JPH04334539A - Hydrogel - Google Patents

Hydrogel

Info

Publication number
JPH04334539A
JPH04334539A JP3135807A JP13580791A JPH04334539A JP H04334539 A JPH04334539 A JP H04334539A JP 3135807 A JP3135807 A JP 3135807A JP 13580791 A JP13580791 A JP 13580791A JP H04334539 A JPH04334539 A JP H04334539A
Authority
JP
Japan
Prior art keywords
hydrogel
artificial
carboxyl group
water
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3135807A
Other languages
Japanese (ja)
Inventor
Akitomo Inuyama
犬山 昭朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP3135807A priority Critical patent/JPH04334539A/en
Publication of JPH04334539A publication Critical patent/JPH04334539A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a hydrogel having high strength and good elasticity by constituting the same from carboxyl group modified polyvinyl alcohol and a polyamine compound. CONSTITUTION:A polyamine compound (e.g. polyethylene-imine) is added to carboxyl group modified polyvinyl alcohol in a ratio of 0.05-30wt.% to be reacted therewith. The obtained hydrogel can easily control gel strength and water content and has high strength and good elasticity and is also excellent in safety. Especially, the hydrogel can be adapted to the medical field because the sterilized one can be easily prepared. As a concrete use, there is a medical material such as an artificial muscle, an artificial skin, a catheter, an anti- thrombogenic material, a drug sustained release carrier or an enzyme or bacterial cell immobilizing carrier. Further, the hydrogel can be adapted to a field requiring high water retentivity such as a water holding material, heat insulating material, an insulating heating medium, artificial bog moss, artificial soil for hydroponics, an artificial bait for fishery, a soil conditioner, an algicidal material, an antistaining material or an aroma sustained release carrier.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はヒドロゲルに関する。さ
らに詳しくは、保水率が高い上に強度も高く、かつゴム
状弾性を示し、水産、農業、土木、医療等の分野に展開
できる新規なポリビニルアルコール(以下PVAと略記
する)系ヒドロゲルに関する。
FIELD OF THE INVENTION This invention relates to hydrogels. More specifically, it relates to a novel polyvinyl alcohol (hereinafter abbreviated as PVA) hydrogel that has a high water retention rate, high strength, and exhibits rubber-like elasticity, and can be applied to fields such as fisheries, agriculture, civil engineering, and medicine.

【0002】0002

【従来の技術】近年、含水状態で水に溶解せず、適度な
機械的強度を有する成形体、すなわち、ヒドロゲルの有
する機能が注目され、その用途展開が検討されてきてい
る。例えば、ソフトコンタクトレンズ、医薬除方性担体
、生体修復材、人工腱、人工皮膚等の医療材料や保水材
、保冷用熱媒体、人工水苔、水耕栽培用人工土壌、漁業
用擬似餌、土質改良材等の産業用途が考えられる。この
ようなヒドロゲルの原料としては、澱粉、ゼラチン、寒
天等の天然高分子、PVA、ポリアクリル酸、ポリアク
リルアミド、ポリヒドロキシエチルメタクリレート、ポ
リビニルメチルエーテル、ポリビニルピロリドン等の親
水性もしくは水溶性合成高分子が用いられている。ヒド
ロゲルの安易な製造法として、寒天ゲルの製造が著名で
ある。すなわち、80〜90℃の熱湯または沸騰水へ、
0.1重量%(以下wt%と略記する)以上、例えば1
〜10wt%の寒天を溶解後、室温に放冷することによ
り、含水率90〜99wt%程度のヒドロゲルを容易に
得ることができる。またPVA水溶液にホウ酸、ホウ酸
水溶液、ホウ砂、ホウ砂水溶液などを加えて、即座にゲ
ル化させる方法などが知られている。これらのうち、含
水状態においても機械的強度が高いヒドロゲル原料とし
てはPVAが最も優れており、数多くの検討がなされて
いる。例えば、特開昭60−177066号公報には、
PVAの濃厚水溶液を−5℃以下の低温で5時間以上凍
結させた後、10℃以下の比較的低温で10時間以上放
置結晶化させることにより、高強度のPVAヒドロゲル
を得る方法が開示されている。また特開昭61−252
261号公報には、PVAを水と有機溶剤の混合溶媒中
に溶解した後、−20℃のフリーザー中で3時間凍結結
晶化させた後、水洗することにより、引張強度が10K
g/cm2以上、含水率が50〜98wt%のPVAヒ
ドロゲルを得る方法が開示されている。また滅菌ゲルを
得る方法としては、従来はPVA水溶液またはプロピレ
ングリコールなどが入ったPVA懸濁水溶液を120℃
、30分の加圧スチーム処理による方法、または製造し
たヒドロゲルをオートクレーブ処理する方法が行われて
いた。そのため、ヒドロゲルとして品質上または性能上
に問題があった。
BACKGROUND OF THE INVENTION In recent years, the functions of hydrogels, which are molded bodies that do not dissolve in water in a hydrated state and have appropriate mechanical strength, have attracted attention, and the development of their applications has been studied. For example, medical materials such as soft contact lenses, pharmaceutical removable carriers, biological repair materials, artificial tendons, artificial skin, water retention materials, heat carriers for cold storage, artificial sphagnum moss, artificial soil for hydroponic cultivation, artificial bait for fishing, Possible industrial uses include soil improvement materials. Raw materials for such hydrogels include natural polymers such as starch, gelatin, and agar, and hydrophilic or water-soluble synthetic polymers such as PVA, polyacrylic acid, polyacrylamide, polyhydroxyethyl methacrylate, polyvinyl methyl ether, and polyvinyl pyrrolidone. is used. Agar gel production is well-known as an easy method for producing hydrogels. That is, to hot water or boiling water at 80-90°C,
0.1% by weight (hereinafter abbreviated as wt%) or more, for example 1
After dissolving ~10 wt% of agar, a hydrogel with a water content of about 90 to 99 wt% can be easily obtained by allowing it to cool to room temperature. Also known is a method in which boric acid, a boric acid aqueous solution, borax, a borax aqueous solution, or the like is added to a PVA aqueous solution to immediately gel it. Among these, PVA is the most excellent hydrogel raw material that has high mechanical strength even in a water-containing state, and has been studied extensively. For example, in Japanese Patent Application Laid-Open No. 60-177066,
A method for obtaining a high-strength PVA hydrogel is disclosed by freezing a concentrated aqueous solution of PVA at a low temperature of -5°C or lower for 5 hours or more, and then allowing it to crystallize at a relatively low temperature of 10°C or lower for 10 hours or more. There is. Also, JP-A-61-252
Publication No. 261 states that after dissolving PVA in a mixed solvent of water and an organic solvent, it is frozen and crystallized in a -20°C freezer for 3 hours, and then washed with water to obtain a tensile strength of 10K.
A method for obtaining a PVA hydrogel with a water content of 50 to 98 wt% and a water content of 50 to 98 wt% is disclosed. In addition, as a method for obtaining sterile gel, conventionally, a PVA aqueous solution or a PVA suspension aqueous solution containing propylene glycol, etc. was heated at 120°C.
, a method using pressurized steam treatment for 30 minutes, or a method in which the produced hydrogel was treated in an autoclave. Therefore, there were problems in terms of quality or performance as a hydrogel.

【0003】0003

【発明が解決しようとする課題】本発明の目的は、上記
の問題点が全くないヒドロゲルを提供することにある
[Problems to be Solved by the Invention] An object of the present invention is to provide a hydrogel that does not have any of the above problems.


0004】
[
0004

【課題を解決するための手段】本発明者は上記の課題を
解決すべく鋭意検討した結果、カルボキシル基変性PV
Aおよびポリアミン化合物からなるヒドロゲルを見出し
た。以下、本発明を詳細に説明する。本発明に使用する
カルボキシル基変性PVAの粘度平均重合度(以下重合
度と略記する)は500以上が好ましく、1500以上
がより好ましく、4000以上がさらに好ましい。PV
Aの重合度が高い方が高強度のヒドロゲルが得られる。 重合度が500より低いとゲルの強度が不足して反復使
用中にゲルが形崩れしたり、崩壊したりして好ましくな
い。PVAのけん化度としては88〜100モル%が好
ましく、90〜99モル%がより好ましく、95〜99
モル%がさらに好ましい。PVAのけん化度が88モル
%を下回ると、室温の水中で著しく膨潤したり、溶解し
たりするうえ、含水状態におけるヒドロゲルの強度も極
端に低下する。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors have developed a carboxyl group-modified PV.
A hydrogel consisting of A and a polyamine compound was found. The present invention will be explained in detail below. The viscosity average degree of polymerization (hereinafter abbreviated as polymerization degree) of the carboxyl group-modified PVA used in the present invention is preferably 500 or more, more preferably 1500 or more, and even more preferably 4000 or more. PV
The higher the degree of polymerization of A, the higher the strength of the hydrogel. If the degree of polymerization is lower than 500, the strength of the gel will be insufficient and the gel will lose its shape or collapse during repeated use, which is not preferable. The degree of saponification of PVA is preferably 88 to 100 mol%, more preferably 90 to 99 mol%, and 95 to 99 mol%.
More preferred is mole %. If the degree of saponification of PVA is less than 88 mol%, it will swell or dissolve significantly in water at room temperature, and the strength of the hydrogel in a water-containing state will also be extremely reduced.

【0005】本発明に使用するポリアミン化合物として
はポリエチレンイミン、ポリエチレンアミン類[一般式
で表される鎖状脂肪族ポリアミンH2N(CH2CH2
NH)nH、n=1:エチレンジアミン、n=2:ジエ
チレントリアミン、n=3:トリエチレンテトラミン、
n=4:テトラエチレンペンタミン、n=5:ペンタエ
チレンヘキサミン]、メンセンジアミン、イソフォロン
ジアミンなどの環状脂肪族ポリアミンおよびこれらの誘
導体または変性物、メタフェニレンジアミン、ジアミノ
ジフェニルスルホンなどの芳香族ポリアミンおよびこれ
らの変性物、脂肪族ポリアミドアミンなどが挙げられる
。 これらのアミン化合物のうちポリエチレンイミンが特に
好適である。ポリエチレンイミンとしては、下記の化1
で表され、分子量が300から100000くらいのも
のである。
Polyamine compounds used in the present invention include polyethyleneimine, polyethyleneamines [chain aliphatic polyamine H2N (CH2CH2
NH)nH, n=1: ethylenediamine, n=2: diethylenetriamine, n=3: triethylenetetramine,
n=4: tetraethylenepentamine, n=5: pentaethylenehexamine], cycloaliphatic polyamines such as menthene diamine, isophorone diamine, derivatives or modified products thereof, aromatic compounds such as metaphenylene diamine, diaminodiphenylsulfone Examples include polyamines, modified products thereof, aliphatic polyamide amines, and the like. Among these amine compounds, polyethyleneimine is particularly preferred. As polyethyleneimine, the following chemical formula 1
It is represented by , and has a molecular weight of about 300 to 100,000.

【化1】[Chemical formula 1]

【0006】カルボキシル基変性PVAに対するポリア
ミン化合物の添加量は、ヒドロゲルに要求される機械的
強度によっても異なるが、0.05〜30wt%が好ま
しい。液状の低分子量のポリアミン化合物はそのままで
も使用できるが、高分子量のポリアミン化合物は1〜4
0wt%水溶液として使用するのが好適である。本発明
において、カルボキシル基変性PVA中のCOOH基と
ポリアミン化合物中のNH2基とがイオンコンプレック
スを形成してゲルを生成するものと推定される。ポリア
ミン化合物によるカルボキシル基変性PVAの架橋反応
は室温下でも容易に起こり、ゲル形成時間及びゲルの硬
さはカルボキシル基変性PVAとポリアミン化合物の配
合割合によってコントロールすることができ、50℃以
上に加熱することによりさらに硬いヒドロゲルを得るこ
とができる。オートクレーブ内で100℃以上の温度で
加熱処理することにより、カルボキシル基変性PVA水
溶液とポリアミン化合物を反応させることによりさらに
硬いヒドロゲルを得ることができる。本発明の滅菌され
たヒドロゲルを得る方法としてはカルボキシル基変性P
VA水溶液とポリアミン化合物をオートクレーブ内で1
21℃で20分間、116℃で30分間または105℃
で45分間加熱する方法が挙げられる。また、本発明の
ヒドロゲルに多孔性物質を添加することによってヒドロ
ゲルの強度を高くしたり、加工性を良くすることができ
る。多孔性物質としては無機系または有機系のいずれで
も良い。多孔性物質の粒径としては0.1〜200μm
程度のものが良い。粒径が200μmより大きいと反復
使用によりゲルの形崩れや崩壊の原因となる。多孔性物
質の添加量としてはカルボキシル基変性PVAに対して
1〜200wt%が好ましく、50〜100wt%がよ
り好ましい。添加量が200wt%より多くなるとゲル
の形崩れや崩壊の原因となる。有機系の多孔性物質とし
ては、ポリアクリルアミド、ポリイミド樹脂、ナイロン
パウダー、塩化ビニル樹脂粉末、メタクリル樹脂粉末、
メタクリル酸メチル重合体ビーズ、アクリルビーズポリ
マー,MBS樹脂、粉末化NBR,ポリエチレンワック
ス、ポリエチレンパウダー,微粒子状超高分子量ポリオ
レフィンパウダー、フッ素系樹脂粉末などが好ましい。 無機系の多孔性物質としてはケイ酸アルミニゥム、マイ
カ、酸化マグネシゥム、ホワイトカーボン、活性炭など
が好ましい。これらの有機系または無機系の多孔性物質
を添加することにより、ヒドロゲルの強度の増加、ヒド
ロゲルの加工性の改良に大きな効果がある。カルボキシ
ル基変性PVAをオートクレーブ内でゲル化させる溶媒
としては水が好ましい。オートクレーブを用いて高温、
高圧下でカルボキシル基変性PVAとポリアミン化合物
とを反応させる場合、無機系の多孔性物質の場合は熱に
対して問題はないが、有機系の多孔性物質の場合は、ポ
リマーの融点を考慮して温度を設定する必要がある。ま
たヒドロゲルを冷蔵庫の氷室または冷凍庫で冷却する場
合、ヒドロゲル内の水分が氷結し、ヒドロゲルが硬直す
るのを回避する目的でカルボキシル基変性PVA水溶液
に1価アルコール、多価アルコール、グルコースまたは
蔗糖などを添加しても良い。これらの添加物は有機系ま
たは無機系の多孔性物質に吸着され適当なヒドロゲルを
与えることができる。オートクレーブ内でヒドロゲルを
製造した後、過剰の水分または上記の添加物は濾過など
により除去される。またヒドロゲルの水分は、プレス濾
過,遠心分離等によって任意の水分率に調整することが
可能である。高温でゲル化を促進させる場合、カルボキ
シル基変性PVAの分解防止剤を添加することにより架
橋度の高いヒドロゲルを得ることができる。分解防止剤
の添加量としてはカルボキシル基変性PVAに対して0
.1〜5wt%が好ましい。0.1wt%より少ないと
分解抑制作用がなく、5wt%より多いとヒドロゲルの
強度が弱くなる。さらにポリアクリ酸ソーダ、イソブチ
レン−無水マレイン酸共重合体等の吸水性樹脂または吸
水性ゲルなどを添加しても良い。本発明のヒドロゲルは
未包装または塩化ビニール、ポリエチレンなどのフィル
ムあるいはバッグ等に封入したり、包装して使用できる
。本発明において、カルボキシル基変性PVA、無機系
または有機系の多孔性物質および架橋剤であるホウ酸と
の金属塩化合物を含む水溶液を調合する場合には、カル
ボキシル基変性PVA粉末、架橋剤の粉末、無機系また
は有機系の多孔性物質、多価アルコールなどをオートク
レーブ内に投入後、所定の水を添加して加熱溶解するこ
とにより容易にヒドロゲルを得ることができる。さらに
より良いヒドロゲルを得るために、有機系または無機系
の多孔性物質をあらかじめ1価または多価アルコールな
どで処理した後に添加するとより大きな改善効果がある
。本発明のヒドロゲルは非流動性、非粘着性を有し、高
含水性で機械的強度に優れる。またヒドロゲル自体がみ
ずみずしい感触と、コンニャクのような非常に弾力性を
有していることから、弾性に富む保冷剤、例えば氷枕、
氷袋の代替品として利用することができる。さらに本発
明のヒドロゲルはホウ酸、無機系または有機系の多孔性
物質の添加量の調節により、ヒドロゲルの硬度が調節で
きるので各種の分野に利用できる。
[0006] The amount of the polyamine compound added to the carboxyl group-modified PVA varies depending on the mechanical strength required of the hydrogel, but is preferably 0.05 to 30 wt%. Liquid low molecular weight polyamine compounds can be used as they are, but high molecular weight polyamine compounds are
It is preferable to use it as a 0 wt % aqueous solution. In the present invention, it is presumed that the COOH group in the carboxyl group-modified PVA and the NH2 group in the polyamine compound form an ionic complex to produce a gel. The crosslinking reaction of carboxyl-modified PVA with a polyamine compound occurs easily even at room temperature, and the gel formation time and gel hardness can be controlled by the blending ratio of carboxyl-modified PVA and polyamine compound. This makes it possible to obtain even harder hydrogels. By performing heat treatment at a temperature of 100° C. or higher in an autoclave, an even harder hydrogel can be obtained by reacting the carboxyl group-modified PVA aqueous solution with the polyamine compound. As a method for obtaining the sterilized hydrogel of the present invention, carboxyl group-modified P
VA aqueous solution and polyamine compound in an autoclave
21°C for 20 minutes, 116°C for 30 minutes or 105°C
An example of this method is heating for 45 minutes. Further, by adding a porous substance to the hydrogel of the present invention, the strength of the hydrogel can be increased and the processability can be improved. The porous material may be either inorganic or organic. The particle size of the porous material is 0.1 to 200 μm.
Something of a certain degree is good. If the particle size is larger than 200 μm, repeated use may cause the gel to lose its shape or collapse. The amount of the porous substance added is preferably 1 to 200 wt%, more preferably 50 to 100 wt%, based on the carboxyl group-modified PVA. If the amount added exceeds 200 wt%, it may cause the gel to lose its shape or collapse. Examples of organic porous materials include polyacrylamide, polyimide resin, nylon powder, vinyl chloride resin powder, methacrylic resin powder,
Preferable examples include methyl methacrylate polymer beads, acrylic bead polymers, MBS resins, powdered NBR, polyethylene wax, polyethylene powder, fine particulate ultra-high molecular weight polyolefin powders, and fluororesin powders. Preferred inorganic porous materials include aluminum silicate, mica, magnesium oxide, white carbon, and activated carbon. Addition of these organic or inorganic porous substances has a great effect on increasing the strength of the hydrogel and improving the processability of the hydrogel. Water is preferred as a solvent for gelling carboxyl group-modified PVA in an autoclave. high temperature using an autoclave,
When reacting carboxyl group-modified PVA with a polyamine compound under high pressure, there is no problem with heat in the case of inorganic porous materials, but in the case of organic porous materials, the melting point of the polymer must be taken into consideration. It is necessary to set the temperature. In addition, when cooling the hydrogel in the ice chamber of a refrigerator or freezer, monohydric alcohol, polyhydric alcohol, glucose, sucrose, etc. are added to the carboxyl group-modified PVA aqueous solution to prevent the water in the hydrogel from freezing and causing the hydrogel to become rigid. May be added. These additives can be adsorbed onto organic or inorganic porous materials to provide suitable hydrogels. After producing the hydrogel in the autoclave, excess water or the above additives are removed, such as by filtration. Furthermore, the water content of the hydrogel can be adjusted to any desired water content by press filtration, centrifugation, or the like. When gelation is promoted at high temperatures, a hydrogel with a high degree of crosslinking can be obtained by adding a decomposition inhibitor for carboxyl group-modified PVA. The amount of decomposition inhibitor added is 0 for carboxyl group-modified PVA.
.. 1 to 5 wt% is preferable. If it is less than 0.1 wt%, there will be no decomposition inhibiting effect, and if it is more than 5 wt%, the strength of the hydrogel will be weakened. Furthermore, a water-absorbing resin such as sodium polyacrylate, isobutylene-maleic anhydride copolymer, or a water-absorbing gel may be added. The hydrogel of the present invention can be used unpackaged, encapsulated in a film or bag made of vinyl chloride, polyethylene, etc., or packaged. In the present invention, when preparing an aqueous solution containing carboxyl group-modified PVA, an inorganic or organic porous substance, and a metal salt compound with boric acid as a crosslinking agent, carboxyl group-modified PVA powder and crosslinking agent powder are prepared. , an inorganic or organic porous substance, a polyhydric alcohol, etc., are placed in an autoclave, and then a predetermined amount of water is added and dissolved by heating, whereby a hydrogel can be easily obtained. Furthermore, in order to obtain a better hydrogel, a greater improvement effect can be obtained if an organic or inorganic porous substance is treated with a monohydric or polyhydric alcohol in advance and then added. The hydrogel of the present invention has non-flowability, non-adhesiveness, high water content, and excellent mechanical strength. In addition, since the hydrogel itself has a fresh feel and extremely elasticity similar to konnyaku, it can be used as an ice pack with high elasticity, such as an ice pack.
It can be used as an alternative to ice bags. Further, the hydrogel of the present invention can be used in various fields because the hardness of the hydrogel can be adjusted by adjusting the amount of boric acid or an inorganic or organic porous substance added.

【0007】[0007]

【実施例】以下、実施例により本発明をより具体的に説
明するが、本発明はこれらの実施例によりなんら限定さ
れるものではない。なお以下の実施例で、〔部〕および
〔%〕は特に断らない限り、それぞれ〔重量部〕および
〔重量%〕を意味する。 実施例1 カルボキシル基変性PVA(けん化度98.6モル%,
重合度1750,イタコン酸変性度1モル%)20部お
よび分子量70000のポリエチレンイミン(日本触媒
化学工業(株)製、商品名エポミンP−1000)を純
分として10部を水99部を用いて90℃下に30分間
反応させてヒドロゲルを得た。得られたヒドロゲルは透
明で、コンニャク状の弾性を有する高含水率のヒドロゲ
ルであった。 実施例2 カルボキシル基変性PVA(けん化度98.5モル%,
重合度1750,無水マレイン酸変性度2モル%)の2
0%水溶液を95部、実施例1において用いたポリエチ
レンイミンを純分として5部、水100部および分子量
600のポリエチレングリコール2部を室温下で反応さ
せて透明なヒドロゲルを得た。得られたヒドロゲルはコ
ンニャクと同様な弾性体であった。 実施例3 カルボキシル基変性PVA(けん化度98.5モル%,
重合度4150、イタコン酸変性度1モル%)の10%
水溶液90部、実施例1において用いたポリエチレンイ
ミンを純分として10部および実施例2において用いた
ポリエチレングリコール1部を60℃で1時間加熱する
ことによりヒドロゲルを得た。得られたヒドロゲルはコ
ンニャクと同様の弾性を有していた。このヒドロゲルを
ポリエチレン製の袋に入れた後にシールをして、冷蔵庫
の氷室にいれて一夜冷却し、保冷剤を作成した。この保
冷剤の反復使用テストを行ったところ、離漿もなく、全
く形崩れもなく、良好であった。
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples in any way. In the following examples, [parts] and [%] mean [parts by weight] and [% by weight], respectively, unless otherwise specified. Example 1 Carboxyl group-modified PVA (saponification degree 98.6 mol%,
Polymerization degree 1750, itaconic acid modification degree 1 mol%) and 10 parts of pure polyethyleneimine (manufactured by Nippon Shokubai Chemical Co., Ltd., trade name Epomin P-1000) with a molecular weight of 70,000 and 99 parts of water were used. A hydrogel was obtained by reacting at 90°C for 30 minutes. The obtained hydrogel was transparent and had a high water content and had konjac-like elasticity. Example 2 Carboxyl group-modified PVA (saponification degree 98.5 mol%,
Polymerization degree 1750, maleic anhydride modification degree 2 mol%)
A transparent hydrogel was obtained by reacting 95 parts of a 0% aqueous solution, 5 parts of the pure polyethyleneimine used in Example 1, 100 parts of water, and 2 parts of polyethylene glycol having a molecular weight of 600 at room temperature. The obtained hydrogel had an elastic body similar to konnyaku. Example 3 Carboxyl group-modified PVA (saponification degree 98.5 mol%,
Degree of polymerization: 4150, degree of itaconic acid modification: 1 mol%)
A hydrogel was obtained by heating 90 parts of the aqueous solution, 10 parts of the pure polyethyleneimine used in Example 1, and 1 part of the polyethylene glycol used in Example 2 at 60° C. for 1 hour. The resulting hydrogel had elasticity similar to konnyaku. This hydrogel was placed in a polyethylene bag, sealed, and placed in an ice chamber of a refrigerator to cool overnight to create an ice pack. When this ice pack was tested for repeated use, it was found to be in good condition with no syneresis and no deformation at all.

【0008】実施例4 カルボキシル基変性PVA(けん化度98.8モル%,
重合度8000,イタコン酸変性度1モル%)の5%水
溶液85部、実施例1において用いたポリエチレンイミ
ンの5%水溶液13部および実施例2において用いたポ
リエチレングリコール2部を50℃下で反応させてヒド
ロゲルを得た。得られたヒドロゲルはコンニャクと同様
の弾性を有していた。 実施例5 カルボキシル基変性PVA(けん化度98.6モル%,
重合度12000,イタコン酸変性度1モル%)の3%
水溶液70部、分子量10000のポリエチレンイミン
(日本触媒化学工業(株)製、商品名エポミンSP−2
00)の5%水溶液28部および実施例2において用い
たポリエチレングリコール2部を50℃下で反応させて
ヒドロゲルを得た。得られたヒドロゲルはコンニャクと
同様の弾性を有していた。 実施例6 カルボキシル基変性PVA(けん化度98.9モル%,
重合度18000,イタコン酸変性度98.5モル%)
の3%水溶液70部を用いたほかは実施例5と同様にし
てヒドロゲルを得た。得られたヒドロゲルはコンニャク
と同様の弾性を有していた。 実施例7 実施例2において用いたカルボキシル基変性PVAの5
%水溶液20部、実施例1において用いたポリエチレン
イミンの5%水溶液79部および放香剤1部を室温下で
60分反応させたところ、寒天状ゲルよりも柔らかく、
かつ強く振蘯しても全く離漿しないヒドロゲルが得られ
た。この放香性ヒドロゲルの放置試験を行ったところ6
0日以上良好であった。 実施例8 実施例1において用いたカルボキシル基変性PVAの2
0%水溶液80部、分子量10000のポリエチレンイ
ミン20部(日本触媒化学工業(株)製、商品名エポミ
ンSP−200)および分子量1000のポリエチレン
グリコール1部をステンレス製オートクレーブ内で、1
21℃で30分間反応させてヒドロゲルを得た。得られ
たヒドロゲルはコンニャク状の弾性体であった。またリ
ムラス試験を行ったところ(−)であった。このことは
無菌であることを示している。
Example 4 Carboxyl group-modified PVA (saponification degree 98.8 mol%,
85 parts of a 5% aqueous solution of polyethyleneimine (polymerization degree 8000, itaconic acid modification degree 1 mol%), 13 parts of the 5% aqueous solution of polyethyleneimine used in Example 1, and 2 parts of the polyethylene glycol used in Example 2 were reacted at 50°C. A hydrogel was obtained. The resulting hydrogel had elasticity similar to konnyaku. Example 5 Carboxyl group-modified PVA (saponification degree 98.6 mol%,
Degree of polymerization 12000, degree of itaconic acid modification 1 mol%) 3%
70 parts of aqueous solution, polyethyleneimine with a molecular weight of 10,000 (manufactured by Nippon Shokubai Chemical Co., Ltd., trade name: Epomin SP-2)
00) and 2 parts of the polyethylene glycol used in Example 2 were reacted at 50°C to obtain a hydrogel. The resulting hydrogel had elasticity similar to konnyaku. Example 6 Carboxyl group-modified PVA (saponification degree 98.9 mol%,
Degree of polymerization: 18,000, degree of itaconic acid modification: 98.5 mol%)
A hydrogel was obtained in the same manner as in Example 5, except that 70 parts of a 3% aqueous solution of . The resulting hydrogel had elasticity similar to konnyaku. Example 7 5 of carboxyl group-modified PVA used in Example 2
% aqueous solution, 79 parts of the 5% aqueous solution of polyethyleneimine used in Example 1, and 1 part of the fragrance were reacted at room temperature for 60 minutes.
Moreover, a hydrogel was obtained that did not show syneresis at all even when strongly shaken. When we conducted a standing test on this fragrance-emitting hydrogel, we found that 6
The condition remained good for more than 0 days. Example 8 2 of carboxyl group-modified PVA used in Example 1
80 parts of 0% aqueous solution, 20 parts of polyethyleneimine with a molecular weight of 10,000 (manufactured by Nippon Shokubai Chemical Co., Ltd., trade name: Epomin SP-200) and 1 part of polyethylene glycol with a molecular weight of 1,000 were mixed in a stainless steel autoclave.
A hydrogel was obtained by reacting at 21° C. for 30 minutes. The obtained hydrogel was a konjac-like elastic body. In addition, a limulus test was conducted and the result was (-). This shows that it is sterile.

【0009】比較例1 無変性PVA(けん化度98.6モル%,重合度175
0)3.5g、ホウ酸0.35gおよび蒸留水70gを
三角フラスコに投入し、90℃で6時間加熱溶解して架
橋ゲルを得た。得られたゲルは脆く指先でつまむと簡単
に崩壊した。
Comparative Example 1 Unmodified PVA (saponification degree 98.6 mol%, polymerization degree 175
0), 0.35 g of boric acid, and 70 g of distilled water were placed in an Erlenmeyer flask and dissolved by heating at 90° C. for 6 hours to obtain a crosslinked gel. The resulting gel was brittle and easily disintegrated when pinched with fingertips.

【0010】0010

【発明の効果】カルボキシル基変性PVAとポリアミン
系化合物からなる本発明のヒドロゲルは、容易にゲル強
度およびゲルの含水率をコントロールでき、かつ安全性
にも優れている。特に滅菌されたヒドロゲルが容易に製
造できることからメディカル分野への展開が期待できる
。具体的に用途としては、人工筋肉、人工皮膚、カテー
テル,抗血栓性材料、医薬除放性担体、酵素や菌体の固
定化担体等の医療材料などで挙げられ、さらには、保水
材、保冷材、保冷用熱媒体、人口水苔、水耕栽培用人口
土壌、漁業用擬似餌、土質改良剤、防藻材、防汚材、芳
香剤の除放性担体等の高い保水率の要求される産業分野
への展開ができる。
Effects of the Invention The hydrogel of the present invention, which is composed of carboxyl group-modified PVA and a polyamine compound, allows easy control of gel strength and gel water content, and is also excellent in safety. In particular, since sterilized hydrogels can be easily produced, they are expected to be used in the medical field. Specific uses include medical materials such as artificial muscles, artificial skin, catheters, antithrombotic materials, sustained release carriers for pharmaceuticals, and carriers for immobilizing enzymes and bacterial cells, as well as water retention materials and cold storage materials. High water retention rate is required for materials such as wood, heat medium for cold storage, artificial sphagnum moss, artificial soil for hydroponic cultivation, artificial bait for fishing, soil conditioner, algae prevention material, antifouling material, and slow-release carrier for aromatics. It is possible to expand into industrial fields.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  カルボキシル基変性ポリビニルアルコ
ールおよびポリアミン化合物からなるヒドロゲル。
1. A hydrogel comprising carboxyl group-modified polyvinyl alcohol and a polyamine compound.
【請求項2】  滅菌されていることを特徴とする請求
項1記載のヒドロゲル。
2. The hydrogel according to claim 1, which is sterilized.
JP3135807A 1991-05-09 1991-05-09 Hydrogel Pending JPH04334539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135807A JPH04334539A (en) 1991-05-09 1991-05-09 Hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135807A JPH04334539A (en) 1991-05-09 1991-05-09 Hydrogel

Publications (1)

Publication Number Publication Date
JPH04334539A true JPH04334539A (en) 1992-11-20

Family

ID=15160286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135807A Pending JPH04334539A (en) 1991-05-09 1991-05-09 Hydrogel

Country Status (1)

Country Link
JP (1) JPH04334539A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526807A (en) * 2003-04-24 2006-11-24 オキュラー サイエンシス インコーポレイテッド Hydrogel contact lenses and packaging systems and methods for their production
US20100272672A1 (en) * 2007-12-17 2010-10-28 Kita Kristin B Crosslinked hydrogels
WO2018003627A1 (en) * 2016-06-30 2018-01-04 日本合成化学工業株式会社 Agricultural composition, granules and sustained release granules
JP2018204243A (en) * 2017-06-01 2018-12-27 国立大学法人宇都宮大学 Soil improvement paving method using hydrogel
JP2020154321A (en) * 2017-08-23 2020-09-24 ペガビジョン コーポレイションPegavision Corporation Contact lens with element protection function
WO2022254980A1 (en) * 2021-06-04 2022-12-08 花王株式会社 Gel composition
WO2022254979A1 (en) * 2021-06-04 2022-12-08 花王株式会社 Gel composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526807A (en) * 2003-04-24 2006-11-24 オキュラー サイエンシス インコーポレイテッド Hydrogel contact lenses and packaging systems and methods for their production
US20100272672A1 (en) * 2007-12-17 2010-10-28 Kita Kristin B Crosslinked hydrogels
US9078953B2 (en) * 2007-12-17 2015-07-14 DePuy Synthes Products, Inc. Crosslinked hydrogels
WO2018003627A1 (en) * 2016-06-30 2018-01-04 日本合成化学工業株式会社 Agricultural composition, granules and sustained release granules
JPWO2018003627A1 (en) * 2016-06-30 2019-04-18 日本合成化学工業株式会社 Agricultural composition, granules and controlled release granules
JP2018204243A (en) * 2017-06-01 2018-12-27 国立大学法人宇都宮大学 Soil improvement paving method using hydrogel
JP2020154321A (en) * 2017-08-23 2020-09-24 ペガビジョン コーポレイションPegavision Corporation Contact lens with element protection function
WO2022254980A1 (en) * 2021-06-04 2022-12-08 花王株式会社 Gel composition
WO2022254979A1 (en) * 2021-06-04 2022-12-08 花王株式会社 Gel composition

Similar Documents

Publication Publication Date Title
JP6074485B2 (en) Hydroxy polyamide gel former
AU2011326602B2 (en) Gels and hydrogels
JPH0612993B2 (en) Method for producing spherical microbe-immobilized moldings
JPH04334539A (en) Hydrogel
JP2002305975A (en) Biodegradable plant supplement
JP2004307523A (en) Temperature responsive biodegradable gel
JPS62273283A (en) Horticultural water retentive agent
Garner et al. Types and Chemistry of Synthetic Hydrogels
Jose et al. 1—Hydrogels: An overview of the history, classification, principles, applications, and kinetics
JPH05271425A (en) Production of pva gel molding
Sharma et al. Biodegradation and water absorption studies of natural gum rosin-based hydrogel
JPH0657012A (en) Production of polyvinyl-alcoholic gel formed articles
CN115245162A (en) Humic acid type magnetic slow-release pesticide and preparation method thereof
JPH08239538A (en) Pva hydrous gel and its production
JPS63152980A (en) Immobilization of microbial cell
JP2777169B2 (en) Hydrous gel for immobilizing microorganisms
JPS62158744A (en) Gel composition
JPS61183378A (en) Oily gel composition
JPH02167077A (en) Production of spherical enzyme immobilized molded article
JPS5918988B2 (en) Production method of biocatalyst
JPH0744951B2 (en) Anticoagulant medical material
JPS6137912B2 (en)
JPH02211872A (en) Production of formed spherical product immobilizing biocatalyst
JPH0195782A (en) Production of immobilized enzyme-containing substance
JP2000063608A (en) Antibacterial reaction complex