくは0.5〜20重量部であ
る。ジアセトンアクリルアミド共重合変性PVA水溶液
の濃度は、必要なゲル強度、成形方法等によって適当な
濃度を選択できる。
Next, a method for producing the PVA-based hydrogel of the present invention will be described. The PVA-based hydrogel is obtained by reacting a diacetone acrylamide copolymer-modified PVA resin with a water-soluble hydrazine compound in an aqueous solution, and the mixing ratio of the diacetone acrylamide copolymer-modified PVA and the water-soluble hydrazine compound is diacetone. The amount is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight, based on 100 parts by weight of the acrylamide copolymer-modified PVA. The concentration of the diacetone acrylamide copolymerized modified PVA aqueous solution can be appropriately selected depending on the required gel strength, molding method, and the like.

【0017】ジアセトンアクリルアミド共重合変性PV
Aと水溶性ヒドラジン化合物を反応させる際、前記PV
A系樹脂水溶液に固体状のヒドラジン化合物を添加して
も、ヒドラジン化合物の水溶液を添加しても良い。ま
た、従来公知のゲルの作成方法で成形したジアセトンア
クリルアミド共重合変性PVAをヒドラジン化合物の水
溶液に浸漬しても良い。
Diacetone acrylamide copolymer modified PV
A and a water-soluble hydrazine compound when reacting
A solid hydrazine compound may be added to the A-based resin aqueous solution, or an aqueous solution of the hydrazine compound may be added. Alternatively, diacetone acrylamide copolymerized modified PVA formed by a conventionally known gel preparation method may be immersed in an aqueous solution of a hydrazine compound.

【0018】前記水溶液には、必要に応じて本発明で使
用する以外のPVAやデンプン、メチルセルロ−ス、カ
ルボキシメチルセルロ−ス等のセルロ−ス誘導体、ポリ
アクリル酸誘導体、ゼラチン、寒天、カラギ−ナン、ア
ルギン酸ナトリウム、マンナン、キトサンなどの他の高
分子や増粘剤、クレ−、カオリン、タルク、シリカ、炭
酸カルシウム等の無機充填剤、グリセリン、エチレング
リコ−ル、プロピレングリコ−ル、ソルビト−ル等の可
塑剤、消泡剤、キレ−ト剤、着色剤、さらには活性汚
泥、バクテリア、酵母等の微生物、酵素などの1種以上
を本発明の効果を損なわない範囲で配合することができ
る。
If necessary, the aqueous solution may contain PVA, starch, cellulose derivatives such as methylcellulose and carboxymethylcellulose, polyacrylic acid derivatives, gelatin, agar and carrageen, other than those used in the present invention. Other polymers such as Nan, sodium alginate, mannan, chitosan and thickeners, inorganic fillers such as clay, kaolin, talc, silica, calcium carbonate, glycerin, ethylene glycol, propylene glycol, sorbitol And at least one kind of activated sludge, microorganisms such as bacteria and yeasts, enzymes, etc., as long as the effects of the present invention are not impaired. it can.

【0019】次に、本発明の酵素・微生物固定化成形物
の製造方法について説明する。PVA系含水ゲル中に酵
素・微生物を固定せしめる場合、ジアセトンアクリルア
ミド共重合変性PVA系樹脂とヒドラジン化合物を反応
せしめる前に、あらかじめ、PVA系樹脂の水溶液に酵
素、微生物の1種以上を添加し、次いでヒドラジン化合
物またはその水溶液を添加して反応させ含水ゲルを成形
することにより酵素・微生物固定化成形物を得ることが
できる。
Next, a method for producing the enzyme / microorganism-immobilized molded article of the present invention will be described. When immobilizing enzymes and microorganisms in a PVA-based hydrous gel, add at least one enzyme or microorganism to an aqueous solution of PVA-based resin before reacting the hydrazine compound with the diacetone acrylamide copolymerized modified PVA-based resin. Then, a hydrazine compound or an aqueous solution thereof is added and reacted to form a hydrogel, whereby an enzyme / microorganism-immobilized molded product can be obtained.

【0020】本発明の酵素・微生物固定化成形物の製造
方法では、種々の形状の成形物を得ることができるが、
酵素・微生物固定化成形物をバイオリアクタ−として利
用する際の形状としては、流動性、充填効果、耐久性、
取り扱い性の点から球状が有利である。
In the method for producing the enzyme / microorganism-immobilized molded article of the present invention, molded articles of various shapes can be obtained.
When the enzyme / microorganism-immobilized molded article is used as a bioreactor, the shape includes fluidity, filling effect, durability,
A spherical shape is advantageous from the viewpoint of handleability.

【0021】球状の含水ゲルを製造するには、PVA系
樹脂の水溶液、酵素、微生物の1種以上とヒドラジン化
合物などを含む混合液を球状の型に流し込み、型の中で
ゲル化させる方法により製造することができるが、PV
A系樹脂と酵素、微生物の1種以上の他に、少なくとも
1種類の多価金属イオンとの接触によりゲル化能を有す
る水溶性高分子多糖類を含有する混合水溶液を多価金属
イオンとヒドラジン化合物を含有する水溶液中に滴下
し、表面張力により球状になることを利用する方法が工
業的に有利である。
In order to produce a spherical hydrogel, a mixed solution containing an aqueous solution of a PVA-based resin, one or more enzymes, microorganisms and a hydrazine compound is poured into a spherical mold and gelled in the mold. Can be manufactured, but PV
A mixed aqueous solution containing a water-soluble polymer polysaccharide having a gelling ability upon contact with at least one kind of polyvalent metal ion in addition to one or more kinds of the A-based resin, the enzyme, and the microorganism, is used. It is industrially advantageous to use a method in which the compound is dropped into an aqueous solution containing a compound and becomes spherical by surface tension.

【0022】本発明に用いる少なくとも1種の多価金属
イオンとの接触においてゲル化能を有する水溶性高分子
多糖類としては、例えばアルギン酸のナトリウム金属
塩、カラギ−ナン、マンナン、キトサン等をあげること
ができるが、これに限られるものでばない。中でもとり
わけアルギン酸ナトリウムが好ましい。
Examples of the water-soluble high molecular polysaccharide having a gelling ability upon contact with at least one polyvalent metal ion used in the present invention include sodium metal salt of alginic acid, carrageenan, mannan, chitosan and the like. But it is not limited to this. Among them, sodium alginate is particularly preferred.

【0023】さらに、本発明に用いる微生物としては、
各種のものを使用することができ、例えば、アスペルギ
ルス(Aspergillus )属、リゾプス(Rhizopus)属等の
糸状菌、シュ−ドモナス(Pseudomonas )属、アセトバ
クタ−(Acetobactor )属、ストレプトマイセス(Stre
ptomyces)属、サッカロマイセス(Saccharomyces )
属、キャンデイダ(Candida )属等の細菌をはじめ、1
種以上の微生物を含む活性汚泥なども使用することがで
きる。
Further, the microorganism used in the present invention includes:
Various types can be used, for example, filamentous fungi such as Aspergillus, Rhizopus, Pseudomonas, Acetobactor, Streptomyces.
ptomyces), Saccharomyces
Genus, Candida genus and other bacteria
Activated sludge containing more than one kind of microorganisms can also be used.

【0024】また、酵素としても各種のものを使用する
ことができ、例えば各種のオキシダ−ゼ、レダクタ−
ゼ、トランスフェラ−ゼ、ヒドロラ−ゼ、リア−ゼ、イ
ソメラ−ゼおよびリガ−ゼなどの酵素を単独で、または
2種以上を組み合わせて使用することができる。
Various enzymes can be used, for example, various oxidases and reductors.
Enzymes such as enzyme, transferase, hydrolase, lyase, isomerase and ligase can be used alone or in combination of two or more.

【0025】前記球状の酵素・微生物固定化成形物の製
造方法においては、先ず、PVA系樹脂と水溶性高分子
多糖類とのPVA系混合水溶液を調製するが、この混合
水溶液中におけるPVA系樹脂の濃度は、PVA系樹脂
以外の添加成分の種類や濃度、液温、滴下装置によって
適切な濃度を設定することが重要である。前記PVA系
混合水溶液を常温で使用する場合は、得られるPVA系
ゲルの成形性および強度の点から、PVA系混合水溶液
中におけるPVA系樹脂の濃度は2〜40重量%が好ま
しい。
In the method for producing the spherical enzyme / microorganism-immobilized molded article, first, a PVA-based mixed aqueous solution of a PVA-based resin and a water-soluble polymer polysaccharide is prepared. It is important to set an appropriate concentration according to the type and concentration of the additive component other than the PVA-based resin, the liquid temperature, and the dropping device. When the PVA-based mixed aqueous solution is used at room temperature, the concentration of the PVA-based resin in the PVA-based mixed aqueous solution is preferably 2 to 40% by weight from the viewpoint of the moldability and strength of the obtained PVA-based gel.

【0026】PVA系混合水溶液中におけるPVA系樹
脂の濃度は高いほど、より強固なゲルが生成するが、P
VA系樹脂の濃度が高くなりすぎると、溶液粘度も高く
なり、取り扱いが困難になるため、必要なゲル強度が得
られる範囲で、PVA系樹脂の濃度は低い方が有利であ
る。
As the concentration of the PVA-based resin in the PVA-based mixed aqueous solution is higher, a stronger gel is formed.
If the concentration of the VA-based resin is too high, the viscosity of the solution also increases, and handling becomes difficult. Therefore, the lower the concentration of the PVA-based resin is, the more advantageous it is in a range where the required gel strength can be obtained.

【0027】次に、PVA系混合水溶液中における水溶
性高分子多糖類の濃度は、各種の濃度とすることができ
るが、水溶性高分子多糖類の種類により異なる。最も好
適であるアルギン酸ナトリウムを例にすると、混合水溶
液全体に対して0.2〜4重量%が好ましく、0.5〜
2重量%が更に好ましい。アルギン酸ナトリウムが0.
2重量%未満では、PVA系混合水溶液の球状化性能が
低下する傾向があり、また、4重量%より大きい場合
は、固い球状成形物が得られるが、溶液粘度が高くなっ
たり、原料コストが高くなるおそれがある。
Next, the concentration of the water-soluble polymer polysaccharide in the PVA-based mixed aqueous solution can be set to various concentrations, but differs depending on the type of the water-soluble polymer polysaccharide. Taking the most preferred sodium alginate as an example, the content is preferably 0.2 to 4% by weight, and
2% by weight is more preferred. Sodium alginate is 0.
If the amount is less than 2% by weight, the spheroidizing performance of the PVA-based mixed aqueous solution tends to decrease. May be high.

【0028】また、前記PVA系樹脂と水溶性高分子多
糖類との混合水溶液に所望の酵素・微生物を混入、攪拌
する際、酵素・微生物の添加濃度は各種の濃度を採用す
ることができるが、酵素・微生物を含む菌液の濃度は、
混合水溶液全体に対して3〜20重量%の範囲が好まし
い。酵素・微生物の添加濃度が高すぎると、ゲル形成の
妨げとなり、酵素・微生物の添加濃度が低すぎると、生
体触媒としての性能が満足できなくなるため、好ましく
ない。
When a desired enzyme / microorganism is mixed and stirred into the mixed aqueous solution of the PVA resin and the water-soluble polymer polysaccharide, various concentrations can be adopted as the concentration of the enzyme / microorganism. , The concentration of bacterial solution containing enzymes and microorganisms,
The content is preferably in the range of 3 to 20% by weight based on the whole mixed aqueous solution. If the concentration of the enzyme or microorganism is too high, gel formation is hindered. If the concentration of the enzyme or microorganism is too low, the performance as a biocatalyst becomes unsatisfactory, which is not preferable.

【0029】次に、以上のPVA系混合水溶液とともに
使用する多価金属イオン含有化合物、ヒドラジン化合物
を含む水溶液について述べる。
Next, an aqueous solution containing a polyhydric metal ion-containing compound and a hydrazine compound used together with the above PVA-based mixed aqueous solution will be described.

【0030】多価金属イオン含有化合物としては、各種
のものを使用することができるが、例えば、マグネシウ
ムイオン、カルシウムイオン、ストロンチウムイオン、
バリウムイオン等のアルカリ土類金属イオンあるいはア
ルミニウムイオン、セリウムイオン、ニッケルイオン等
の多価金属イオンのうち少なくとも一種を含有する化合
物が挙げられるが、とりわけ塩化カルシウムが好まし
い。また、多価金属イオン含有化合物の濃度は種々の濃
度とすることができるが、0.05〜1.0モル/L が
好ましい。
As the polyvalent metal ion-containing compound, various compounds can be used. For example, magnesium ion, calcium ion, strontium ion,
Examples include compounds containing at least one of alkaline earth metal ions such as barium ion or polyvalent metal ions such as aluminum ion, cerium ion and nickel ion, and calcium chloride is particularly preferable. Further, the concentration of the polyvalent metal ion-containing compound may be various, but is preferably 0.05 to 1.0 mol / L.

【0031】また、ヒドラジン化合物については、前記
の種々の化合物を使用することができ、種々の濃度とす
ることができるが、0.1〜20.0重量%にすること
が好ましく、0.5〜10重量%が更に好ましい。濃度
が0.1重量%未満では、ゲルの強度が低くなるため、
好ましくないが、必要なゲル硬度が得られる範囲で、濃
度は低い方がコスト的に有利である。
As for the hydrazine compound, the various compounds described above can be used, and various concentrations can be used. -10% by weight is more preferred. If the concentration is less than 0.1% by weight, the strength of the gel decreases,
Although not preferred, a lower concentration is more cost effective as long as the required gel hardness is obtained.

【0032】PVA系混合水溶液と、多価金属イオン含
有化合物、ヒドラジン化合物を含む水溶液とは任意の温
度、pHで使用することができ、通常は使用する酵素・
微生物に最適な温度、pHに調整し、ゲルの作成を行う
のが好ましい。
The PVA-based mixed aqueous solution and the aqueous solution containing the polyvalent metal ion-containing compound and the hydrazine compound can be used at any temperature and pH.
It is preferable to adjust the temperature and pH to the optimum for the microorganism to form a gel.

【0033】以上のようにして得られるPVA系混合水
溶液を多価金属イオン含有化合物、ヒドラジン化合物を
含む水溶液に滴下するが、この滴下の手段としては各種
の手段が採用される。例えば、PVA系混合水溶液を注
射器などに充填し、注射針などの管状の口金から押し出
して滴下したり、あるいはPVA系混合水溶液を噴霧口
金を有する容器に入れ、噴霧口金から噴霧する手段など
をあげることができる。
The PVA-based mixed aqueous solution obtained as described above is dropped into an aqueous solution containing a polyvalent metal ion-containing compound and a hydrazine compound, and various means may be employed as the dropping method. For example, a method of filling a PVA-based mixed aqueous solution into a syringe and extruding it from a tubular base such as an injection needle and dropping it, or putting a PVA-based mixed aqueous solution into a container having a spray base and spraying from the spray base is given. be able to.

【0034】滴下されたPVA系混合水溶液の液滴は、
多価金属イオン含有化合物、ヒドラジン化合物を含む水
溶液に接触すると、表面張力によって球体となり、さら
に球体の最表面が薄膜状に固化して、PVA系混合水溶
液の粘度を調整することによって、直径1〜20mmに任
意に変えることができる。多価金属イオン含有化合物、
ヒドラジン化合物を含む水溶液は静置でも良いが、スタ
−ラ−等で強制攪拌することにより、PVA系混合水溶
液の成形物と多価金属イオン含有化合物との反応を促進
し、球状成形物同士の融着をほぼ完全に防止することが
できる。
The dropped droplets of the PVA-based mixed aqueous solution are:
When it comes into contact with an aqueous solution containing a polyvalent metal ion-containing compound and a hydrazine compound, it becomes a sphere due to surface tension, and the outermost surface of the sphere solidifies into a thin film, and the viscosity of the PVA-based mixed aqueous solution is adjusted to adjust the viscosity of the PVA-based mixed aqueous solution. It can be arbitrarily changed to 20 mm. Polyvalent metal ion-containing compound,
The aqueous solution containing the hydrazine compound may be allowed to stand still, but by forcibly stirring with a stirrer or the like, the reaction between the molded product of the PVA-based mixed aqueous solution and the polyvalent metal ion-containing compound is promoted, and the spherical molded products are mixed. Fusion can be almost completely prevented.

【0035】次いで、球状化したPVA系混合水溶液の
成形物は、ヒドラジン化合物を含む水溶液中に放置する
ことによって、ジアセトンアクリルアミド共重合変性P
VA中のカルボニル基とヒドラジノ基が反応し、PVA
系樹脂が架橋し、安定で強固なゲルを形成する。ゲル形
成のための放置時間、温度はPVA系樹脂、ヒドラジン
化合物の種類、濃度、pH値などにより異なる。
Next, the molded product of the spheroidized PVA-based mixed aqueous solution is allowed to stand in an aqueous solution containing a hydrazine compound, whereby the diacetone acrylamide copolymer-modified P
The carbonyl group in VA reacts with the hydrazino group to form PVA.
The system resin is crosslinked to form a stable and strong gel. The standing time and temperature for gel formation differ depending on the type, concentration, pH value, etc. of the PVA-based resin and hydrazine compound.

【0036】このようにして、得られるPVA系ゲル
は、長時間にわたって変形、破損しない強度を有し、水
や各種薬剤に対しても侵されることなく、連続使用が可
能となり、種々の酵素・微生物に最適なpHで製造でき
るため、活性の高い酵素・微生物固定化成形物としての
実用性が高い。
The PVA gel thus obtained has a strength that does not deform or break over a long period of time, and can be used continuously without being affected by water or various chemicals. Since it can be produced at a pH optimum for microorganisms, it is highly practical as a highly active enzyme / microorganism-immobilized molded article.

【0037】[0037]

【実施例】以下に実施例を挙げて本発明を具体的に説明
する。なお、実施例中の各物性は、以下に記す方法によ
り測定したものである。
EXAMPLES The present invention will be specifically described below with reference to examples. In addition, each physical property in an Example is measured by the method described below.

【0038】1.ゲルの機械的強度 ゲル成形物を平面上に静置し、重力による形状の変化が
起こるかどうか、また指でゲルを押さえてゲルが崩壊す
るかを観察し、次の基準で評価した。 評価基準 ○:重力による形状変化が起こらず、指で押さえてもゲ
ルが崩壊しない。 △:重力による形状変化は起こらないが、指で押さえる
とゲルが崩壊した。 ×:重力により、ゲルが変形した。 2.耐久性 球状ゲル成形物100個に対して水300gを加え、3
0℃にして攪拌し、7日経過後のゲルの残存率を測定
し、次の基準で評価した。 評価基準 ○:95%以上 △:95%未満、40%以上 ×:40%未満
1. The mechanical strength of the gel The gel molded product was allowed to stand on a flat surface, and it was observed whether or not the shape changed due to gravity, and whether or not the gel was collapsed by pressing the gel with a finger, and evaluated according to the following criteria. Evaluation criteria ○: The shape does not change due to gravity, and the gel does not collapse even when pressed with a finger. Δ: The shape did not change due to gravity, but the gel collapsed when pressed with a finger. ×: The gel was deformed by gravity. 2. Durability Add 300 g of water to 100 spherical gel moldings and add 3
The mixture was stirred at 0 ° C., the residual ratio of the gel after 7 days was measured, and evaluated according to the following criteria. Evaluation criteria ○: 95% or more △: less than 95%, 40% or more ×: less than 40%

【0039】3.浄化性能 酵素・微生物を固定化した実施例、比較例の球状ゲル成
形物のみについて、直径15cm、高さ70cmの出入口を
メッシュで塞いだ円筒状容器に充填して、バイオリアク
タ−とした。該バイオリアクタ−に常温でCOD濃度が
550mg/Lの廃水を毎時1.0L の速度で流通させた。
流通直後と7日経過後の出口側浄化水のCOD濃度を測
定し、次の基準で評価した。 評価基準 ○:100mg/L未満 △:100mg/L以上、500mg/L未満 ×:500mg/L以上 4.総合評価 上記の各評価を総合して次の基準で評価した。 評価基準 ○:ゲル強度、耐久性、浄化性能が優れている。 ×:ゲル強度、耐久性、浄化性能が実用レベルに達して
いない。
3. Purification Performance Only the spherical gel molded products of Examples and Comparative Examples in which enzymes and microorganisms were immobilized were filled in a cylindrical container having a 15 cm diameter, 70 cm height entrance and exit closed with a mesh, to obtain a bioreactor. Wastewater having a COD concentration of 550 mg / L at normal temperature was passed through the bioreactor at a rate of 1.0 L / hour.
The COD concentration of the outlet-side purified water immediately after distribution and after 7 days has been measured and evaluated according to the following criteria. Evaluation criteria ○: less than 100 mg / L △: 100 mg / L or more, less than 500 mg / L ×: 500 mg / L or more Comprehensive evaluation The above evaluations were comprehensively evaluated according to the following criteria. Evaluation criteria :: Gel strength, durability and purification performance are excellent. X: Gel strength, durability, and purification performance did not reach practical levels.

【0040】合成例1 攪拌機、温度計、および滴下ロ−ト還流冷却器を取り付
けたフラスコ中に、酢酸ビニル672重量部、ジアセト
ンアクリルアミド10重量部、およびメタノ−ル178
重量部を仕込み、系内の窒素置換を行った後、内温を6
0℃まで昇温した。この系に2,2−アゾビスイソブチ
リロニトリル1重量部をメタノ−ル50重量部に溶解し
た溶液を添加し、重合を開始した。重合開始後、5時間
かけて、ジアセトンアクリルアミド55重量部をメタノ
−ル35重量部に溶解した溶液を一定速度で滴下し、6
時間後に重合禁止剤としてm−ジニトロベンゼンを添加
し、重合を停止した。重合収率は78%であった。得ら
れた反応混合物にメタノ−ル蒸気を加えながら残存する
酢酸ビニルを留出し、ジアセトンアクリルアミド共重合
成分を含有する酢酸ビニル系重合体の50%メタノ−ル
水溶液を得た。この混合物500重量部にメタノ−ル5
0重量部と水酸化ナトリウムの4%メタノ−ル溶液10
重量部とを加えてよく混合し、40℃で鹸化反応を行っ
た。得られたゲル状物を粉砕し、メタノ−ルでよく洗浄
した後に乾燥して、ジアセトンアクリルアミド共重合変
性PVAを得た。また、元素分析測定により、この樹脂
中のジアセトンアクリルアミド単位の含有率は5.0モ
ル%であることが判明した。この樹脂の20℃における
4%水溶液粘度は26.8mPa・s、鹸化度は98.
4モル%であった。なお、この粘度はB型粘度計を用い
て60rpmの回転速度で測定した。
Synthesis Example 1 672 parts by weight of vinyl acetate, 10 parts by weight of diacetone acrylamide, and 178 parts of methanol were placed in a flask equipped with a stirrer, a thermometer, and a dropping funnel reflux condenser.
After charging parts by weight and purging with nitrogen in the system, the internal temperature was reduced to 6%.
The temperature was raised to 0 ° C. A solution prepared by dissolving 1 part by weight of 2,2-azobisisobutylylonitrile in 50 parts by weight of methanol was added to the system, and polymerization was started. A solution of 55 parts by weight of diacetone acrylamide dissolved in 35 parts by weight of methanol was dropped at a constant rate over 5 hours after the initiation of the polymerization.
After a lapse of time, m-dinitrobenzene was added as a polymerization inhibitor to terminate the polymerization. The polymerization yield was 78%. The remaining vinyl acetate was distilled out while adding methanol vapor to the obtained reaction mixture to obtain a 50% aqueous methanol solution of a vinyl acetate polymer containing a diacetone acrylamide copolymer component. 500 parts by weight of this mixture was added to methanol 5
0 parts by weight and a 4% methanol solution of sodium hydroxide 10
Parts by weight and mixed well, and a saponification reaction was carried out at 40 ° C. The obtained gel was pulverized, washed well with methanol, and dried to obtain a diacetone acrylamide copolymer modified PVA. In addition, elemental analysis revealed that the content of diacetone acrylamide units in this resin was 5.0 mol%. The viscosity of a 4% aqueous solution of this resin at 20 ° C. is 26.8 mPa · s, and the saponification degree is 98.
It was 4 mol%. The viscosity was measured at a rotation speed of 60 rpm using a B-type viscometer.

【0041】合成例2〜5 表1に示すように仕込み組成を変えた以外は合成例1と
同様にして表1に示す各種のジアセトンアクリルアミド
共重合変性ポリビニルアルコールを得た。
Synthetic Examples 2 to 5 Various diacetone acrylamide copolymerized polyvinyl alcohols shown in Table 1 were obtained in the same manner as in Synthetic Example 1 except that the charge composition was changed as shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】実施例1 合成例1で得られた変性度5.0モル%のジアセトンア
クリルアミド共重合変性PVA10gを水100gに溶
解し、これに1gのN−アミノポリアクリルアミドを添
加して、良く攪拌して均一な混合液を作成した後、直径
1cmの球形の金型に流し込み、10℃で2時間放置して
ゲル化させた。
Example 1 10 g of diacetone acrylamide copolymerized PVA having a modification degree of 5.0 mol% obtained in Synthesis Example 1 was dissolved in 100 g of water, and 1 g of N-aminopolyacrylamide was added thereto. After stirring to form a uniform mixture, the mixture was poured into a spherical mold having a diameter of 1 cm and left at 10 ° C. for 2 hours to gel.

【0044】得られたゲルの強度、耐久性を表2に示
す。得られたゲルは、指で押さえても優れた弾性と柔軟
性を示し、崩壊せず、耐久性も優れていた。なお、本実
施例では微生物(菌)を添加しなかったので、微生物の
作用に基づく浄化性は期待できなかったため、浄化性能
の評価は省略した。
Table 2 shows the strength and durability of the obtained gel. The obtained gel showed excellent elasticity and flexibility even when pressed with a finger, did not collapse, and had excellent durability. In this example, since no microorganisms (microorganisms) were added, purification performance based on the action of microorganisms could not be expected, and thus evaluation of purification performance was omitted.

【0045】[0045]

【表2】 [Table 2]

【0046】実施例2 合成例2で得られた変性度1.0モル%のジアセトンア
クリルアミド共重合変性PVA10gを水100gに溶
解し、これに1gのN−アミノポリアクリルアミドを添
加して、良く攪拌して均一な混合液を作成した後、直径
1cmの球形の金型に流し込み、10℃で2時間放置して
ゲル化させた。
Example 2 10 g of diacetone acrylamide copolymer modified PVA having a degree of modification of 1.0 mol% obtained in Synthesis Example 2 was dissolved in 100 g of water, and 1 g of N-aminopolyacrylamide was added thereto. After stirring to form a uniform mixture, the mixture was poured into a spherical mold having a diameter of 1 cm and left at 10 ° C. for 2 hours to gel.

【0047】得られたゲルの強度、耐久性を表2に示
す。得られたゲルは、指で押さえても優れた弾性と柔軟
性を示し、崩壊せず、耐久性も優れていた。なお、本実
施例では微生物(菌)を添加しなかったので、微生物の
作用に基づく浄化性は期待できなかったため、浄化性能
の評価は省略した。
Table 2 shows the strength and durability of the obtained gel. The obtained gel showed excellent elasticity and flexibility even when pressed with a finger, did not collapse, and had excellent durability. In this example, since no microorganisms (microorganisms) were added, purification performance based on the action of microorganisms could not be expected, and thus evaluation of purification performance was omitted.

【0048】実施例3 合成例3で得られた変性度8.0モル%のジアセトンア
クリルアミド共重合変性PVA10gを水100gに溶
解し、これに1gのN−アミノポリアクリルアミドを添
加して、良く攪拌して均一な混合液を作成した後、直径
1cmの球形の金型に流し込み、10℃で2時間放置して
ゲル化させた。
Example 3 10 g of diacetone acrylamide copolymer modified PVA having a degree of modification of 8.0 mol% obtained in Synthesis Example 3 was dissolved in 100 g of water, and 1 g of N-aminopolyacrylamide was added thereto. After stirring to form a uniform mixture, the mixture was poured into a spherical mold having a diameter of 1 cm and left at 10 ° C. for 2 hours to gel.

【0049】得られたゲルの強度、耐久性を表2に示
す。得られたゲルは、指で押さえても優れた弾性と柔軟
性を示し、崩壊せず、耐久性も優れていた。なお、本実
施例では微生物(菌)を添加しなかったので、微生物の
作用に基づく浄化性は期待できなかったため、浄化性能
の評価は省略した。
Table 2 shows the strength and durability of the obtained gel. The obtained gel showed excellent elasticity and flexibility even when pressed with a finger, did not collapse, and had excellent durability. In this example, since no microorganisms (microorganisms) were added, purification performance based on the action of microorganisms could not be expected, and thus evaluation of purification performance was omitted.

【0050】実施例4 合成例1で得られた変性度5.0モル%のジアセトンア
クリルアミド共重合変性PVA樹脂に濃度が10重量%
になるように水を加え全量400gにし、95℃で12
0分間処理し、PVAを溶解した後、室温まで放冷し
た。これに、4重量%アルギン酸ナトリウム水溶液20
0gを加えて充分に混合し、PVA系混合水溶液を調製
した。一方、11.1gの塩化カルシウムと50gのN
−アミノポリアクリルアミドを1L の水で溶解し、多価
金属化合物とヒドラジン化合物との水溶液を調製した。
Example 4 A diacetone acrylamide copolymerized modified PVA resin having a modification degree of 5.0 mol% obtained in Synthesis Example 1 having a concentration of 10% by weight.
And add water to make the total amount 400 g.
After treating for 0 minutes to dissolve the PVA, it was allowed to cool to room temperature. To this, a 4% by weight aqueous sodium alginate solution 20
0 g was added and mixed well to prepare a PVA-based mixed aqueous solution. On the other hand, 11.1 g of calcium chloride and 50 g of N
-Aminopolyacrylamide was dissolved in 1 L of water to prepare an aqueous solution of a polyvalent metal compound and a hydrazine compound.

【0051】上記のPVA系混合水溶液を、先端に内径
1mmの注射針で取り付けた内径2mmφのビニル管1本を
使用したロ−ラ−ポンプで1mL/分で送液し、スタ−ラ
−で攪拌した上記の多価金属化合物とヒドラジン化合物
との水溶液に水表面から15cmの高さより滴下した。滴
下した液は直ちに球状化して沈降した。
The above PVA-based mixed aqueous solution was sent at a rate of 1 mL / min by a roller pump using one vinyl tube having an inner diameter of 2 mm and attached to the tip thereof with a syringe needle having an inner diameter of 1 mm, and was then stirred by a stirrer. The aqueous solution of the above-mentioned polyvalent metal compound and hydrazine compound was dropped at a height of 15 cm from the water surface. The dropped solution immediately became spherical and settled.

【0052】更に、球状化した成形物を多価金属化合物
とヒドラジン化合物との水溶液中に40℃で1時間浸漬
することによって、球状のPVA系ゲルを得ることがで
きた。このゲルは粘着性もなく、直径は3〜4mmであっ
た。ゲル強度および耐久性について評価した結果を表2
に示す。
Further, a spherical PVA gel was obtained by immersing the spheroidized molded product in an aqueous solution of a polyvalent metal compound and a hydrazine compound at 40 ° C. for 1 hour. The gel was not sticky and had a diameter of 3-4 mm. Table 2 shows the results of evaluating the gel strength and durability.
Shown in

【0053】表2から明らかなように、強度および耐久
性は良好であった。なお、本実施例では微生物(菌)を
添加しなかったので、微生物の作用に基づく浄化性は期
待できなかったため、浄化性能の評価は省略した。
As is clear from Table 2, the strength and durability were good. In this example, since no microorganisms (microorganisms) were added, purification performance based on the action of microorganisms could not be expected, and thus evaluation of purification performance was omitted.

【0054】実施例5 合成例2の変性度1.0モル%のジアセトンアクリルア
ミド共重合変性PVAを使用した以外は実施例4と同様
にして球状ゲルを作製し、ゲル強度および耐久性の評価
を行った。その結果を表2に示す。表2から明らかなよ
うに、強度および耐久性は良好であった。なお、本実施
例では微生物(菌)を添加しなかったので、微生物の作
用に基づく浄化性は期待できなかったため、浄化性能の
評価は省略した。
Example 5 A spherical gel was prepared in the same manner as in Example 4 except that diacetone acrylamide copolymer modified PVA having a degree of modification of 1.0 mol% was used in Synthesis Example 2, and the gel strength and durability were evaluated. Was done. Table 2 shows the results. As is clear from Table 2, the strength and durability were good. In this example, since no microorganisms (microorganisms) were added, purification performance based on the action of microorganisms could not be expected, and thus evaluation of purification performance was omitted.

【0055】実施例6 合成例1で得られた変性度5.0モル%のジアセトンア
クリルアミド共重合変性PVA樹脂に濃度が10重量%
になるように水を加え全量400gにし、95℃で12
0分間処理し、PVAを溶解した後、室温まで放冷し
た。これに、4重量%アルギン酸ナトリウム水溶液20
0gを加えて充分に混合し、さらにサッカロマイセス属
の菌体を0.5g-wet cells/mLを含む活性汚泥を60g
加え、充分に攪拌し、PVA系混合水溶液を作製し、水
酸化ナトリウムでpH6.0に調製した。一方、11.
1gの塩化カルシウムと50gのN−アミノポリアクリ
ルアミドを1L の水で溶解し、さらに塩酸を添加し、p
H6.0の多価金属化合物およびヒドラジン化合物水溶
液を調製した。
Example 6 A diacetone acrylamide copolymer-modified PVA resin having a modification degree of 5.0 mol% obtained in Synthesis Example 1 having a concentration of 10% by weight was used.
And add water to make the total amount 400 g.
After treating for 0 minutes to dissolve the PVA, it was allowed to cool to room temperature. To this, a 4% by weight aqueous sodium alginate solution 20
Add 0 g, mix well, and further add 60 g of activated sludge containing 0.5 g-wet cells / mL of Saccharomyces cells.
In addition, the mixture was sufficiently stirred to prepare a PVA-based mixed aqueous solution, and the pH was adjusted to 6.0 with sodium hydroxide. On the other hand, 11.
1 g of calcium chloride and 50 g of N-aminopolyacrylamide were dissolved in 1 L of water, hydrochloric acid was added, and p
An aqueous solution of a polyvalent metal compound of H6.0 and a hydrazine compound was prepared.

【0056】PVA系混合水溶液を、先端に内径1mmの
注射針を取り付けた内径2mmφのビニル管1本を使用し
たロ−ラ−ポンプで1mL/分で送液し、スタ−ラ−で攪
拌した上記の多価金属化合物とヒドラジン化合物との水
溶液に水表面から15cmの高さより滴下した。滴下した
液は直ちに球状化して沈降した。
The PVA-based mixed aqueous solution was sent at a rate of 1 mL / min by a roller pump using one vinyl tube having an inner diameter of 2 mm and having a syringe needle having an inner diameter of 1 mm at the tip, and stirred with a stirrer. An aqueous solution of the above polyvalent metal compound and hydrazine compound was dropped at a height of 15 cm from the water surface. The dropped solution immediately became spherical and settled.

【0057】更に、球状化した成形物を多価金属化合物
とヒドラジンとの化合物水溶液中に40℃で1時間浸漬
することによって、球状のPVA系ゲルを得ることがで
きた。このゲルは粘着性もなく、直径は3〜4mmであっ
た。ゲル強度、耐久性および浄化性能について評価した
結果を表3に示す。
Further, a spherical PVA-based gel could be obtained by immersing the spheroidized molded product in a compound aqueous solution of a polyvalent metal compound and hydrazine at 40 ° C. for 1 hour. The gel was not sticky and had a diameter of 3-4 mm. Table 3 shows the results of evaluating the gel strength, durability and purification performance.

【0058】[0058]

【表3】 [Table 3]

【0059】表3より明らかなように、強度、耐久性お
よび浄化性能のすべてにおいて良好であった。
As is clear from Table 3, all of the strength, durability and purification performance were good.

【0060】実施例7 合成例2で得られた変性度1.0モル%のジアセトンア
クリルアミド共重合変性PVAを使用した以外は実施例
6と同様にして球状ゲルを作製した。このゲルは粘着性
もなく、直径は3〜4mmであった。ゲル強度、耐久性お
よび浄化性能の評価を行った。結果を表2に示す。表2
から明らかなように、強度、耐久性および浄化性能は良
好であった。
Example 7 A spherical gel was prepared in the same manner as in Example 6, except that the diacetone acrylamide copolymer-modified PVA having a degree of modification of 1.0 mol% obtained in Synthesis Example 2 was used. The gel was not sticky and had a diameter of 3-4 mm. The gel strength, durability and purification performance were evaluated. Table 2 shows the results. Table 2
As is clear from the above, the strength, durability and purification performance were good.

【0061】実施例8 多価金属化合物とヒドラジン化合物との水溶液の作製の
際に、50gのN−アミノアクリルアミドの代わりに5
0gのアジピン酸ジヒドラジドを使用した以外は実施例
6と同様にして球状ゲルを作製した。このゲルは粘着性
もなく、直径は3〜4mmであった。ゲル強度、耐久性お
よび浄化性能の評価を行った。結果を表3に示す。表3
から明らかなように、強度、耐久性および浄化性能は良
好であった。
Example 8 In preparing an aqueous solution of a polyvalent metal compound and a hydrazine compound, 5 g of N-aminoacrylamide was used instead of 50 g of N-aminoacrylamide.
A spherical gel was prepared in the same manner as in Example 6, except that 0 g of adipic dihydrazide was used. The gel was not sticky and had a diameter of 3-4 mm. The gel strength, durability and purification performance were evaluated. Table 3 shows the results. Table 3
As is clear from the above, the strength, durability and purification performance were good.

【0062】実施例9 PVA系樹脂の水溶液濃度を5重量%にした以外は実施
例6と同様にして球状ゲルを作製した。このゲルは粘着
性もなく、直径は1〜2mmであった。ゲル強度、耐久性
および浄化性能の評価を行った。結果を表3に示す。表
3から明らかなように、強度、耐久性および浄化性能は
良好であった。
Example 9 A spherical gel was prepared in the same manner as in Example 6, except that the concentration of the aqueous solution of the PVA resin was changed to 5% by weight. The gel was not sticky and had a diameter of 1-2 mm. The gel strength, durability and purification performance were evaluated. Table 3 shows the results. As is clear from Table 3, the strength, durability and purification performance were good.

【0063】実施例10 多価金属化合物とヒドラジン化合物との水溶液の作製の
際に、N−アミノアクリルアミドの使用量を10gにし
た以外は実施例6と同様にして球状ゲルを作製した。こ
のゲルは粘着性もなく、直径は3〜4mmであった。ゲル
強度、耐久性および浄化性能の評価を行った。結果を表
3に示す。表3から明らかなように、強度、耐久性およ
び浄化性能は良好であった。
Example 10 A spherical gel was prepared in the same manner as in Example 6, except that the amount of N-aminoacrylamide used was changed to 10 g when preparing an aqueous solution of a polyvalent metal compound and a hydrazine compound. The gel was not sticky and had a diameter of 3-4 mm. The gel strength, durability and purification performance were evaluated. Table 3 shows the results. As is clear from Table 3, the strength, durability and purification performance were good.

【0064】比較例1 合成例4で得られた変性度0.05モル%のジアセトン
アクリルアミド共重合変性PVA10gを水100gに
溶解し、これに1gのN−アミノポリアクリルアミドを
添加して、良く攪拌して均一な混合液を作成した後、直
径1cmの球形の金型に流し込み、10℃で2時間放置し
たが、ゲル化しなかった。
COMPARATIVE EXAMPLE 1 10 g of diacetone acrylamide copolymer modified PVA having a degree of modification of 0.05 mol% obtained in Synthesis Example 4 was dissolved in 100 g of water, and 1 g of N-aminopolyacrylamide was added thereto. After stirring to form a uniform mixture, the mixture was poured into a spherical mold having a diameter of 1 cm and left at 10 ° C. for 2 hours, but did not gel.

【0065】比較例2 合成例5で得られた変性度18.0モル%のジアセトン
アクリルアミド共重合変性PVAは水に溶解しなかった
ため、含水ゲルを作成することができなかった。
Comparative Example 2 The diacetone acrylamide copolymer modified PVA having a modification degree of 18.0 mol% obtained in Synthesis Example 5 did not dissolve in water, so that a water-containing gel could not be prepared.

【0066】比較例3 合成例1で得られたジアセトンアクリルアミド共重合変
性PVA系樹脂の代わりに鹸化度98.5モル%、20
℃における4%水溶液粘度が28.6mPa・sの未変
性PVAを使用した以外は、実施例6と同様にして球状
ゲルを作製した。このゲルは粘着性もなく、直径は3〜
4mmであった。ゲル強度、耐久性および浄化性能の評価
を行った。ゲル強度、耐久性および浄化性能の評価を行
った。結果を表3に示す。表3から明らかなように、ゲ
ル強度は弱く、また耐久性も問題があることがわかっ
た。
Comparative Example 3 Instead of the diacetone acrylamide copolymer-modified PVA resin obtained in Synthesis Example 1, the saponification degree was 98.5 mol%, and
A spherical gel was produced in the same manner as in Example 6, except that unmodified PVA having a 4% aqueous solution viscosity at 2 ° C. of 28.6 mPa · s was used. This gel is not sticky and has a diameter of 3 ~
4 mm. The gel strength, durability and purification performance were evaluated. The gel strength, durability and purification performance were evaluated. Table 3 shows the results. As is clear from Table 3, the gel strength was low and the durability was also problematic.

【0067】比較例4 合成例1で得られたジアセトンアクリルアミド共重合変
性PVA系樹脂の代わりに合成例4で得られたジアセト
ンアクリルアミド共重合変性PVA系樹脂を使用した以
外は、実施例6と同様にして球状ゲルを作製した。この
ゲルは粘着性もなく、直径は3〜4mmであった。ゲル強
度、耐久性および浄化性能の評価を行った。結果を表3
に示す。表3から明らかなように、ゲル強度は弱く、ま
た耐久性も問題があることがわかった。
Comparative Example 4 Example 6 was repeated except that the diacetone acrylamide copolymer modified PVA resin obtained in Synthesis Example 4 was used instead of the diacetone acrylamide copolymer modified PVA resin obtained in Synthesis Example 1. A spherical gel was prepared in the same manner as described above. The gel was not sticky and had a diameter of 3-4 mm. The gel strength, durability and purification performance were evaluated. Table 3 shows the results
Shown in As is clear from Table 3, the gel strength was low and the durability was also problematic.

【0068】比較例5 PVA系樹脂を使用しない以外は、実施例6と同様にし
て球状ゲルを作製しようとしたが、ゲルは得られなかっ
た。
Comparative Example 5 A spherical gel was prepared in the same manner as in Example 6 except that no PVA resin was used, but no gel was obtained.

【0069】比較例6 N−アミノアクリルアミドを使用しない以外は実施例6
と同様にして球状ゲルを作製した。このゲルは粘着性も
なく、直径は3〜4mmであった。ゲル強度、耐久性およ
び浄化性能の評価を行った。結果を表3に示す。表3か
ら明らかなように、ゲル強度は弱く、また耐久性も問題
があることがわかった。
Comparative Example 6 Example 6 except that no N-aminoacrylamide was used.
A spherical gel was prepared in the same manner as described above. The gel was not sticky and had a diameter of 3-4 mm. The gel strength, durability and purification performance were evaluated. Table 3 shows the results. As is clear from Table 3, the gel strength was low and the durability was also problematic.

【0070】比較例7 鹸化度98.5モル%、20℃における4%水溶液粘度
が28.6mPa・sの未変性PVAを使用した以外
は、濃度10重量%になるように水を加え全量400g
にし、95℃で120分間処理し、PVAを溶解した
後、室温まで放冷した。これに、4重量%アルギン酸ナ
トリウム水溶液200gを加えて充分に混合し、さらに
サッカロマイセス属の菌体を0.5g-wet clls/mL を含
む活性汚泥を60g加え、充分に攪拌し、PVA系混合
水溶液を作製し、水酸化ナトリウムでpH6.0に調製
した。一方、飽和ほう酸水溶液1L に11.1gの塩化
カルシウムを加え溶解し、さらに塩酸でpHを調製し、
pH6.0のほう酸および多価金属化合物の水溶液を調
製した。
COMPARATIVE EXAMPLE 7 Except for using unmodified PVA having a saponification degree of 98.5 mol% and a 4% aqueous solution viscosity at 20 ° C. of 28.6 mPa · s, water was added to a concentration of 10% by weight, and the total amount was 400 g.
The mixture was treated at 95 ° C. for 120 minutes to dissolve the PVA, and then allowed to cool to room temperature. To this, 200 g of a 4% by weight aqueous sodium alginate solution was added and thoroughly mixed. Further, 60 g of activated sludge containing 0.5 g-wet clls / mL of the bacterium of the genus Saccharomyces was added, and the mixture was sufficiently stirred and mixed with a PVA-based mixed aqueous solution. Was prepared and adjusted to pH 6.0 with sodium hydroxide. On the other hand, 11.1 g of calcium chloride was added to and dissolved in 1 L of a saturated boric acid aqueous solution, and the pH was adjusted with hydrochloric acid.
An aqueous solution of boric acid and a polyvalent metal compound having a pH of 6.0 was prepared.

【0071】PVA系混合水溶液を、先端に内径1mmの
注射針を取り付け内径2mmφのビニル管1本を使用した
ロ−ラ−ポンプで1mL/分で送液し、スタ−ラ−で攪拌
した上記のほう酸および多価金属化合物の水溶液に水表
面から15cmの高さより滴下した。滴下した液はただち
に球状化して沈降した。更に、球状化した成形物をほう
酸および多価金属化合物の水溶液中に40℃で3時間浸
漬することによって、球状のPVA系ゲルを得ることが
できた。このゲルの直径は3〜4mmであった。ゲル強
度、耐久性および浄化性能について評価した結果を表3
に示す。表3により明らかなように、ゲル強度は弱く、
また耐久性も問題があり、これは微生物の最適pHでは
ほう酸によるPVAのゲル化が起こっていないからであ
ると考えられる。
The PVA-based mixed aqueous solution was sent at a rate of 1 mL / min by a roller pump using a vinyl tube having an inner diameter of 1 mm and a needle having an inner diameter of 1 mm attached thereto and stirred with a stirrer. Was dropped from an aqueous solution of boric acid and a polyvalent metal compound at a height of 15 cm from the water surface. The dropped solution immediately became spherical and settled. Furthermore, a spherical PVA-based gel could be obtained by immersing the spheroidized molded product in an aqueous solution of boric acid and a polyvalent metal compound at 40 ° C. for 3 hours. The diameter of this gel was 3-4 mm. Table 3 shows the results of evaluating the gel strength, durability and purification performance.
Shown in As is clear from Table 3, the gel strength was weak,
There is also a problem in durability, which is considered to be because gelation of PVA by boric acid does not occur at the optimum pH of the microorganism.

【0072】比較例8 PVA系混合水溶液およびほう酸、多価金属化合物の水
溶液のpHを9.0に調製した以外は、比較例7と同様
にして球状のPVA系ゲルを作製した。このゲルの直径
は3〜4mmであった。ゲル強度、耐久性および浄化性能
について評価した結果を表3に示す。表3により明らか
なように、ゲル強度、耐久性もやや劣り、浄化性能につ
いても、COD濃度が520mg/Lと、ほとんど廃水中の
有機物類が浄化されていないことがわかった。これは、
PVA系ゲルの製造中にpHの変化により菌体の分解活
性が低下したためと考えられる。
Comparative Example 8 A spherical PVA gel was produced in the same manner as in Comparative Example 7, except that the pH of the PVA-based mixed aqueous solution and the aqueous solution of boric acid and the polyvalent metal compound were adjusted to 9.0. The diameter of this gel was 3-4 mm. Table 3 shows the results of evaluating the gel strength, durability and purification performance. As is clear from Table 3, the gel strength and durability were slightly inferior, and the COD concentration was 520 mg / L with respect to the purification performance, and it was found that almost no organic matter in the wastewater was purified. this is,
This is probably because the degradation activity of the bacterial cells was reduced due to a change in pH during the production of the PVA-based gel.

【0073】比較例9 鹸化度98.5モル%、20℃における4%水溶液粘度
が28.6mPa・sの未変性PVAに濃度10重量%
になるように水を加え全量400gにし、95℃で12
0分間処理し、PVAを溶解した後、室温まで放冷し
た。これに、4重量%アルギン酸ナトリウム水溶液20
0gを加えて充分に混合し、さらにサッカロマイセス属
の菌体を0.5g-wet cells/mL を含む活性汚泥を60
g加え、充分に攪拌し、PVA系混合水溶液を作製し、
水酸化ナトリウムでpH6.0に調製した。一方、1
1.1gの塩化カルシウムと25%グルタルアルデヒド
水溶液50gを1L の水で溶解し、さらに塩酸でpH
6.0の多価金属化合物およびグルタルアルデヒドの水
溶液を調製した。
Comparative Example 9 10% by weight of unmodified PVA having a saponification degree of 98.5 mol% and a 4% aqueous solution at 20 ° C. having a viscosity of 28.6 mPa · s
And add water to make the total amount 400 g.
After treating for 0 minutes to dissolve the PVA, it was allowed to cool to room temperature. To this, a 4% by weight aqueous sodium alginate solution 20
0 g of the activated sludge containing 0.5 g-wet cells / mL of Saccharomyces sp.
g, and sufficiently stirred to produce a PVA-based mixed aqueous solution,
The pH was adjusted to 6.0 with sodium hydroxide. Meanwhile, 1
1.1 g of calcium chloride and 50 g of a 25% aqueous solution of glutaraldehyde are dissolved in 1 L of water, and the pH is further adjusted with hydrochloric acid.
An aqueous solution of a 6.0 polyvalent metal compound and glutaraldehyde was prepared.

【0074】PVA系混合水溶液を、先端に内径1mmの
注射針を取り付けた内径2mmφのビニル管1本を使用し
たロ−ラ−ポンプで1mL/分で送液し、スタ−ラ−で攪
拌した上記の多価金属化合物およびグルタルアルデヒド
の水溶液に水表面から15cmの高さより滴下した。滴下
した液は直ちに球状化して沈降した。更に、球状化した
成形物を多価金属化合物およびグルタルアルデヒドの水
溶液中に40℃で3時間浸漬することによって、球状の
PVA系ゲルを得ることができた。このゲルの直径は3
〜4mmであった。ゲル強度、耐久性および浄化性能につ
いて評価した結果を表3に示す。
The PVA-based mixed aqueous solution was sent at a rate of 1 mL / min by a roller pump using one vinyl tube having an inner diameter of 2 mm and having a needle having an inner diameter of 1 mm attached to the tip, and stirred with a stirrer. An aqueous solution of the above polyvalent metal compound and glutaraldehyde was dropped at a height of 15 cm from the water surface. The dropped solution immediately became spherical and settled. Furthermore, a spherical PVA-based gel could be obtained by immersing the spheroidized molded product in an aqueous solution of a polyvalent metal compound and glutaraldehyde at 40 ° C. for 3 hours. The diameter of this gel is 3
44 mm. Table 3 shows the results of evaluating the gel strength, durability and purification performance.

【0075】表3により明らかなように、ゲル強度は弱
く、また耐久性も問題があり、これは微生物の最適pH
ではグルタルアルデヒドによるPVAのゲル化が起こっ
ていないからであると考えられる。
As is evident from Table 3, the gel strength is low and the durability is problematic, which is due to the optimum pH of the microorganism.
It is considered that the gelation of PVA with glutaraldehyde did not occur.

【0076】比較例10 PVA系混合水溶液および多価金属化合物とグルタルア
ルデヒドの水溶液のpHを3.0に調製した以外は、比
較例9と同様にして球状のPVA系ゲルを作製した。こ
のゲルの直径は3〜4mmであった。ゲル強度、耐久性お
よび浄化性能について評価した結果を表3に示す。表3
により明らかなように、ゲル強度、耐久性は良好であっ
たが、浄化性能については、COD濃度が510mg/L
と、ほとんど廃水中の有機物類が浄化されていないこと
がわかった。これは、PVA系ゲルの製造中にpHの変
化により菌体の分解活性が低下したためと考えられる。
Comparative Example 10 A spherical PVA-based gel was produced in the same manner as in Comparative Example 9 except that the pH of the PVA-based mixed aqueous solution and the aqueous solution of the polyvalent metal compound and glutaraldehyde were adjusted to 3.0. The diameter of this gel was 3-4 mm. Table 3 shows the results of evaluating the gel strength, durability and purification performance. Table 3
As is clear from the above, the gel strength and durability were good, but regarding the purification performance, the COD concentration was 510 mg / L.
It turned out that almost no organic matter in the wastewater was purified. This is considered to be due to a decrease in the activity of decomposing cells due to a change in pH during the production of the PVA-based gel.

【0077】[0077]

【発明の効果】本発明によると、工業的に有利な強度の
高いPVA系含水ゲルを製造することができ、得られる
含水ゲルを微生物や酵素の固定化担体として使用する
際、製造時に微生物や酵素の活性を低下させず、所望の
活性を長期間にわたって維持することができる。
Industrial Applicability According to the present invention, it is possible to produce a PVA-based hydrogel having high strength which is industrially advantageous. When the obtained hydrogel is used as a carrier for immobilizing microorganisms and enzymes, the production of microorganisms and microorganisms at the time of production is improved. The desired activity can be maintained for a long period of time without reducing the activity of the enzyme.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08F 220:56) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08F 220: 56)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水溶液中でジアセトンアクリルアミド単
位を0.1〜15モル%含有するジアセトンアクリルア
ミド共重合変性ポリビニルアルコール系樹脂と水溶性ヒ
ドラジン化合物を反応せしめることを特徴とするポリビ
ニルアルコール系含水ゲルの製造方法。
1. A polyvinyl alcohol-based hydrogel characterized by reacting a water-soluble hydrazine compound with a diacetone acrylamide copolymerized modified polyvinyl alcohol-based resin containing 0.1 to 15 mol% of diacetone acrylamide units in an aqueous solution. Manufacturing method.
【請求項2】 請求項1記載のポリビニルアルコール系
含水ゲル中に酵素・微生物を固定せしめることを特徴と
する酵素・微生物固定化成形物の製造方法。
2. A method for producing an enzyme / microorganism-immobilized molded article, comprising immobilizing an enzyme / microorganism in the polyvinyl alcohol-based hydrogel according to claim 1.
【請求項3】 ジアセトンアクリルアミド共重合変性ポ
リビニルアルコール系樹脂と酵素・微生物の他に少なく
とも1種類の多価金属イオンとの接触によりゲル化能を
有する水溶性高分子多糖類を含有する混合水溶液を多価
金属イオンとヒドラジン化合物を含有する水溶液中に滴
下せしめることを特徴とする酵素・微生物固定化成形物
の製造方法。
3. A mixed aqueous solution containing a water-soluble high molecular weight polysaccharide having a gelling ability by contacting a diacetone acrylamide copolymerized modified polyvinyl alcohol resin with at least one kind of polyvalent metal ion in addition to enzymes and microorganisms. Is added dropwise to an aqueous solution containing a polyvalent metal ion and a hydrazine compound.
JP10833397A 1997-04-11 1997-04-11 Polyvinyl alcohol-based hydrogel production method and enzyme / microbe-immobilized molded product production method Expired - Lifetime JP3908327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10833397A JP3908327B2 (en) 1997-04-11 1997-04-11 Polyvinyl alcohol-based hydrogel production method and enzyme / microbe-immobilized molded product production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10833397A JP3908327B2 (en) 1997-04-11 1997-04-11 Polyvinyl alcohol-based hydrogel production method and enzyme / microbe-immobilized molded product production method

Publications (2)

Publication Number Publication Date
JPH10287711A true JPH10287711A (en) 1998-10-27
JP3908327B2 JP3908327B2 (en) 2007-04-25

Family

ID=14482044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10833397A Expired - Lifetime JP3908327B2 (en) 1997-04-11 1997-04-11 Polyvinyl alcohol-based hydrogel production method and enzyme / microbe-immobilized molded product production method

Country Status (1)

Country Link
JP (1) JP3908327B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006651A1 (en) * 1998-07-27 2000-02-10 M & M Laboratory Co., Ltd. Ion complex, coating material, and coating method
JP2002226720A (en) * 2001-02-01 2002-08-14 Unitika Chem Co Ltd Organic solvent base gel material
WO2007097349A1 (en) * 2006-02-24 2007-08-30 The Nippon Synthetic Chemical Industry Co., Ltd. Resin composition and use thereof
JP2007254732A (en) * 2006-02-24 2007-10-04 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and its use
JP2010285488A (en) * 2009-06-10 2010-12-24 Japan Vam & Poval Co Ltd Hydrogel composition
WO2015056505A1 (en) 2013-10-18 2015-04-23 日本酢ビ・ポバール株式会社 Method of producing polyvinyl alcohol resin, and polyvinyl alcohol resin obtained thereby
WO2016178438A1 (en) * 2015-05-07 2016-11-10 国立大学法人北陸先端科学技術大学院大学 Gel material for artificial blood vessel, and method for producing same
WO2018074448A1 (en) 2016-10-19 2018-04-26 日本酢ビ・ポバール株式会社 Method for accelerating crosslinking reaction of polyvinyl alcohol resin
WO2018155621A1 (en) * 2017-02-23 2018-08-30 日本酢ビ・ポバール株式会社 Cell- or tissue-embedding device
CN110004136A (en) * 2019-04-16 2019-07-12 中南大学 A kind of embedding body, preparation method and cultural method loading leaching microbacteria
WO2020203769A1 (en) * 2019-03-29 2020-10-08 積水化学工業株式会社 Cell culture scaffold material, cell culture vessel, cell culture fiber and method for culturing cell
CN113045848A (en) * 2021-03-31 2021-06-29 广西医科大学 Preparation method of polyvinyl alcohol nano composite hydrogel
RU2772125C2 (en) * 2017-02-23 2022-05-17 Джапан Вам Энд Повал Ко., Лтд. Device for enclosing cell or tissue

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006651A1 (en) * 1998-07-27 2000-02-10 M & M Laboratory Co., Ltd. Ion complex, coating material, and coating method
US6555225B1 (en) 1998-07-27 2003-04-29 M&M Laboratory Co., Ltd. Ion complex, coated product and coating method
JP2002226720A (en) * 2001-02-01 2002-08-14 Unitika Chem Co Ltd Organic solvent base gel material
WO2007097349A1 (en) * 2006-02-24 2007-08-30 The Nippon Synthetic Chemical Industry Co., Ltd. Resin composition and use thereof
JP2007254732A (en) * 2006-02-24 2007-10-04 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and its use
JP2010285488A (en) * 2009-06-10 2010-12-24 Japan Vam & Poval Co Ltd Hydrogel composition
WO2015056505A1 (en) 2013-10-18 2015-04-23 日本酢ビ・ポバール株式会社 Method of producing polyvinyl alcohol resin, and polyvinyl alcohol resin obtained thereby
US10538120B2 (en) 2013-10-18 2020-01-21 Japan Vam & Poval Co., Ltd. Method for producing polyvinyl alcohol resin, and polyvinyl alcohol resin obtained by the method
WO2016178438A1 (en) * 2015-05-07 2016-11-10 国立大学法人北陸先端科学技術大学院大学 Gel material for artificial blood vessel, and method for producing same
JP2016209261A (en) * 2015-05-07 2016-12-15 国立大学法人北陸先端科学技術大学院大学 Gel material for artificial blood vessel, and production method thereof
WO2018074448A1 (en) 2016-10-19 2018-04-26 日本酢ビ・ポバール株式会社 Method for accelerating crosslinking reaction of polyvinyl alcohol resin
KR20190121811A (en) * 2017-02-23 2019-10-28 니혼 사꾸비 포바루 가부시키가이샤 Cell or tissue embedding device
US11684693B2 (en) 2017-02-23 2023-06-27 Japan Vam & Poval Co., Ltd. Cell or tissue embedding device
CN110418635A (en) * 2017-02-23 2019-11-05 日本瓦姆&珀巴尔株式会社 Cell or tissue embeds device
JPWO2018155621A1 (en) * 2017-02-23 2019-12-26 日本酢ビ・ポバール株式会社 Cell or tissue embedding device
WO2018155621A1 (en) * 2017-02-23 2018-08-30 日本酢ビ・ポバール株式会社 Cell- or tissue-embedding device
EP3586824A4 (en) * 2017-02-23 2020-12-30 Japan Vam & Poval Co., Ltd. Cell- or tissue-embedding device
RU2772125C2 (en) * 2017-02-23 2022-05-17 Джапан Вам Энд Повал Ко., Лтд. Device for enclosing cell or tissue
CN110418635B (en) * 2017-02-23 2023-08-11 日本瓦姆&珀巴尔株式会社 Cell or tissue embedding device
JP2022105224A (en) * 2017-02-23 2022-07-12 日本酢ビ・ポバール株式会社 Cell- or tissue-embedding device
WO2020203769A1 (en) * 2019-03-29 2020-10-08 積水化学工業株式会社 Cell culture scaffold material, cell culture vessel, cell culture fiber and method for culturing cell
CN113383066A (en) * 2019-03-29 2021-09-10 积水化学工业株式会社 Scaffold material for cell culture, vessel for cell culture, fiber for cell culture, and method for culturing cells
CN110004136A (en) * 2019-04-16 2019-07-12 中南大学 A kind of embedding body, preparation method and cultural method loading leaching microbacteria
CN113045848A (en) * 2021-03-31 2021-06-29 广西医科大学 Preparation method of polyvinyl alcohol nano composite hydrogel
CN113045848B (en) * 2021-03-31 2022-06-10 广西医科大学 Preparation method of polyvinyl alcohol nano composite hydrogel

Also Published As

Publication number Publication date
JP3908327B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP3908327B2 (en) Polyvinyl alcohol-based hydrogel production method and enzyme / microbe-immobilized molded product production method
EP0303122B1 (en) Process for manufacturing spherical hydrated gel containing microorganism immobilized therein
US5854376A (en) Aliphatic ester-amide copolymer resins
JP2002524100A (en) Polymer-fixed living cells and their use
JP2010116439A (en) Polyvinyl alcohol-based gel-molded article and method for producing the same
JP5237888B2 (en) Aqueous gel composition
JPH09157433A (en) Production of polyvinyl alcohol-based gel molding and microorganism-immobilized molding
JP3466236B2 (en) Polyvinyl acetal gel molding
BG64957B1 (en) Process for preparing a polyvinyl alcohol gel and mechanically highly stable gel produced by this process
JPH09316271A (en) Spherical hydrous gel
JP2004075762A (en) Method for producing polyvinyl alcohol-based hydrogel
JP3763904B2 (en) Method for producing spherical hydrous gel
JP2622170B2 (en) Spherical polyvinyl alcohol-based hydrogel and method for producing the same
JPH04334539A (en) Hydrogel
JPH09124876A (en) Acetalized polyvinyl alcohol-based hydrous gel
JP3055963B2 (en) Polymer gel for biocatalyst-immobilized moldings
JP2777211B2 (en) Method for producing spherical biocatalyst-immobilized molded article
JP3266607B2 (en) Biocatalyst immobilized gel
JPH03195489A (en) Production of spherical formed product of immobilized biocatalyst
JPH04253744A (en) Conductive polymeric material and its production
JPH0657012A (en) Production of polyvinyl-alcoholic gel formed articles
JPH01207216A (en) Gelled wood vinegar
JP2005171040A (en) Manufacturing process of polyvinyl alcohol-based hydrous gel
JPH08239538A (en) Pva hydrous gel and its production
JPH09194744A (en) Porous gel-like material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040405

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160126

Year of fee payment: 9

EXPY Cancellation because of completion of term