JPH10287484A - Ceramic part - Google Patents
Ceramic partInfo
- Publication number
- JPH10287484A JPH10287484A JP9089397A JP9089397A JPH10287484A JP H10287484 A JPH10287484 A JP H10287484A JP 9089397 A JP9089397 A JP 9089397A JP 9089397 A JP9089397 A JP 9089397A JP H10287484 A JPH10287484 A JP H10287484A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- ceramic
- brass
- ceramics
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/5127—Cu, e.g. Cu-CuO eutectic
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高剛性で高い形状
精度を必要とする機械構造部品に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a machine structural part requiring high rigidity and high shape accuracy.
【0002】[0002]
【従来の技術】精密工作機械及び精密測定機器を構成す
る材料としては、自重及び外力によるたわみが小さく、
温度変化に対して寸法変化の小さいものが求められる。
また、使用環境下で錆びない等の特性も要求される。ア
ルミナ、窒化ケイ素、サイアロン、炭化ケイ素等の構造
用セラミックスは、炭素鋼等の代表的な金属材料に比べ
て、軽く、ヤング率が高く、熱膨張係数が小さく、また
寸法の経時変化が少ないという特徴がある。そのため
に、特に高精度を要求される機械構造部材にはセラミッ
クスは進んで使われている。しかしながら、これらのセ
ラミックスは例外無く難加工性であり、機械構造部材と
して必要な形状付与を行うのに、ダイヤモンド砥石等で
長時間の加工を必要とし、製品の高コスト化招いている
のが実態である。また、加工精度がきびしい場合には、
必要な形状付与ができない場合も生じてきている。2. Description of the Related Art As a material constituting a precision machine tool and a precision measuring device, deflection due to its own weight and external force is small.
A material having a small dimensional change with respect to a temperature change is required.
In addition, characteristics such as rusting under the use environment are required. Structural ceramics such as alumina, silicon nitride, sialon, and silicon carbide are lighter, have a higher Young's modulus, a lower coefficient of thermal expansion, and have less dimensional change over time than typical metal materials such as carbon steel. There are features. For this reason, ceramics are being used in particular for mechanical structural members that require high precision. However, these ceramics are difficult to process without exception, and in order to give the required shape as a mechanical structural member, long time processing with a diamond whetstone etc. is required, resulting in high cost of the product. It is. Also, if the processing accuracy is severe,
In some cases, the required shape cannot be provided.
【0003】上記の課題に対して、アルミナ基のマシナ
ブルセラミックスが開発されているが、この材料は加工
が容易な反面、ヤング率が低く、剛性が必要とされる部
品には適用できない。セラミックスに銅合金層を設けて
精密加工部品とする考え方は、特開平8-91968 号公報に
開示されているが、形状付与性及び加工信頼性に改善余
地を残すものであり、特に大型部材への適用が困難であ
った。すなわち、加工性を考慮した合金組成の提示がな
されていない。また、セラミックスと合金層の中間に設
けるメタライズ層も粉末塗布・焼き付けによるメタライ
ズを想定しており、大面積への塗布バラツキを考え、十
分な密着力を得るに必要な最小厚さとして5μmを設定
している。To solve the above problems, machinable ceramics based on alumina have been developed. However, this material is easy to process, but cannot be applied to parts requiring a low Young's modulus and rigidity. The concept of providing a ceramic alloy with a copper alloy layer to produce a precision processed part is disclosed in Japanese Patent Application Laid-Open No. 8-91968, but leaves room for improvement in shape imparting properties and processing reliability. Was difficult to apply. That is, there is no suggestion of an alloy composition in consideration of workability. The metallization layer provided between the ceramic and alloy layers is also assumed to be metallized by powder application and baking. Considering the application variation over a large area, the minimum thickness required to obtain sufficient adhesion is set to 5 μm. doing.
【0004】[0004]
【発明が解決しようとする課題】本発明は、高剛性でか
つ形状付与の容易なセラミックス部材を提供することを
目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a ceramic member which has high rigidity and can be easily provided with a shape.
【0005】[0005]
【課題を解決するための手段及び発明の実施の形態】本
発明は、セラミックスの最表面の一部又は全部が、体心
立方格子を有するβーCuZnを主相とする黄銅層で被覆さ
れていることを特徴とするセラミックス部材である。従
来、加工性に優れるβ-CuZn をセラミックス表面に形成
させた例は無い。セラミックス表面に気相成膜法により
メタライズ層を設け、その上に電気めっきによって黄銅
層を形成することにより本発明を実現できる。Means for Solving the Problems and Embodiments of the Invention According to the present invention, a part or all of the outermost surface of a ceramic is coated with a brass layer mainly composed of β-CuZn having a body-centered cubic lattice. A ceramic member. Heretofore, there has been no example in which β-CuZn having excellent workability is formed on a ceramic surface. The present invention can be realized by providing a metallized layer on a ceramic surface by a vapor deposition method and forming a brass layer thereon by electroplating.
【0006】本発明が対象とするセラミックスは、ヤン
グ率が20000kgf/mm2以上のアルミナ、窒化ケイ素、サイ
アロン、炭化ケイ素等の高剛性セラミックスである。高
剛性セラミックスの代表であるアルミナのヤング率は20
000 〜38000kgf/mm2であるのに対して、代表的な金属材
料であるβ-CuZn 黄銅のヤング率は10500kgf/mm2であ
る。また、低熱膨張セラミックスの代表であるサイアロ
ンの室温近傍の熱膨張係数は1.5x10-6/℃であるのに対
して、β-CuZn 黄銅の熱膨張係数は 18x10-6/℃であ
る。これらの物性の違いが、外力又は温度変化によって
寸法変化が小さいことを求められる部材にセラミックス
が用いられる理由である。The ceramics to which the present invention is directed are high-rigidity ceramics having a Young's modulus of 20,000 kgf / mm 2 or more, such as alumina, silicon nitride, sialon, and silicon carbide. Alumina, a representative of high-rigidity ceramics, has a Young's modulus of 20
In contrast to 000 to 38000 kgf / mm 2 , the Young's modulus of β-CuZn brass, which is a typical metal material, is 10500 kgf / mm 2 . The thermal expansion coefficient near room sialon is representative of a low thermal expansion ceramic whereas a 1.5 × 10 -6 / ° C., the thermal expansion coefficient of beta-CuZn brass is 18 × 10 -6 / ° C.. These differences in physical properties are the reasons why ceramics are used for members that require a small dimensional change due to external force or temperature change.
【0007】一方、被加工性については、黄銅はセラミ
ックスに対して格段に優れており、通常の工具鋼での高
速の加工が可能である。それに対して、セラミックスの
加工にはダイヤモンド砥石を用いた長時間の加工が必要
である。本発明者は、構造用セラミックスの特徴である
高剛性、低熱膨張を損なわずに、かつ必要な加工を容易
に行う手法として、セラミックスの被加工表面に加工性
に優れる黄銅層を設け、黄銅層を加工することにより必
要な形状を得ることを考案した。すなわち、機械的性質
はセラミックスが分担し、形状は黄銅が分担するという
設計である。図1に本発明のセラミックス部材を概念的
に示すが、セラミックス自体の形状精度は必要では無
く、最終の形状付与は黄銅層で行われる。On the other hand, with regard to workability, brass is remarkably superior to ceramics, and can be processed at high speed with ordinary tool steel. On the other hand, processing of ceramics requires long-time processing using a diamond grindstone. The present inventor has proposed a method of easily performing required processing without impairing the high rigidity and low thermal expansion characteristics of structural ceramics, by providing a brass layer having excellent workability on a surface to be processed of the ceramic, It has been devised to obtain the required shape by processing. That is, the mechanical properties are shared by ceramics, and the shape is designed by brass. Although the ceramic member of the present invention is conceptually shown in FIG. 1, the shape accuracy of the ceramic itself is not required, and the final shape is provided by a brass layer.
【0008】以下、本発明の詳細を示す。本発明に用い
るセラミックスは、粉末成形体を常圧焼結又は加圧焼結
により緻密化し、必要に応じて粗加工を行い、最終製品
に近い形状に仕上げたものである。本発明に用いるセラ
ミックスのヤング率を20000kgf/mm2以上とするのは、そ
れ未満のものでは剛性が低く構造材料としては適さない
からである。Hereinafter, details of the present invention will be described. The ceramic used in the present invention is obtained by densifying a powder compact by normal pressure sintering or pressure sintering, performing a roughing process as necessary, and finishing it into a shape close to a final product. The Young's modulus of the ceramics used in the present invention is set to 20000 kgf / mm 2 or more because a material having a Young's modulus lower than that is low in rigidity and is not suitable as a structural material.
【0009】上記のセラミックスの表面をメタライズ
し、電気めっきを行う。セラミックスのメタライズ法と
しては、例えばAg-Cu-Ti等の金属粉末のスラリーを塗布
して焼き付ける方法があるが、大面積に薄く均一に付け
るには適さない。本発明の目的には、スパッタ、イオン
プレーティング等の気相成膜法によるメタライズが適す
る。構造用セラミックスとして代表的に用いられるアル
ミナ、窒化ケイ素、サイアロン、炭化ケイ素の場合に
は、メタライズ層としてはCr又はCrを含む合金からなる
金属層が適する。メタライズ層は上記金属層単層でも良
いが、引き続き行う黄銅めっきを容易にするために、Cu
を含む良電導層を第二層として形成させても良い。いず
れも気相成膜法にて形成させるが、成膜層の厚さの和は
5μm以下に限定される。気相成膜法では、厚さが5μ
mを越えると、内部応力の蓄積により剥離しやすくな
り、十分な密着力が得られない。[0009] The surface of the above ceramics is metallized and electroplated. As a method of metallizing ceramics, for example, there is a method in which a slurry of a metal powder such as Ag-Cu-Ti is applied and baked, but this method is not suitable for applying thinly and uniformly over a large area. For the purpose of the present invention, metallization by a vapor phase film forming method such as sputtering or ion plating is suitable. In the case of alumina, silicon nitride, sialon, and silicon carbide, which are typically used as structural ceramics, a metal layer made of Cr or an alloy containing Cr is suitable as the metallized layer. The metallization layer may be a single layer of the above metal layer, but in order to facilitate subsequent brass plating, Cu
May be formed as the second layer. Each of them is formed by a vapor deposition method, but the sum of the thicknesses of the deposition layers is limited to 5 μm or less. In the vapor deposition method, the thickness is 5μ.
If it exceeds m, peeling is likely to occur due to accumulation of internal stress, and sufficient adhesion cannot be obtained.
【0010】本発明に用いる黄銅はβ-CuZn 相を主相と
する黄銅である。主相とは、その相が50vol%以上を占め
ることを意味する。Cu-Zn 二元系合金においては、35〜
60wt%Zn の範囲でβ-CuZn 相が得られる。35wt%Zn 以下
の組成ではα-CuZn が主相となり、合金としてはねばく
加工性に劣る。β-CuZn は体心立方格子の結晶構造を有
しており、加工硬化現象が生じて快削性に優れる。The brass used in the present invention is a brass having a β-CuZn phase as a main phase. Main phase means that the phase accounts for 50 vol% or more. For Cu-Zn binary alloys, 35 ~
Β-CuZn phase is obtained in the range of 60wt% Zn. If the composition is 35wt% Zn or less, α-CuZn becomes the main phase, and the alloy is inferior in workability. β-CuZn has a crystal structure of a body-centered cubic lattice, and has excellent workability due to a work hardening phenomenon.
【0011】黄銅層の形成には電気めっきが適する。電
気めっきの使用により、円筒内周面等のコーティングが
困難な場所にも黄銅層の被覆が可能となる。めっき浴と
しては、ピロリン酸浴又はシアン浴を用いることができ
る。本発明のめっき黄銅層の厚さは5μm以上、500 μ
m以下と限定した。その理由は、機械加工に耐える最小
の黄銅層の厚さは5μmであり、500 μmを越えるめっ
きは内部応力の蓄積による剥離等の問題を避けることが
通常困難であるからである。また、セラミックス部材に
500 μmを越えて黄銅層を設けると、部材によっては黄
銅の低剛性又は高熱膨張という性質が無視できなくな
り、本発明の主旨に反するからである。Electroplating is suitable for forming the brass layer. By using electroplating, it is possible to coat the brass layer even in places where coating is difficult, such as the inner peripheral surface of a cylinder. As a plating bath, a pyrophosphoric acid bath or a cyanide bath can be used. The thickness of the plated brass layer of the present invention is 5 μm or more and 500 μm or more.
m or less. The reason for this is that the minimum thickness of the brass layer that can withstand machining is 5 μm, and plating exceeding 500 μm is usually difficult to avoid problems such as peeling due to accumulation of internal stress. Also, for ceramic members
If the brass layer is provided in excess of 500 μm, the low rigidity or high thermal expansion properties of brass cannot be ignored depending on the member, which is contrary to the gist of the present invention.
【0012】黄銅層への形状付与加工としては、マシニ
ングセンターによる形状付与加工を始めとして、平面研
削盤による平面出し加工、円筒研削盤による真円出し加
工などがあるが、これらに留まるものではない。以下、
実施例をもって本発明を説明する。Examples of the shaping process for the brass layer include, but are not limited to, shaping by a machining center, flattening by a surface grinder, and rounding by a cylindrical grinder. Less than,
The present invention will be described by way of examples.
【0013】[0013]
【実施例】図1に概念的に示すようなセラミックス部材
を作製した。常圧焼結法によりヤング率38000kgf/mm2を
有するアルミナからセラミックス角材1とセラミックス
円筒2を作製した。角材のサイズは断面が50x50mm で長
さが200mm で、円筒のサイズは外径120mm 、内径100mm
で高さは40mmである。これらのセラミックスにダイヤモ
ンド砥石を用いて加工を施し、平行度又は真円度として
30μm程度の仕上げ状態にした。次にセラミックス表面
3に、イオンプレーティング法により厚さ5μm以下の
メタライズ層4を設けた。イオンプレーティング時の加
速電圧は1kVとした。引き続き、シアン化第一銅とシ
アン化亜鉛を含むめっき浴中でメタライズ層に通電し、
厚さ100 μmの黄銅層5を設けた。電気めっきの条件
は、1A/dm2の電流密度で8時間とした。この黄銅層に仕
上げ加工を施し、最終の形状付与面6を得た。仕上げ加
工としては、角材の場合は側面の平行度を1μm以下に
仕上げる加工を課し、円筒の場合は内周面の真円度を1
μm以下に仕上げる加工を課した。EXAMPLE A ceramic member conceptually shown in FIG. 1 was produced. A ceramic square 1 and a ceramic cylinder 2 were prepared from alumina having a Young's modulus of 38000 kgf / mm 2 by a normal pressure sintering method. The size of the timber is 50x50mm in cross section and 200mm in length, and the size of the cylinder is 120mm in outside diameter and 100mm in inside diameter
And the height is 40mm. These ceramics are processed using a diamond grindstone to obtain parallelism or roundness.
The finished state was about 30 μm. Next, a metallized layer 4 having a thickness of 5 μm or less was provided on the ceramic surface 3 by an ion plating method. The acceleration voltage during ion plating was 1 kV. Subsequently, the metallized layer is energized in a plating bath containing cuprous cyanide and zinc cyanide,
A brass layer 5 having a thickness of 100 μm was provided. The conditions for the electroplating were 8 hours at a current density of 1 A / dm 2 . This brass layer was subjected to a finishing process to obtain a final shape-imparting surface 6. As for the finishing process, in the case of a square bar, a process of finishing the parallelism of the side surface to 1 μm or less is imposed, and in the case of a cylinder, the roundness of the inner peripheral surface is set to 1.
Processing to finish to μm or less was imposed.
【0014】表1に、メタライズの条件、黄銅層の組
成、及びその黄銅層に一定時間の加工を施した時の仕上
がり精度を示した。黄銅層の組成は、α相が得られるCu
-30wt%Znとβ相の得られるCu-45wt%Znの組成とした。イ
オンプレーティング(IP)によるメタライズは、厚さ0.
5 μmのCr単層の場合と、第一層に厚さ0.1 μmのCr層
を設けその上に厚さ2μmのCu層を形成した場合とにつ
いて示した。メタライズの比較例としては、セラミック
ス表面にAg-Cu-Ti系合金粉末のペーストを塗布し、真空
中で焼成したものについて示した。加工精度は、セラミ
ックスそのものに加工を施した時(角材Eと円筒B)と
比較した。Table 1 shows the metallizing conditions, the composition of the brass layer, and the finishing accuracy when the brass layer was processed for a certain period of time. The composition of the brass layer is Cu
The composition was -30 wt% Zn and Cu-45 wt% Zn from which a β phase was obtained. Metallization by ion plating (IP) is 0.
The case of a single Cr layer of 5 μm and the case of providing a 0.1 μm thick Cr layer on the first layer and forming a 2 μm thick Cu layer thereon are shown. As a comparative example of metallization, a case where a paste of an Ag-Cu-Ti alloy powder was applied to a ceramic surface and fired in a vacuum was shown. The processing accuracy was compared with that when the ceramic itself was processed (square material E and cylinder B).
【0015】表に示すように、イオンプレーティングで
メタライズを行い、その上にCu-45wt%Znのβ相からなる
黄銅層を設けて、その黄銅層を加工した場合に、規定寸
法精度のセラミックス部材を得ることができた。As shown in the table, when metallization is performed by ion plating, a brass layer made of β phase of Cu-45wt% Zn is provided on the metallization, and when the brass layer is processed, a ceramic having a specified dimensional accuracy is obtained. A member was obtained.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【発明の効果】本発明の黄銅被覆セラミックスの適用に
より、形状精度の高い高剛性セラミックス部材の提供が
可能となる。また、黄銅面の形状付与加工は、セラミッ
クスへの形状付与加工に比較して短時間で行えるので、
部材の生産性が向上する。By applying the brass-coated ceramic of the present invention, it is possible to provide a highly rigid ceramic member having high shape accuracy. Also, since the shaping of the brass surface can be performed in a shorter time than the shaping of ceramics,
The productivity of the members is improved.
【図1】図1(a) は黄銅被覆セラミックス角材の概念図
を示し、図1(b) は黄銅被覆セラミックス円筒の概念図
を示し、図1(c) は黄銅被覆面の拡大説明図を示す。1 (a) shows a conceptual diagram of a brass-coated ceramic square, FIG. 1 (b) shows a conceptual diagram of a brass-coated ceramic cylinder, and FIG. 1 (c) shows an enlarged explanatory view of a brass-coated surface. Show.
1…セラミックス角材 2…セラミックス円筒 3…セラミックス表面 4…メタライズ層 5…黄銅層 6…形状付与面 DESCRIPTION OF SYMBOLS 1 ... Ceramic square material 2 ... Ceramic cylinder 3 ... Ceramic surface 4 ... Metallized layer 5 ... Brass layer 6 ... Shape imparting surface
Claims (4)
が、体心立方格子を有するβーCuZnを主相とする黄銅層
で被覆されていることを特徴とするセラミックス部材。1. A ceramic member characterized in that part or all of the outermost surface of the ceramic is coated with a brass layer having β-CuZn as a main phase and having a body-centered cubic lattice.
メタライズ層が形成され、該メタライズ層上に厚さが5
μm以上500 μm以下の黄銅層が形成されていることを
特徴とする請求項1記載のセラミックス部材。2. A metallized layer having a thickness of 5 μm or less is formed on a ceramic surface, and a thickness of 5 μm is formed on the metallized layer.
The ceramic member according to claim 1, wherein a brass layer having a thickness of not less than μm and not more than 500 μm is formed.
を含む金属層であることを特徴とする請求項2記載のセ
ラミックス部材。3. The method according to claim 1, wherein the metallized layer in contact with the ceramic is Cr.
The ceramic member according to claim 2, wherein the ceramic member is a metal layer containing:
クスに接するメタライズ層の第一層がCrを含む金属層か
らなり、黄銅層と接するメタライズ層の第二層がCuを含
む金属層からなることを特徴とする請求項2記載のセラ
ミックス部材。4. The metallized layer comprises two layers, the first metallized layer in contact with the ceramics comprises a metal layer containing Cr, and the second metallized layer in contact with the brass layer comprises a metal layer containing Cu. The ceramic member according to claim 2, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9089397A JPH10287484A (en) | 1997-04-09 | 1997-04-09 | Ceramic part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9089397A JPH10287484A (en) | 1997-04-09 | 1997-04-09 | Ceramic part |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10287484A true JPH10287484A (en) | 1998-10-27 |
Family
ID=14011094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9089397A Withdrawn JPH10287484A (en) | 1997-04-09 | 1997-04-09 | Ceramic part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10287484A (en) |
-
1997
- 1997-04-09 JP JP9089397A patent/JPH10287484A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3050183B2 (en) | Ceramic tip clamp type cutting tool | |
US4197902A (en) | Molds for continuous casting of metals | |
KR20080038080A (en) | Metal mold for optical device forming and process for producing the same | |
US4562090A (en) | Method for improving the density, strength and bonding of coatings | |
US5762660A (en) | Precision replenishable grinding tool and manufacturing process | |
JP2602000B2 (en) | Mask for forming a coating pattern | |
JPH10287484A (en) | Ceramic part | |
EP0228166B1 (en) | Method of making graphite forming dies | |
JP2583581B2 (en) | Mold for optical element molding | |
JPH0361617B2 (en) | ||
GB2247693A (en) | Peeling tool process involving machining prior to coating | |
JPH086636B2 (en) | Cylinder liner | |
WO1997019201A1 (en) | Process for making complex-shaped ceramic-metal composite articles | |
JP3219449B2 (en) | Press mold | |
JP3097060B2 (en) | Method for producing composite | |
JP3370800B2 (en) | Manufacturing method of composite material | |
JPH0683890B2 (en) | Method for manufacturing wear resistant member for molding machine | |
JP2610562B2 (en) | Jig for thermal spray molding production | |
WO1998028467A1 (en) | Method of coating complex-shaped ceramic-metal composites and the products produced thereby | |
JPH11343186A (en) | Ceramic member | |
JP3691289B2 (en) | Composite mold | |
RU2558783C2 (en) | Method of application of heat-resistant ceramic-metal coating on products from heat resisting alloys | |
RU2211879C2 (en) | Method of manufacture of sintered-carbide tools | |
JPH06262275A (en) | Die for plastic working of metal | |
JP2003246629A (en) | Method of producing die for molding optical element and die for molding optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040706 |