JPH04253744A - Conductive polymeric material and its production - Google Patents

Conductive polymeric material and its production

Info

Publication number
JPH04253744A
JPH04253744A JP3562091A JP3562091A JPH04253744A JP H04253744 A JPH04253744 A JP H04253744A JP 3562091 A JP3562091 A JP 3562091A JP 3562091 A JP3562091 A JP 3562091A JP H04253744 A JPH04253744 A JP H04253744A
Authority
JP
Japan
Prior art keywords
conductive polymer
pyrrole
polymer material
chitosan
organic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3562091A
Other languages
Japanese (ja)
Inventor
Hitoshi Uda
宇田 仁
Bunzo Kamo
加茂 文三
Yasuko Amano
天野 靖子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP3562091A priority Critical patent/JPH04253744A/en
Publication of JPH04253744A publication Critical patent/JPH04253744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To facilitate the formation of an easily processable and moldable conductive polymeric material having a functional group useful for fixing oxygen by oxidation-polymerizing pyrrole in a dilute organic acid containing chitosan and an oxidation polymerization agent and precipitating the polymer from an organic solvent. CONSTITUTION:Pyrrole is oxidation-polymerized in a dilute organic acid (e.g. formic acid or acetic acid) containing chitosan and an oxidation polymerization agent (e.g. ferric p-toluenesulfonate or hydrogen peroxide), and the formed polymer is precipitated from an organic solvent (e.g. acetone or ethyl alcohol). According to the above process, a water-soluble and easily moldable conductive polymeric material having a functional group useful for fixing oxygencan easily be obtained. Because an arbitrary conductivity can be uniformly imparted to this material, it can find wide applications such as a biosensor as a conductive oxygen fixation carrier. It can be stored for a long time when it is molded into granules.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は水に溶解可能であり、か
つ、酵素の固定化に有用な官能基を有する、新規な導電
性高分子材料およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel conductive polymer material which is soluble in water and has a functional group useful for immobilizing enzymes, and a method for producing the same.

【0002】0002

【従来の技術】導電性高分子材料は、電気、電子分野の
みならず、多くの産業分野から注目されている。
2. Description of the Related Art Conductive polymer materials are attracting attention not only in the electrical and electronic fields but also in many industrial fields.

【0003】従来から知られているポリアセチレン、ポ
リピロール、ポリチオフェン、ポリアニリン等の導電性
高分子は機械的強度が小さく、またいかなる溶媒にも不
溶であるため、その加工が容易でないという問題があっ
た。そのため最近ではピロールなどの複素5員環の3位
を直鎖アルキル基やカルボキシル基などで置換した単量
体を用い、これを電気化学的あるいは化学的に酸化重合
する方法や、ポリ塩化ビニルやポリスチレン等を、クロ
ロホルムやジメチルホルムアミド等の極性を有する非水
溶液中でピロールを酸化重合させる方法(特開平2−2
94324号公報)により、有機溶媒に溶解可能な導電
性高分子材料を得られることが知られている。
Conventionally known conductive polymers such as polyacetylene, polypyrrole, polythiophene, and polyaniline have low mechanical strength and are insoluble in any solvent, so they have the problem of not being easy to process. Therefore, recently, methods have been developed to use monomers in which the 3-position of a five-membered heterocyclic ring such as pyrrole is substituted with a straight-chain alkyl group or carboxyl group, and electrochemically or chemically oxidatively polymerize this, A method of oxidatively polymerizing polystyrene, etc. to pyrrole in a polar non-aqueous solution such as chloroform or dimethylformamide (Japanese Unexamined Patent Publication No. 2-2-2)
94324), it is known that a conductive polymer material soluble in an organic solvent can be obtained.

【0004】ところで、酵素の固定化が可能な導電性高
分子材料は、酵素電極やバイオセンサー等としての利用
が可能である。従来の酵素電極は酵素の固定化部分と電
極部分が完全に分離しており、これを一体化した酵素の
固定化が可能な導電性高分子材料の開発が期待されてい
る。
By the way, conductive polymer materials capable of immobilizing enzymes can be used as enzyme electrodes, biosensors, and the like. In conventional enzyme electrodes, the enzyme immobilization part and the electrode part are completely separated, and there are expectations for the development of conductive polymer materials that can integrate enzyme immobilization.

【0005】また、酵素は生体由来であるので水系での
み活性を示すため、酵素活性を維持し、なおかつ加工成
形が可能な導電性高分子を得るためには水溶性の性質を
有し、かつ、酵素の固定化が可能な導電性高分子材料を
得ることが必要である。従来から知られている酵素の固
定化が可能な導電性高分子を得る方法としては、ポリピ
ロールを電解重合させると同時に酵素を吸着させて、ポ
リピロールのマトリックス中に包括的に酵素を固定化す
る方法が知られている(アナリテイカルケミストリー(
Analitical Chemistry)、58巻
、14号、2979頁、1986年、特開昭62−11
5285号公報)。
[0005] Furthermore, since enzymes are derived from living organisms, they show activity only in aqueous systems. Therefore, in order to maintain enzyme activity and to obtain conductive polymers that can be processed and molded, it is necessary to have water-soluble properties and Therefore, it is necessary to obtain a conductive polymer material capable of immobilizing enzymes. A conventionally known method for obtaining a conductive polymer capable of immobilizing an enzyme is to electropolymerize polypyrrole and simultaneously adsorb the enzyme to comprehensively immobilize the enzyme in the polypyrrole matrix. is known (Analytical Chemistry)
(Analytical Chemistry), Volume 58, No. 14, Page 2979, 1986, Japanese Patent Publication No. 1986-11
5285).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
方法では導電性高分子の成形加工が困難であるばかりで
なく、酵素の活性は低下し、また包括法による酵素の固
定化の操作は非常に繁雑であるという問題点がある。本
発明の目的は上記の問題点を解決した、水溶性であるた
め容易に成形加工が可能であり、かつ酵素の固定化に有
用な官能基を有する導電性高分子材料およびその製造方
法にある。
[Problems to be Solved by the Invention] However, in the above method, not only is it difficult to mold the conductive polymer, but also the activity of the enzyme is decreased, and the operation of immobilizing the enzyme by the entrapment method is extremely difficult. The problem is that it is complicated. The object of the present invention is to provide a conductive polymer material that solves the above problems, is water-soluble, can be easily molded, and has a functional group useful for immobilizing enzymes, and a method for producing the same. .

【0007】[0007]

【課題を解決するための手段】本発明は上記の目的を達
成するためになされたものであって、その要旨はキトサ
ンとポリピロールとを主成分とする導電性高分子材料で
あり、またその製法である。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and its gist is a conductive polymer material whose main components are chitosan and polypyrrole, and a method for producing the same. It is.

【0008】以下に、本発明を詳細に説明する。本発明
において用いられるキトサンは希有機酸水溶液に溶解で
きるものであれば特に限定されるものでなく、キトサン
あるいはキチンの脱N−アセチル化物の脱アセチル化度
が50〜100%のものを例示することができる。また
、上記キトサンを化学修飾して得られるキトサン誘導体
群も含まれる。
The present invention will be explained in detail below. The chitosan used in the present invention is not particularly limited as long as it can be dissolved in a dilute organic acid aqueous solution, and chitosan or chitin de-N-acetylated products with a degree of deacetylation of 50 to 100% are exemplified. be able to. It also includes a group of chitosan derivatives obtained by chemically modifying the chitosan described above.

【0009】そして、本発明においてピロールとは、ピ
ロールあるいはピロールの誘導体も含む。また、本発明
でポリピロールとは、ピロールが酸化反応により重合し
導電性を発現したものを示す。
[0009] In the present invention, pyrrole also includes pyrrole or pyrrole derivatives. Furthermore, in the present invention, polypyrrole refers to pyrrole that is polymerized through an oxidation reaction and exhibits conductivity.

【0010】本発明の導電性高分子材料はポリピロール
が全体の組成中20〜70重量%の範囲で存在すること
が好ましい。20重量%未満の場合、導電性は著しく低
下する。また、本発明の製造方法ではポリピロールの割
合が70重量%を越えるような本発明の導電性高分子材
料を得ることは困難である。
[0010] In the conductive polymer material of the present invention, polypyrrole is preferably present in an amount of 20 to 70% by weight in the total composition. When the amount is less than 20% by weight, the conductivity is significantly reduced. Further, with the production method of the present invention, it is difficult to obtain the conductive polymer material of the present invention in which the proportion of polypyrrole exceeds 70% by weight.

【0011】さらに、本発明の導電性高分子材料はピロ
ールをキトサンの希有機酸溶液中で攪拌しながら重合さ
せるため、キトサンとポリピロールとは均一に混合して
いる。均一でない場合は、得られた導電性高分子材料に
導電性が均一に付与されない。
Furthermore, since the conductive polymer material of the present invention polymerizes pyrrole in a dilute organic acid solution of chitosan while stirring, chitosan and polypyrrole are uniformly mixed. If it is not uniform, conductivity will not be uniformly imparted to the obtained conductive polymer material.

【0012】本発明の導電性高分子材料はキトサンおよ
び酸化重合剤を含む希有機酸中でピロールを酸化重合さ
せた後、有機溶媒中で析出させるという方法により製造
することができる。
The conductive polymer material of the present invention can be produced by a method in which pyrrole is oxidatively polymerized in a dilute organic acid containing chitosan and an oxidative polymerization agent, and then precipitated in an organic solvent.

【0013】ピロールの酸化重合は、例えばキトサンを
溶解した希有機酸中に、酸化重合剤およびピロールを攪
拌しながら加えるという方法により行われる。この時、
酸化重合剤あるいはピロールのどちらを先に希有機酸中
に加えてもよく、予め、両者を希有機酸中に溶解させた
状態で加えてもよい。また、この際の溶液の攪拌が十分
でないと、酸化反応が部分的に進行し、導電性が均一な
導電性高分子材料が得られない恐れがある。
The oxidative polymerization of pyrrole is carried out, for example, by adding the oxidative polymerizing agent and pyrrole to a dilute organic acid in which chitosan is dissolved while stirring. At this time,
Either the oxidative polymerization agent or the pyrrole may be added to the dilute organic acid first, or both may be added in a state in which they are dissolved in the dilute organic acid in advance. Furthermore, if the solution is not sufficiently stirred at this time, the oxidation reaction may proceed partially, and there is a risk that a conductive polymer material with uniform conductivity may not be obtained.

【0014】また、このときキトサンを溶解した希有機
酸溶液中に、得られる導電性高分子材料の加工性を向上
させるために可塑剤を添加しても差し支えないが、その
分量によっては導電性が著しく低下する恐れがある。
At this time, a plasticizer may be added to the dilute organic acid solution in which chitosan is dissolved in order to improve the processability of the resulting conductive polymer material, but depending on the amount, the conductivity may decrease significantly.

【0015】有機酸はキトサンを溶解できるものであれ
ば特に限定されず、たとえば蟻酸、酢酸などの脂肪族カ
ルボン酸、安息香酸、フェニル酢酸などの芳香族カルボ
ン酸をあげることができる。用いる希有機酸の濃度は1
〜5%程度が望ましい。1%未満の場合はキトサンが十
分に溶解しないことがある。
The organic acid is not particularly limited as long as it can dissolve chitosan, and examples include aliphatic carboxylic acids such as formic acid and acetic acid, and aromatic carboxylic acids such as benzoic acid and phenylacetic acid. The concentration of the dilute organic acid used is 1
~5% is desirable. If it is less than 1%, chitosan may not be sufficiently dissolved.

【0016】キトサンの希有機酸溶液中の濃度は2重量
%以下であることが望ましい。2%を越える場合、得ら
れる導電性材料の導電性が著しく低下する恐れがある。
The concentration of chitosan in the dilute organic acid solution is preferably 2% by weight or less. If it exceeds 2%, the conductivity of the resulting conductive material may be significantly reduced.

【0017】ピロールの酸化重合剤はキトサンの希有機
酸溶液に溶解できるものであれば特に限定されず、パラ
トルエンスルホン酸第二鉄塩、塩化第二鉄、過酸化水素
、過マンガン酸カリウム、重クロム酸カリウムなどを例
示することができる。その量は後に加えるピロールのモ
ル数の3倍程度がのぞましい。これ以下の量である場合
、ピロールの酸化重合が十分に進行せず、得られる導電
性材料の導電性が著しく低下することがある。
The oxidative polymerization agent for pyrrole is not particularly limited as long as it can be dissolved in the dilute organic acid solution of chitosan, and examples include ferric paratoluenesulfonate, ferric chloride, hydrogen peroxide, potassium permanganate, Examples include potassium dichromate. The amount is preferably about three times the number of moles of pyrrole to be added later. If the amount is less than this, the oxidative polymerization of pyrrole may not proceed sufficiently, and the conductivity of the resulting conductive material may be significantly reduced.

【0018】ピロールの酸化重合はキトサンおよび酸化
重合剤を含んだ希有機酸混合溶液中で行うが、用いるピ
ロールの量は混合溶液の重量%として1.5〜3%程度
が望ましい。1.5%以下の場合、得られる導電性材料
の導電性が著しく低下するばかりでなく導電性が得られ
ない場合がある。また、3%以上の場合ピロールのモル
数の3倍量程度に相当するピロールの酸化重合剤がキト
サンの希有機酸水溶液に溶解できない可能性がある。
The oxidative polymerization of pyrrole is carried out in a dilute organic acid mixed solution containing chitosan and an oxidative polymerization agent, and the amount of pyrrole used is preferably about 1.5 to 3% by weight of the mixed solution. If it is less than 1.5%, not only the conductivity of the resulting conductive material is significantly reduced, but also conductivity may not be obtained. Further, if the amount is 3% or more, there is a possibility that the pyrrole oxidative polymerization agent, which is equivalent to about three times the number of moles of pyrrole, cannot be dissolved in the dilute organic acid aqueous solution of chitosan.

【0019】重合の際の温度は1℃〜5℃程度が望まし
い。これ以上の温度であると、得られる導電性高分子材
料の導電性が低下する恐れがあり、またこれ以下の場合
は、重合系が凍結する恐れががある。重合時間は8時間
以上が望ましく、これより重合時間が短いと、ピロール
が完全に重合しないことがある。
The temperature during polymerization is preferably about 1°C to 5°C. If the temperature is higher than this, there is a risk that the conductivity of the resulting conductive polymer material will decrease, and if the temperature is lower than this, there is a risk that the polymerization system will freeze. The polymerization time is preferably 8 hours or more; if the polymerization time is shorter than this, the pyrrole may not be completely polymerized.

【0020】本発明の導電性高分子材料は重合終了後、
多量の有機溶媒中で脱溶媒し、分散させることにより得
ることができる。
After the conductive polymer material of the present invention is polymerized,
It can be obtained by desolvation and dispersion in a large amount of organic solvent.

【0021】本発明で用いる有機溶媒とは水と混和し、
前記の有機酸および酸化重合剤を溶解し、かつ、キトサ
ンおよびポリピロールを溶解させないものである。アセ
トン、エチルアルコール、メチルアルコ−ルなどを例示
できる。その量は重合終了後の反応溶液の体積の10倍
以上が望ましい。それ以下であると、導電性高分子材料
が十分に析出しない場合がある。
[0021] The organic solvent used in the present invention is one that is miscible with water;
It dissolves the above-mentioned organic acid and oxidative polymerization agent, but does not dissolve chitosan and polypyrrole. Examples include acetone, ethyl alcohol, and methyl alcohol. The amount is desirably 10 times or more the volume of the reaction solution after completion of polymerization. If it is less than that, the conductive polymer material may not be sufficiently deposited.

【0022】析出後、上記の有機溶媒で十分に洗浄後、
乾燥することにより本発明の導電性高分子材料を得るこ
とができる。このようにして得られた本発明の導電性高
分子材料は、pHが7以下の水に溶解が可能で、また、
酵素の固定化に有用な官能基を有している。
After the precipitation, after washing thoroughly with the above organic solvent,
The conductive polymer material of the present invention can be obtained by drying. The conductive polymer material of the present invention thus obtained can be dissolved in water with a pH of 7 or less, and
Contains functional groups useful for immobilizing enzymes.

【0023】このようにして得られた本発明の導電性高
分子材料に酵素を固定化することにより、酵素電極をは
じめ、広範囲の分野で応用が可能である。本発明の導電
性高分子材料を構成するキトサン分子に、酵素を共有結
合法またはイオン結合法により、化学的に結合すること
により酵素を固定化することができる。
By immobilizing an enzyme on the conductive polymer material of the present invention thus obtained, it can be applied in a wide range of fields including enzyme electrodes. The enzyme can be immobilized by chemically bonding the enzyme to the chitosan molecules constituting the conductive polymer material of the present invention by a covalent bonding method or an ionic bonding method.

【0024】また、この導電性高分子材料を希有機酸溶
液に溶解後、アルカリ・ホルマリン混合溶液からなる凝
固液中にノズルにより滴下し、さらに架橋処理を行うこ
とにより、化学的に安定でかつ、操作性の優れた真球状
のビーズに成形することが可能である。
[0024] Furthermore, after dissolving this conductive polymer material in a dilute organic acid solution, it is dropped into a coagulating solution consisting of an alkali/formalin mixed solution through a nozzle, and further crosslinking treatment is performed to make it chemically stable and It is possible to form beads into perfectly spherical beads with excellent operability.

【0025】[0025]

【実施例】本発明をさらに詳細に説明するために以下に
実施例を述べるが、本発明はこれらに限定されるもので
はない。
EXAMPLES Examples will be described below to explain the present invention in more detail, but the present invention is not limited thereto.

【0026】実施例1 0.7gのキトサン(脱N−アセチル化度約80%、平
均分子量約100万)を50mlの水に分散させた後、
0.5mlの酢酸を加えて溶解させ、5℃まで冷却した
。別の容器中において、ピロールの酸化重合剤であるパ
ラトルエンスルホン酸第二鉄塩三水和物5.0gを水1
0mlに溶解させ5℃まで冷却した後、キトサンの酢酸
溶液と混合した。激しく攪拌しながらピロール1.0m
lを滴下し、滴下終了後、溶液が均一になった後に攪拌
を停止し、5℃で約8時間静置した。重合終了後、60
0mlのアセトン中に反応液を滴下すると、黒色フレー
ク状の導電性材料が得られた。これをろ過、分離しさら
にアセトンで洗浄後、乾燥させ、本発明の導電性高分子
材料が得られた。得られた本発明の導電性高分子材料1
.0gを10mlの水に溶解したところ、完全に溶解し
粘稠な溶液となった。これを3×3cm程度の広さの濾
紙に含浸させ乾燥させたところ導電性を有し、1×10
−4S/cm−1程度の導電率を示した。表1に結果を
示す。
Example 1 After dispersing 0.7 g of chitosan (degree of de-N-acetylation about 80%, average molecular weight about 1 million) in 50 ml of water,
0.5 ml of acetic acid was added to dissolve the mixture, and the mixture was cooled to 5°C. In another container, 5.0 g of paratoluenesulfonic acid ferric salt trihydrate, which is an oxidative polymerization agent for pyrrole, was added to 1 liter of water.
After dissolving in 0 ml and cooling to 5° C., the mixture was mixed with an acetic acid solution of chitosan. Add 1.0 m of pyrrole while stirring vigorously.
After the dropwise addition was completed and the solution became uniform, stirring was stopped and the mixture was allowed to stand at 5° C. for about 8 hours. After completion of polymerization, 60
When the reaction solution was dropped into 0 ml of acetone, a black flake-like conductive material was obtained. This was filtered, separated, washed with acetone, and dried to obtain the conductive polymer material of the present invention. Obtained conductive polymer material 1 of the present invention
.. When 0 g was dissolved in 10 ml of water, it completely dissolved and became a viscous solution. When this was impregnated into a filter paper with a size of about 3 x 3 cm and dried, it became conductive and 1 x 10
It exhibited a conductivity of about -4S/cm-1. Table 1 shows the results.

【0027】実施例2〜6 実施例1と同様の方法でポリピロールとキトサンの混合
割合を変えて導電性高分子材料を得た。その1.0gを
10mlの水に溶解し、この溶液を3×3cm程度の広
さの濾紙に含浸させ乾燥させてその導電率を測定した。 表1に結果を示す。
Examples 2 to 6 Conductive polymer materials were obtained in the same manner as in Example 1 by changing the mixing ratio of polypyrrole and chitosan. 1.0 g of the solution was dissolved in 10 ml of water, and a filter paper with a size of about 3 x 3 cm was impregnated with this solution, dried, and its electrical conductivity was measured. Table 1 shows the results.

【0028】[0028]

【表1】[Table 1]

【0029】実施例7 実施例1と同様の方法でポリピロールの割合を75重量
%として導電性高分子材料の製造を試みたが、この割合
のポリピロールを得るためのピロールを酸化重合させる
ために十分な酸化重合剤をキトサンの希有機酸溶液中で
溶解させるのは不可能であった。
Example 7 An attempt was made to produce a conductive polymer material using the same method as in Example 1 with a polypyrrole content of 75% by weight. It was not possible to dissolve the oxidative polymerization agent in a dilute organic acid solution of chitosan.

【0031】実施例8 実施例1で得られた本発明の導電性高分子材料1.0g
を70mlの水に分散溶解後、0.5mlの酢酸を加え
て完全に溶解した。また、10gの水酸化ナトリウムを
150mlの水に溶解し、35%のホルムアルデヒド水
溶液を加えて凝固液とした。前記の導電性高分子材料溶
液をノズル(直径1.5mm)を用いてこの凝固液に滴
下すると真球状単分散性の黒色ビーズが得られた。これ
らのビーズの平均粒径は約1.5mmであった。さらに
エピクロロヒドリン12ml、1N水酸化ナトリウム1
6ml、純水52mlの混合溶液中で5分間架橋処理を
施すと耐酸性のビ−ズとなった。得られたビーズ5gを
0.01M酢酸ナトリウム緩衝溶液10mlに分散させ
、所定量のグルコースオキシターゼを加えた後、5℃で
4時間以上振とうしてグルコースオキシターゼをイオン
結合法により固定化した。0.01M酢酸ナトリウム緩
衝溶液中でグルコースを基質として酵素活性を測定した
ところ、pHおよび温度変化に対する安定性は、固定化
しないグルコースオキシターゼに比べて大幅に向上して
いた。
Example 8 1.0 g of the conductive polymer material of the present invention obtained in Example 1
After dispersing and dissolving in 70 ml of water, 0.5 ml of acetic acid was added to completely dissolve. Further, 10 g of sodium hydroxide was dissolved in 150 ml of water, and a 35% formaldehyde aqueous solution was added to obtain a coagulating liquid. When the conductive polymer material solution was dropped into this coagulated liquid using a nozzle (diameter 1.5 mm), true spherical monodisperse black beads were obtained. The average particle size of these beads was approximately 1.5 mm. Additionally, 12 ml of epichlorohydrin, 1 N sodium hydroxide,
Acid-resistant beads were obtained by crosslinking for 5 minutes in a mixed solution of 6 ml and 52 ml of pure water. 5 g of the obtained beads were dispersed in 10 ml of 0.01 M sodium acetate buffer solution, a predetermined amount of glucose oxidase was added thereto, and the mixture was shaken at 5° C. for 4 hours or more to immobilize glucose oxidase by an ionic bonding method. When enzyme activity was measured using glucose as a substrate in a 0.01M sodium acetate buffer solution, the stability against pH and temperature changes was significantly improved compared to non-immobilized glucose oxidase.

【0032】応用例1 実施例1で得られた導電性高分子材料0.5gを3ml
の水に溶解して粘稠溶液を調製し、この溶液を直径0.
5mm程度の白金線先端に直径1mm程度の球状に付着
させた。実施例8と同様の凝固液中で固化すると白金線
先端にN−メチレン化した本発明の導電性高分子が球状
に形成した。次いで実施例8と同様の方法でこれに架橋
を施した。この白金線を0.01M酢酸ナトリウム緩衝
溶液10mlに分散させ、所定量のグルコースオキシタ
ーゼを加えた後、5℃で4時間以上振とうし、グルタル
アルデヒド23%水溶液3mlを加え、8分程度振とう
した。この操作により白金線先端に形成した本発明の導
電性高分子材料にグルコースオキシダーゼが固定化され
た。この白金線を用いて、参照電極を飽和カロメル電極
として一定量のヨウ化物イオン存在下において反応速度
検出法によりグルコースを定量したところ、グルコース
が0.01〜0.1Mの濃度範囲で定量可能であった。
Application Example 1 3 ml of 0.5 g of the conductive polymer material obtained in Example 1
A viscous solution is prepared by dissolving the solution in water with a diameter of 0.
A spherical shape with a diameter of about 1 mm was attached to the tip of a platinum wire of about 5 mm. When solidified in the same coagulation solution as in Example 8, the N-methylene conductive polymer of the present invention was formed in a spherical shape at the tip of the platinum wire. Next, this was crosslinked in the same manner as in Example 8. Disperse this platinum wire in 10ml of 0.01M sodium acetate buffer solution, add a predetermined amount of glucose oxidase, shake at 5°C for more than 4 hours, add 3ml of 23% glutaraldehyde aqueous solution, and shake for about 8 minutes. did. Through this operation, glucose oxidase was immobilized on the conductive polymer material of the present invention formed at the tip of the platinum wire. Using this platinum wire, glucose was quantified by a reaction rate detection method in the presence of a certain amount of iodide ions with a saturated calomel electrode as a reference electrode. there were.

【0033】[0033]

【発明の効果】本発明の方法によれば、水に溶解可能で
あるため加工成形が容易で、かつ、酵素の固定化に有用
な官能基を有する導電性高分子材料が容易に得られる。 さらに、本発明の導電性高分子材料は任意の導電性を均
一に付与することができる。従って、本発明の導電性高
分子材料は導電性を有する酵素固定化担体としてバイオ
センサー等、広範囲な分野に応用が可能である。さらに
、得られた導電性高分子材料は操作性が容易でかつ、化
学的に安定な粒状に成形加工して長期間保存しておくこ
とができる。
According to the method of the present invention, it is possible to easily obtain a conductive polymer material which is soluble in water and therefore easy to process and mold, and which has a functional group useful for immobilizing enzymes. Furthermore, the conductive polymer material of the present invention can uniformly impart any desired conductivity. Therefore, the conductive polymer material of the present invention can be applied as a conductive enzyme-immobilized carrier in a wide range of fields such as biosensors. Furthermore, the obtained conductive polymer material is easy to operate and can be molded into chemically stable granules and stored for a long period of time.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  キトサンとポリピロールとを主成分と
することを特徴とする導電性高分子材料。
1. A conductive polymer material comprising chitosan and polypyrrole as main components.
【請求項2】  キトサンと酸化重合剤を含む希有機酸
中でピロールを酸化重合させた後、有機溶媒中で析出さ
せることを特徴とする請求項1記載の導電性高分子材料
の製造方法。
2. The method for producing a conductive polymer material according to claim 1, wherein the pyrrole is oxidatively polymerized in a dilute organic acid containing chitosan and an oxidative polymerization agent, and then precipitated in an organic solvent.
JP3562091A 1991-02-04 1991-02-04 Conductive polymeric material and its production Pending JPH04253744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3562091A JPH04253744A (en) 1991-02-04 1991-02-04 Conductive polymeric material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3562091A JPH04253744A (en) 1991-02-04 1991-02-04 Conductive polymeric material and its production

Publications (1)

Publication Number Publication Date
JPH04253744A true JPH04253744A (en) 1992-09-09

Family

ID=12446904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3562091A Pending JPH04253744A (en) 1991-02-04 1991-02-04 Conductive polymeric material and its production

Country Status (1)

Country Link
JP (1) JPH04253744A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773975A1 (en) * 1994-08-04 1997-05-21 WALLACE, Gordon George Conducting electroactive biomaterials
CN102153671A (en) * 2010-02-12 2011-08-17 财团法人工业技术研究院 Chitosan-conducting polymer mixed polymer composition with oxidation resistance
CN102262114A (en) * 2011-04-22 2011-11-30 武汉工程大学 Electrochemical preparation method of electrode modified by polypyrrole-chitosan-enzyme composite film
TWI400276B (en) * 2009-12-03 2013-07-01 Ind Tech Res Inst Chitosan-conductive polymer hybrid polymer composition with antioxidant properties
JP2015516172A (en) * 2012-05-17 2015-06-11 シージェイ チェイルジェダン コーポレイション Enzyme-immobilized bead manufacturing apparatus and enzyme-immobilized bead manufacturing method using the same
CN106750579A (en) * 2016-12-16 2017-05-31 重庆科技学院 The preparation method of polypyrrole shitosan composite conductive thin film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773975A1 (en) * 1994-08-04 1997-05-21 WALLACE, Gordon George Conducting electroactive biomaterials
EP0773975A4 (en) * 1994-08-04 1998-06-10 Gordon George Wallace Conducting electroactive biomaterials
TWI400276B (en) * 2009-12-03 2013-07-01 Ind Tech Res Inst Chitosan-conductive polymer hybrid polymer composition with antioxidant properties
CN102153671A (en) * 2010-02-12 2011-08-17 财团法人工业技术研究院 Chitosan-conducting polymer mixed polymer composition with oxidation resistance
CN102262114A (en) * 2011-04-22 2011-11-30 武汉工程大学 Electrochemical preparation method of electrode modified by polypyrrole-chitosan-enzyme composite film
JP2015516172A (en) * 2012-05-17 2015-06-11 シージェイ チェイルジェダン コーポレイション Enzyme-immobilized bead manufacturing apparatus and enzyme-immobilized bead manufacturing method using the same
JP2017029164A (en) * 2012-05-17 2017-02-09 シージェイ チェイルジェダン コーポレイション Apparatus for producing enzyme-immobilized beads and method for producing enzyme-immobilized beads using the same
US9738886B2 (en) 2012-05-17 2017-08-22 Cj Cheiljedang Corporation Apparatus for preparing immobilized-enzyme beads and method for preparing immobilized-enzyme beads using same
US9777263B2 (en) 2012-05-17 2017-10-03 Ch Cheiljedang Corporation Apparatus for preparing immobilized-enzyme beads and method for preparing immobilized-enzyme beads using same
CN106750579A (en) * 2016-12-16 2017-05-31 重庆科技学院 The preparation method of polypyrrole shitosan composite conductive thin film

Similar Documents

Publication Publication Date Title
Stejskal Conducting polymer hydrogels
CN107540883B (en) Preparation method of carboxymethyl chitosan/graphene oxide/poly (N-isopropylacrylamide) nano composite hydrogel
Zou et al. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel
Shukla et al. Chitosan-based nanomaterials: A state-of-the-art review
Stejskal et al. Polyaniline dispersions: preparation of spherical particles and their light-scattering characterization
US4152170A (en) Cross-linked pullulan
CN107236135A (en) Gelatin hydrogel and preparation method and application thereof
Baghayeri et al. Facile synthesis of PSMA-g-3ABA/MWCNTs nanocomposite as a substrate for hemoglobin immobilization: application to catalysis of H2O2
CN108410003B (en) Preparation of polyacrylonitrile modified membrane and method for applying polyacrylonitrile modified membrane to immobilized enzyme
Haroun et al. Encapsulation of bovine serum albumin within β-cyclodextrin/gelatin-based polymeric hydrogel for controlled protein drug release
He et al. Novel redox hydrogel by in situ gelation of chitosan as a result of template oxidative polymerization of hydroquinone
CN1320036C (en) Medical intelligent nano-gel material and its preparation method
Derkus et al. Evaluation of protein immobilization capacity on various carbon nanotube embedded hydrogel biomaterials
CN106117570A (en) A kind of sodium alginate anti-bacterial hydrogel loading daiamid dendrimer and its preparation method and application
CN113185725B (en) Method for rapidly preparing silver nanoparticle/gelatin composite hydrogel in situ
Abd El-Ghaffar et al. Calcium alginate beads encapsulated PMMA-g-CS nano-particles for α-chymotrypsin immobilization
Minisy et al. In vitro release study of ketoprofen-loaded chitosan/polyaniline nanofibers
Eltaweil et al. Efficient loading and delivery of ciprofloxacin by smart alginate/carboxylated graphene oxide/aminated chitosan composite microbeads: In vitro release and kinetic studies
Shakeri et al. Synthesis of two novel bio-based hydrogels using sodium alginate and chitosan and their proficiency in physical immobilization of enzymes
Wang et al. Polyaniline nanoparticles: Synthesis, dispersion and biomedical applications
JPH04253744A (en) Conductive polymeric material and its production
JPS5857401A (en) Production of particulate porous chitosan
CN103881151B (en) A kind of preparation method of marine alga acidic group-conducting polymer composite material
CN110946824A (en) Injectable conductive hydrogel and preparation method thereof
Xu et al. Preparation and characterization of chitosan gel beads crosslinked by organic titanium