JPH10287470A - Firing jig containing carbon fiber - Google Patents

Firing jig containing carbon fiber

Info

Publication number
JPH10287470A
JPH10287470A JP9103868A JP10386897A JPH10287470A JP H10287470 A JPH10287470 A JP H10287470A JP 9103868 A JP9103868 A JP 9103868A JP 10386897 A JP10386897 A JP 10386897A JP H10287470 A JPH10287470 A JP H10287470A
Authority
JP
Japan
Prior art keywords
graphite
carbon fibers
fibers
carbon fiber
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9103868A
Other languages
Japanese (ja)
Inventor
Yoshinari Kato
吉成 加藤
Yasushi Nishio
靖 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akechi Ceramics Co Ltd
Original Assignee
Akechi Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akechi Ceramics Co Ltd filed Critical Akechi Ceramics Co Ltd
Priority to JP9103868A priority Critical patent/JPH10287470A/en
Publication of JPH10287470A publication Critical patent/JPH10287470A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon fiber-containing firing jig enhanced in the dispersibility of carbon fibers, increased in the binding strength of the carbon fibers to a matrix, improved in the strength and toughness of raw material and in the life of the jig, and prevented in generation of cracks, by using a graphite and ceramic composite material comprising a graphitic raw material, SiC, SiO2 , BN as another component, and the carbon fibers. SOLUTION: This carbon fiber-containing firing jig comprises a graphite and ceramic composite material comprising 5-20 wt.% of a graphite raw material, 10-70 wt.% of SiC, 1-30 wt.% of SiO2 , 1-5 wt.% of BN and 0.1-2 wt.% of carbon fibers. The dispersing of the carbon fibers whose surfaces are coated with a thermosetting resin improves the binding force of the fibers on their surfaces, enhances their binding strength to the matrix, expresses the large pulling resistance of the fibers and improves the strength and breaking toughness of the raw material. The carbon fibers to be compounded comprise either of PAN-based carbon fibers and pitch-based carbon fibers, and has a length of 2-30 mm. The coating resin is used for maintaining the binding force also after calcination, and the graphitic raw material comprises natural graphite, artificial graphite or kish graphite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は還元焼成、非酸化焼
成で使用される治具材に適用できる炭素繊維を含有した
炭素・セラミックス複合材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon / ceramic composite material containing carbon fibers which can be used as a jig for reduction firing and non-oxidation firing.

【従来の技術】[Prior art]

【0002】従来還元焼成、非酸化焼成で使用される焼
成治具、特に焼成用のサヤ材としては、黒鉛材料あるい
は炭化珪素、窒化珪素およびアルミナ等のセラミックス
材料および黒鉛・セラミックス複合材料が使用されてい
る。黒鉛材料においては耐熱性、非反応性、加工などに
優れるが、酸化による損耗が大きな問題となる。セラミ
ックスの場合は酸化消耗はほとんどないが、耐熱衝撃に
よる割れ、加熱による組織の変態に起因する組織の脆
化、加工コストが問題である。一方、黒鉛・セラミック
ス複合材料は黒鉛材料と比較して耐酸化性に優れ、セラ
ミックス材料と比較して耐熱衝撃性などに優れ、焼成物
との反応性が低いことから今後更に使用されていくと考
えられる。しかしこの材料の場合は破壊靱性が低いため
作業取り扱い時に転倒、落下などによって割れることが
多く、その点において素材としての信頼性が低い。この
点を解消するために原料混練時において素材の中に炭素
繊維あるいは無機系繊維、ウィスカ−等を分散させるこ
とによって、素材が応力を受けた場合に繊維の引き抜き
抵抗を発生させ、強度、靱性の向上を図る方法が行われ
ることがある。炭素繊維は高温においても反応、劣化す
ることが少なく、非常に弾性率の高い繊維である。また
コスト面においても比較的安価である。しかし素材中の
成分と結合することがなく、炭素繊維とバインダ−との
濡れ性も悪い。それ故に繊維表面と素材マトリックスの
間での接着強度が低く、マトリックスとの間にマイクロ
クラックが生じ、物理的強度を低下させる要因にも成っ
ている。一方、無機系繊維、ウィスカ−の場合は炭素繊
維と比較してコストが非常に高く、焼成あるいは使用温
度域において素材中の他の成分と反応して組成、特性が
変化したり、劣化することがあるので必ずしも実用的で
ない。また、混練時において繊維を均一に分散させるこ
とは難しく、繊維の塊ができたり、繊維が混練時の回転
応力によって球状に変化したまま分散し、引き抜き効果
非寄与しない場合も多い。本発明は炭素繊維を均一に分
散し、安価に素材の強度、靱性を向上させるものであ
る。
Conventionally, graphite materials, ceramic materials such as silicon carbide, silicon nitride, and alumina, and graphite-ceramic composite materials are used as firing jigs used in reduction firing and non-oxidation firing, and in particular, as sheath materials for firing. ing. Graphite materials are excellent in heat resistance, non-reactivity, processing, and the like, but wear due to oxidation is a major problem. In the case of ceramics, there is almost no oxidation consumption, but there are problems of cracking due to thermal shock, embrittlement of the structure due to transformation of the structure due to heating, and processing cost. On the other hand, graphite-ceramic composite materials have better oxidation resistance than graphite materials, have better thermal shock resistance than ceramic materials, and have lower reactivity with fired products. Conceivable. However, since this material has low fracture toughness, it often breaks due to overturning or dropping during work handling, and in that respect, its reliability as a material is low. In order to solve this problem, carbon fibers or inorganic fibers, whiskers, etc. are dispersed in the material at the time of kneading the raw materials. In some cases, a method for improving the performance is performed. Carbon fiber is a fiber having a very high modulus of elasticity with little reaction and deterioration even at high temperatures. It is also relatively inexpensive. However, it does not bond with the components in the material, and the wettability between the carbon fiber and the binder is poor. Therefore, the adhesive strength between the fiber surface and the material matrix is low, and microcracks are generated between the matrix and the matrix, which is a factor that lowers the physical strength. On the other hand, the costs of inorganic fibers and whiskers are much higher than those of carbon fibers. Is not always practical. Further, it is difficult to uniformly disperse the fibers at the time of kneading, and in many cases, fibers are formed or the fibers are dispersed in a spherical state due to rotational stress during kneading and do not contribute to the drawing effect. The present invention is to uniformly disperse carbon fibers and improve the strength and toughness of the material at low cost.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は黒鉛・
セラミックス複合材料に熱硬化性樹脂をコ−ティングし
た炭化繊維を配合することにより、炭素繊維の分散性を
高め、同時にマトリックスと炭素繊維の結合強度を増
し、素材の強度、靱性を向上し、作業取り扱い時の欠
け、クラックを防止して、焼成治具としての寿命を向上
するためになされたものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide graphite and
By mixing carbonized fiber coated with thermosetting resin in ceramic composite material, the dispersibility of carbon fiber is increased, and at the same time, the bonding strength between matrix and carbon fiber is increased, and the strength and toughness of the material are improved. The purpose is to prevent chipping and cracking during handling and to improve the life as a firing jig.

【0004】[0004]

【発明を解決するための手段】本発明は黒鉛質原料5〜
30重量%、SiC10〜70重量%、SiO21〜3
0重量%および、BN1〜5重量%含み、なおかつ炭素
繊維0.1〜2重量%含む黒鉛・セラミックス複合材料
である黒鉛質耐火物であり、表面を熱硬化性樹脂でコ−
ティングした炭素繊維を分散させ、繊維表面での結合力
を向上し、マトリックスとの結合強度を高め、繊維の引
き抜き抵抗を発現させることにより、素材の強度、破壊
靱性を向上させる。また、酸素含有雰囲気下では、素材
中のセラミックス成分が雰囲気中の酸素と反応して耐火
物表面及び素材の気孔内にSiO2およびB23ガラス
相を形成し、酸素と黒鉛質成分の接触を防止して黒鉛質
成分の酸化を抑制することにある。
The present invention relates to a graphitic raw material 5 to 5.
30 wt%, SiC10~70 wt%, SiO 2 1 to 3
It is a graphite refractory which is a graphite-ceramic composite material containing 0% by weight and BN of 1 to 5% by weight and carbon fibers of 0.1 to 2% by weight, and its surface is coated with a thermosetting resin.
By dispersing the carbon fibers, the bonding strength on the fiber surface is improved, the bonding strength with the matrix is increased, and the pull-out resistance of the fiber is exhibited, thereby improving the strength and fracture toughness of the material. Further, under an oxygen-containing atmosphere, the ceramic component in the material reacts with oxygen in the atmosphere to form SiO 2 and B 2 O 3 glass phases on the surface of the refractory and in the pores of the material, and the oxygen and graphite components An object of the present invention is to prevent the contact and prevent the oxidation of the graphite component.

【0005】配合する炭素繊維は、コスト、必要特性に
応じてPAN系あるいはピッチ系のいずれも使用でき
る。成形歩留まり、特性値の面から、炭素繊維の長さは
2〜30mm,配合量は0.1〜2重量%まで配合でき
る。炭素繊維にコ−ティングする樹脂としては、焼成後
の結合力を保持するために熱硬化性樹脂を使用する。こ
の場合素材そのものの結合材として使用する樹脂と同じ
種類の樹脂を使用した方がマトリックスとの接着性が向
上し、繊維との接合強度が向上する。熱硬化性樹脂の種
類としてはフェノ−ル樹脂が最も効果があるが、フラ
ン、メラニン等も使用できる。黒鉛質原料としては耐酸
化性、耐スポ−リング性、耐食性、滑り性に優れた天然
黒鉛粉末が主に使用されるが、これに限定するものでは
なく、人造黒鉛粉末、キッシュ黒鉛粉末でも良い。セラ
ミックス成分としてはSiC,SiO2,BNを配合す
る。SiCは耐熱性に優れ、低反応性物質である。酸化
雰囲気下で一部SiO2を形成して炭素成分の酸化反応
を抑制する効果がある。耐火物全体への分散割合を高
め、酸化によるSiO2形成量を増やすために1mm以
下の粒度のものを使用することが望ましい。配合するS
iO2は高温ではガラス相を形成して炭素成分の酸化反
応を抑制する効果がある。耐火物全体への分散割合を高
め酸化防止効果を向上させるために1mm以下の粒度の
ものを使用することが望ましい。またSiO2としては
ガラス、ホ−ロ−といったSiO2を含む成分、Siの
ように酸化してSiO2に変化する単体も添加できる。
BNは摩擦係数が低く、酸化雰囲気下ではB23ガラス
相を形成する。分散割合を高め酸化防止効果を向上させ
るために1mm以下の粒度のものを使用することが望ま
しい。
[0005] The carbon fiber to be blended can be either PAN type or pitch type, depending on the cost and required characteristics. From the viewpoint of molding yield and characteristic values, the carbon fiber can be blended in a length of 2 to 30 mm and in a blending amount of 0.1 to 2% by weight. As the resin coated on the carbon fiber, a thermosetting resin is used in order to maintain the bonding force after firing. In this case, the use of a resin of the same type as the resin used as the binder of the raw material itself improves the adhesiveness with the matrix and improves the bonding strength with the fiber. As the type of thermosetting resin, phenol resin is most effective, but furan, melanin and the like can also be used. As the graphite raw material, natural graphite powder excellent in oxidation resistance, spoiling resistance, corrosion resistance, and slipperiness is mainly used, but is not limited thereto, and artificial graphite powder and quiche graphite powder may be used. . SiC, SiO 2 , and BN are blended as ceramic components. SiC has excellent heat resistance and is a low-reactive substance. This has the effect of suppressing the oxidation reaction of the carbon component by partially forming SiO 2 in an oxidizing atmosphere. In order to increase the ratio of dispersion in the entire refractory and increase the amount of SiO 2 formed by oxidation, it is desirable to use particles having a particle size of 1 mm or less. S to mix
At high temperatures, iO 2 has the effect of forming a glass phase and suppressing the oxidation reaction of the carbon component. In order to increase the ratio of dispersion in the entire refractory and improve the antioxidant effect, it is desirable to use one having a particle size of 1 mm or less. As the SiO 2 glass, E - B - like it can be added components, also simple to change the SiO 2 was oxidized as Si containing SiO 2.
BN has a low coefficient of friction and forms a B 2 O 3 glass phase in an oxidizing atmosphere. It is desirable to use one having a particle size of 1 mm or less in order to increase the dispersion ratio and improve the antioxidant effect.

【0006】[0006]

【作用】耐火材に炭素繊維を含有することによって、素
材に応じた際に繊維とマトリックスの間の引き抜き抵抗
が生じるために、強度、靱性が向上する。この場合繊維
としては、弾性率が高いこと、耐熱性が高いこと、反応
性が低いこと等が要求される。炭素繊維はPAN系ある
いはピッチ系いずれにおいても弾性率、比強度が高く、
非酸化雰囲気下であれば3000℃まで安定な繊維であ
り、他の物質との反応性も低い。それ故に素材の焼成段
階、製品として使用する際に変化することなく、特性を
発揮できる。しかし、炭素繊維は本来他の物質と反応す
ることは少なく、バインダ−との濡れ性も良くないので
他の原料と炭素繊維との界面においてマイクロクラック
を生じる場合がある。これを防止するために炭素繊維表
面に素材のバインダ−と同じ種類の熱硬化性樹脂をコ−
ティングし、マトリックスとの結合力を高める。このこ
とにより繊維の引き抜き抵抗が増し、素材の強度、破壊
靱性を向上させる。炭素繊維の添加量が0.1重量%以
下であれば靱性効果を発現しない。2重量%以上では混
練時における繊維の分散性が悪くなり、繊維が偏在する
ために、成形素材中で欠陥が生じて、結果として素材の
強度、靱性が低下する。同時に、成形加圧時において戻
り現象が生じ、成形体の組織が破壊され、その結果強
度、耐熱衝撃性、歩留が低下する。また、繊維長が30
mm以上の場合も繊維の分散性が悪くなり繊維が偏在す
るために、素材中で欠陥を生じ、強度、耐熱衝撃性、歩
留まりが低下する。2mmよりも短い場合は引き抜き効
果が小さくなるので、破壊靱性に与える効果が少ない。
When the carbon fiber is contained in the refractory material, resistance to pulling out between the fiber and the matrix occurs depending on the material, so that strength and toughness are improved. In this case, the fiber is required to have high elastic modulus, high heat resistance, low reactivity, and the like. Carbon fiber has a high modulus of elasticity and specific strength in both PAN-based and pitch-based,
Under a non-oxidizing atmosphere, the fiber is stable up to 3000 ° C. and has low reactivity with other substances. Therefore, the characteristics can be exhibited without any change at the stage of firing the raw material and at the time of using it as a product. However, carbon fibers rarely react with other substances and have poor wettability with a binder, so that microcracks may occur at the interface between other materials and the carbon fibers. In order to prevent this, the same type of thermosetting resin as the binder of the material is coated on the carbon fiber surface.
To increase the bonding strength with the matrix. This increases the fiber pullout resistance and improves the strength and fracture toughness of the material. If the added amount of carbon fiber is 0.1% by weight or less, no toughness effect is exhibited. If the content is 2% by weight or more, the dispersibility of the fibers during kneading becomes poor, and the fibers are unevenly distributed, causing defects in the molding material, and as a result, the strength and toughness of the material decrease. At the same time, a return phenomenon occurs during molding pressurization, and the structure of the molded body is destroyed. As a result, strength, thermal shock resistance, and yield are reduced. The fiber length is 30
In the case of more than 1 mm, the dispersibility of the fibers is deteriorated and the fibers are unevenly distributed, so that defects occur in the material, and the strength, the thermal shock resistance and the yield are reduced. When the length is shorter than 2 mm, the effect of pulling out is small, so that the effect on fracture toughness is small.

【0007】コ−ティングする樹脂の割合としては、樹
脂が乾燥した状態で換算して、炭素繊維に対して5〜6
0重量%までの範囲で使用できる。繊維を樹脂でコ−テ
ィングしない場合は混練の回転応力によって繊維が徐々
に粒状化してしまう。そのために炭素繊維を分散しても
直線的な繊維の形状として残らないので、応力付加時に
引き抜き抵抗が発現せず、炭素繊維配合の効果が発揮さ
れなくなる。一方、樹脂が適度な濃度でコ−ティングさ
れている場合は樹脂の被膜によって炭素繊維が補強され
るために、繊維の強度が向上する。そのために混練中に
回転応力が加わっても繊維が粒状になることはない。そ
の結果繊維の形状を保持したまま分散できるので炭素繊
維の引き抜き抵抗により強度、靱性の向上を果たすこと
が出来る。炭素繊維にコ−ティングした樹脂の濃度が5
重量%以下であると、マトリックスとの結合強度が低く
なり強度、靱性に及ぼす効果が少ない。また、繊維の強
度が低いので粒状化してしまう。一方、60重量%以上
になるとコ−ティングしていた繊維同士の結合が強く、
混練時において繊維同士が分離せず、繊維の分散性が低
下し、繊維が凝集した状態になるため、繊維凝集径が不
均一となり素材としてのばらつきの要因、応力集中の起
因となる。そのために強度、靱性値が向上しない。ま
た、耐熱衝撃性も低下する。
[0007] The proportion of the resin to be coated is calculated assuming that the resin is in a dry state,
It can be used in a range of up to 0% by weight. If the fiber is not coated with a resin, the fiber gradually becomes granular due to the rotational stress of kneading. For this reason, even if the carbon fibers are dispersed, they do not remain in a linear fiber shape, so that pullout resistance does not appear when stress is applied, and the effect of carbon fiber blending is not exhibited. On the other hand, when the resin is coated at an appropriate concentration, the carbon fiber is reinforced by the resin film, so that the fiber strength is improved. Therefore, even if a rotational stress is applied during kneading, the fibers do not become granular. As a result, the fibers can be dispersed while maintaining their shape, so that the strength and toughness can be improved by the pull-out resistance of the carbon fibers. The concentration of resin coated on carbon fiber is 5
When the content is less than 10% by weight, the bonding strength with the matrix decreases, and the effect on strength and toughness is small. In addition, since the strength of the fiber is low, it is granulated. On the other hand, when the content is 60% by weight or more, the bonding between the coated fibers is strong,
At the time of kneading, the fibers do not separate from each other, the dispersibility of the fibers is reduced, and the fibers are agglomerated. Therefore, the fiber agglomeration diameter becomes nonuniform, which causes a variation as a material and a stress concentration. Therefore, strength and toughness are not improved. In addition, thermal shock resistance is also reduced.

【0008】黒鉛は酸化に対して弱いが、化学的に安定
で耐熱性、熱伝導率が高く、熱膨張率も低く、耐熱衝撃
性、加工性に優れる。黒鉛質原料が5重量%以下になる
と黒鉛の特性が発揮できなくなり、耐熱衝撃性、潤滑
性、加工性が大幅に低下する。一方、30重量%以上に
なると耐酸化性が低下し、酸化による損耗が大きくな
る。SiCは化学的に安定で、高温酸化雰囲気中では表
面にSiO2を形成するため耐酸化性に優れるが、黒鉛
に比べて耐熱衝撃性が低く、非常に硬いため、きわめて
加工性に劣る。酸化雰囲気下では400℃以上で徐々に
酸化が始まり、炉内或いは炉の出入り口ではいくらかの
酸素分圧の影響を受け、SiC+O2→SiO2+COの
反応によりSiO2ガラス相を形成する。形成されたS
iO2は液相化するため、素材の表面、気孔内に拡散
し、この拡散によってカ−ボンと酸素の接触面積が抑制
されるためにカ−ボン部の酸化が抑制される。そのた
め、SiCが10重量%未満であると生成するSiO2
が少なく、酸化による損耗が大きくなる。一方、71重
量%以上になると耐熱衝撃性、潤滑性、加工性が大幅に
低下する。SiO2は600℃以上から液相を形成す
る。治具として炉に挿入した際に溶融し液相状態とな
り、素材の表面、気孔内に拡散する。この拡散によっ
て、カ−ボンと酸素の接触面積が抑制されるために、カ
−ボン部の酸化が抑制される。1重量%より少ないと耐
火物に形成されるガラス相の絶対量が減少しカーボン部
の酸化が大きくなる。30重量%以上では弾性率が増
し、熱伝導率低下するために耐熱衝撃性が低下する。ま
た、非常に硬い粒子なので加工性を低下させ、コストア
ップの要因となる。
Although graphite is weak against oxidation, it is chemically stable, has high heat resistance, high thermal conductivity, low coefficient of thermal expansion, and is excellent in thermal shock resistance and workability. If the amount of the graphite material is less than 5% by weight, the characteristics of graphite cannot be exhibited, and the thermal shock resistance, lubricity, and workability are greatly reduced. On the other hand, when the content is 30% by weight or more, the oxidation resistance decreases, and the wear due to oxidation increases. SiC is chemically stable and has excellent oxidation resistance due to the formation of SiO 2 on the surface in a high-temperature oxidizing atmosphere, but has a low thermal shock resistance and is very hard as compared with graphite, and therefore has extremely poor workability. In an oxidizing atmosphere, oxidation gradually starts at 400 ° C. or higher, and is affected by some oxygen partial pressure in the furnace or at the entrance and exit of the furnace to form a SiO 2 glass phase by a reaction of SiC + O 2 → SiO 2 + CO. S formed
Since iO 2 is in a liquid phase, it diffuses into the surface and pores of the material, and the diffusion suppresses the contact area between carbon and oxygen, thereby suppressing the oxidation of the carbon part. Therefore, if the content of SiC is less than 10% by weight, SiO 2
And wear due to oxidation increases. On the other hand, when the content is 71% by weight or more, thermal shock resistance, lubricity, and workability are significantly reduced. SiO 2 forms a liquid phase from 600 ° C. or higher. When inserted into a furnace as a jig, it melts and becomes a liquid phase, and diffuses into the surface and pores of the material. Due to this diffusion, the contact area between carbon and oxygen is suppressed, so that oxidation of the carbon part is suppressed. If it is less than 1% by weight, the absolute amount of the glass phase formed on the refractory decreases, and the oxidation of the carbon part increases. If it is 30% by weight or more, the elastic modulus increases and the thermal conductivity decreases, so that the thermal shock resistance decreases. In addition, since the particles are very hard, the processability is reduced and the cost is increased.

【0009】SiO2は1000℃以上に加熱されると
クリストバライト変態を起こし、冷却すると元に戻る。
このとき大きな体積変化を起こすため、熱履歴を多く繰
り返すと組織が脆化し、複合材料の強度、耐熱衝撃性が
大きく低下する。それゆえに30重量%以上いれること
は好ましくない。BNは耐熱性、潤滑性に優れ、低反応
物質である。酸化した場合においては、B23を形成し
て炭素成分の酸化反応を抑制する効果がある。耐火物全
体への分散割合を高め、酸化防止のためのB23形成量
を増すため、ならびに素材の潤滑性を向上させるために
1mm以下の粒度のものを使用することが望ましい。し
かし、結合材との濡れ性が悪く過度に配合すると強度が
得られなくなってしまう。また、原料自体のコストが非
常に高いので5%以上配合することは望ましくない。
SiO 2 undergoes cristobalite transformation when heated to 1000 ° C. or higher, and returns to its original state when cooled.
At this time, since a large volume change occurs, if the thermal history is repeated many times, the structure becomes brittle, and the strength and thermal shock resistance of the composite material are greatly reduced. Therefore, it is not preferable to add 30% by weight or more. BN has excellent heat resistance and lubricity, and is a low-reactive substance. When oxidized, it has the effect of forming B 2 O 3 and suppressing the oxidation reaction of the carbon component. It is desirable to use a particle having a particle size of 1 mm or less in order to increase the dispersion ratio in the entire refractory, increase the amount of B 2 O 3 formed for preventing oxidation, and improve the lubricity of the material. However, the wettability with the binder is poor, and if it is excessively mixed, the strength cannot be obtained. Also, since the cost of the raw material itself is very high, it is not desirable to mix 5% or more.

【0010】[0010]

【実施例】以下実施例を示して本発明を詳しく説明す
る。評価試験材料作成方法としては、表1〜3に記載す
る配合比によって行なった。製造方法としては、いずれ
も共通の原料、製造機械を用いて行なった。製造工程と
して、天然黒鉛、セラミックス、フェノ−ル樹脂をコ−
ティングした炭素繊維を乾式で混合した。炭素繊維への
コ−ティング用樹脂はフェノ−ル樹脂を使用し、鐘紡
(株)製ベルパ−ルS−890を用いた。炭素繊維への
樹脂のコ−ティング方法は、有機溶媒にベルパ−ルS−
890を溶解し、調整した樹脂溶液の中に炭素繊維を浸
漬し、取り出した後自然乾燥を行なった。この炭素繊維
を所定の長さに切断して使用した。コ−ティング樹脂量
が少ない場合はこの操作を数回繰り返した。前記原料混
合粉体に対して原料結合用フェノ−ル樹脂をいずれも重
量比で10%添加し、双腕型ニ−ダ−によって常温で混
練した後、油圧プレスで500kg/cm2で成形し成
形体を作成した。この成形体を非酸化雰囲気中にて20
℃/hrで昇温し、最高温度1000℃で焼成して黒鉛
・セラミックス複合材料を得た。
The present invention will be described in detail with reference to the following examples. The evaluation test materials were prepared according to the compounding ratios shown in Tables 1 to 3. The production was performed using common raw materials and production machines. As a manufacturing process, natural graphite, ceramics, and phenol resin
The carbon fibers were mixed in a dry manner. A phenol resin was used as the resin for coating the carbon fiber, and Bellpar S-890 manufactured by Kanebo Co., Ltd. was used. The coating method of the resin on the carbon fiber is as follows.
After dissolving 890, the carbon fiber was immersed in the prepared resin solution, taken out and air-dried. This carbon fiber was cut into a predetermined length for use. When the amount of the coating resin was small, this operation was repeated several times. 10% by weight of a phenol resin for binding the raw material was added to the raw material mixed powder, and the mixture was kneaded at room temperature by a double-armed kneader, and then molded at 500 kg / cm 2 by a hydraulic press. A molded article was prepared. This molded body is placed in a non-oxidizing atmosphere for 20 minutes.
The temperature was raised at a rate of 100 ° C./hr, followed by firing at a maximum temperature of 1000 ° C. to obtain a graphite / ceramic composite material.

【0011】使用した各原料の平均粒径は黒鉛200
μ、炭化珪素10μ、酸化珪素20μBN10μであ
る。炭素繊維は長さ20mmの東邦レ−ヨン製T−30
0相当品(繊維径15μ)を使用した。
The average particle size of each raw material used is 200 graphite.
μ, silicon carbide 10 μ, and silicon oxide 20 μBN 10 μ. The carbon fiber is T-30 made by Toho Rayon having a length of 20 mm.
0 equivalent (fiber diameter 15 μ) was used.

【0012】以下、各表に素材の成形結果と焼成物性、
評価結果を示す。評価項目に関して、成形結果は成形後
の成形体を目視し、クラックの発生の有無によって確認
した。耐熱衝撃性試験は150×50×50mm試験片
を切断し、電気炉にて1200℃に加熱した後直ちに水
中に投入を3回繰り返した。この後亀裂の発生を調べ、
亀裂の発生の有無によって判断した。靱性値の比較に関
してはシャルピ−衝撃試験値の測定を行なった。酸化試
験については30×30×30mmに切断した試験片を
大気雰囲気の電気炉にセットして100時間後の重量減
少率を測定した。試験温度は700℃、900℃とし
た。表1において炭素繊維を加えた実施例と比較例を示
す。実施例1〜5に示すように炭素繊維を配合すること
により、炭素繊維の引き抜き効果が発生してシャルピ−
衝撃試験値が向上している。比較例1の純黒鉛材料(エ
スイ−シ−製 MS−G)と比較して同等以上になる。
一方耐スポ−ル性に関しては、問題なく酸化重量減少は
比較例1と比べて大幅に減少している。比較例2は炭素
繊維を配合していない例を示しており、炭素繊維がない
ために靱性は低い。比較例3は炭素繊維配合量が2重量
%より多い例を示している。繊維配給量が多いと成形時
に戻り現象が起きてクラックの発生が起こる。これによ
り強度、弾性値等も低下する。比較例4は樹脂コ−ティ
ングをしないた炭素繊維を用いた例である。各実施例と
比較してみると強度、靱性値が劣っている。
Hereinafter, the molding results of the raw materials and the firing properties are shown in the respective tables.
The evaluation results are shown. With respect to the evaluation items, the molding results were confirmed by visually observing the molded body after molding and by the presence or absence of cracks. In the thermal shock resistance test, a test piece of 150 × 50 × 50 mm was cut, heated to 1200 ° C. in an electric furnace, and immediately put into water three times. After this, check for cracks,
Judgment was made based on the presence or absence of cracks. For comparison of toughness values, Charpy-impact test values were measured. Regarding the oxidation test, a test piece cut into a size of 30 × 30 × 30 mm was set in an electric furnace in an air atmosphere, and a weight loss rate after 100 hours was measured. The test temperatures were 700 ° C and 900 ° C. Table 1 shows Examples and Comparative Examples to which carbon fibers were added. By blending the carbon fibers as shown in Examples 1 to 5, the effect of drawing out the carbon fibers occurs and the Charpy
The impact test value has improved. Compared to the pure graphite material of Comparative Example 1 (MS-G manufactured by SSC), it is equal to or more than that.
On the other hand, with respect to the resistance to sparkling, the decrease in the weight of oxidized oxide was significantly reduced compared to Comparative Example 1 without any problem. Comparative Example 2 shows an example in which no carbon fiber is blended, and has no toughness because there is no carbon fiber. Comparative Example 3 shows an example in which the carbon fiber content is more than 2% by weight. If the fiber distribution amount is large, a return phenomenon occurs during molding, and cracks occur. Thereby, the strength, the elasticity value, etc. are also reduced. Comparative Example 4 is an example using a carbon fiber without resin coating. As compared with the examples, the strength and the toughness are inferior.

【表1】 表2には黒鉛とセラミックスの配合量を変更した例を示
す。実施例6〜9は各成分の構成比が本発明の範囲内の
ものを示しており、いずれも成形性、断熱衝撃性とも問
題なく、酸化に対しても良好な結果を示している。一方
比較例5は黒鉛が5重量%よりも少なく、耐熱衝撃性に
劣る。比較例6は黒鉛が30重量%より多く酸化消耗が
大きい。比較例7はSiCが70重量%よりも、比較例
8はSiO2が30重量%よりも多いが、いずれも耐熱
衝撃性が劣る。比較例9はBNが1重量%より少ない。
この場合摩擦係数は大きくなる。
[Table 1] Table 2 shows examples in which the amounts of graphite and ceramics are changed. Examples 6 to 9 show that the constitutional ratio of each component is within the range of the present invention, and there is no problem in both moldability and adiabatic impact, and good results are shown in oxidation. On the other hand, Comparative Example 5 contains less than 5% by weight of graphite and is inferior in thermal shock resistance. Comparative Example 6 contains more than 30% by weight of graphite and has a large oxidative consumption. Comparative Example 7 contains more than 70% by weight of SiC and Comparative Example 8 contains more than 30% by weight of SiO 2, but all have inferior thermal shock resistance. Comparative Example 9 has less than 1% by weight of BN.
In this case, the coefficient of friction increases.

【表2】 表3には実施例10〜13として炭素繊維コ−ティング
樹脂量が本発明の範囲内のものを示し、いずれも成形
性、耐熱衝撃性とも問題なく、酸化に対しても良好な結
果を示している。比較例10は炭素繊維コ−ティング樹
脂量が低いものの結果を示す。濃度が5重量%より低い
場合は炭素繊維とマトリックスの結合が不十分なために
強度向上に対する効果は低い。比較例11は炭素繊維コ
−ティング樹脂が大きいものの結果を示す。炭素繊維コ
−ティング樹脂量が60重量%より大きい場合は繊維同
士が樹脂によって強く結合しているために、混練時に繊
維の分離を均一に行うことが難しい。そのために、繊維
の分散むらが生じて成型時のクラックの起因もしくは応
力集中の要因となっている。
[Table 2] Table 3 shows Examples 10 to 13 in which the amount of the carbon fiber coating resin is within the range of the present invention, all of which have no problem in moldability and thermal shock resistance, and show good results with respect to oxidation. ing. Comparative Example 10 shows the results with a low carbon fiber coating resin amount. When the concentration is lower than 5% by weight, the effect of improving the strength is low due to insufficient bonding between the carbon fiber and the matrix. Comparative Example 11 shows the result of a large carbon fiber coating resin. If the amount of the carbon fiber coating resin is more than 60% by weight, it is difficult to uniformly separate the fibers during kneading because the fibers are strongly bonded to each other by the resin. For this reason, uneven dispersion of fibers occurs, which causes cracks during molding or causes stress concentration.

【表3】 [Table 3]

【0013】[0013]

【発明の効果】以上に示したように、本発明にかかる樹
脂コ−ティングした炭素繊維を配合した炭素・セラミッ
クス複合材料による治具は従来の黒鉛材料および黒鉛・
セラミックス複合材料製治具と比較して同等の耐酸化
性、耐熱衝撃性等を有し、よりすぐれた強度、靱性値を
有する。従って本発明が熱処理工程を有する産業に寄与
するところは大きい。
As described above, the jig made of the carbon-ceramic composite material containing the resin-coated carbon fiber according to the present invention is a conventional graphite material and graphite / jig.
It has the same oxidation resistance, thermal shock resistance, etc. as compared to ceramic composite material jigs, and has better strength and toughness. Therefore, the present invention greatly contributes to an industry having a heat treatment step.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛質原料5〜30重量%、SiC10
〜70重量%、SiO21〜30重量%、およびその他
の成分としてBN1〜5重量%含み、なおかつ炭素繊維
0.1〜2重量%含む黒鉛・セラミックス複合材料から
なることを特徴とする炭素繊維含有焼成治具
1. A graphite raw material of 5 to 30% by weight, SiC10
A carbon fiber comprising a graphite / ceramic composite material containing 70 to 70% by weight, 1 to 30% by weight of SiO2, and 1 to 5% by weight of BN as other components and 0.1 to 2 % by weight of carbon fiber. Included firing jig
【請求項2】 黒鉛質原料が天然黒鉛,人造黒鉛,キッ
シュ黒鉛のいずれかからなることを特徴とする請求項1
記載の炭素繊維含有焼成治具。
2. The graphite raw material according to claim 1, wherein the raw material is one of natural graphite, artificial graphite and quiche graphite.
The firing jig containing the carbon fiber described in the above.
【請求項3】 炭素繊維はPAN系あるいはピッチ系か
ら成ることを特徴とする請求項1記載の炭素繊維含有焼
成治具。
3. The firing jig containing carbon fibers according to claim 1, wherein the carbon fibers are made of PAN or pitch.
【請求項4】 炭素繊維の長さが2〜30mmであるこ
とを特徴とする請求項1.3記載の炭素繊維含有焼成治
具。
4. The firing jig containing carbon fibers according to claim 1.3, wherein the length of the carbon fibers is 2 to 30 mm.
【請求項5】 炭素繊維表面が熱硬化性樹脂でコ−ティ
ングされていることを特徴とする請求項1.3.4記載
の炭素繊維含有焼成治具。
5. The firing jig containing carbon fibers according to claim 1.3.4, wherein the surface of the carbon fibers is coated with a thermosetting resin.
JP9103868A 1997-04-07 1997-04-07 Firing jig containing carbon fiber Pending JPH10287470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9103868A JPH10287470A (en) 1997-04-07 1997-04-07 Firing jig containing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9103868A JPH10287470A (en) 1997-04-07 1997-04-07 Firing jig containing carbon fiber

Publications (1)

Publication Number Publication Date
JPH10287470A true JPH10287470A (en) 1998-10-27

Family

ID=14365426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9103868A Pending JPH10287470A (en) 1997-04-07 1997-04-07 Firing jig containing carbon fiber

Country Status (1)

Country Link
JP (1) JPH10287470A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010070357A (en) * 2000-01-11 2001-07-25 도요탄소 가부시키가이샤 Jig
CN100396643C (en) * 2006-08-04 2008-06-25 郑州纪翔耐材股份有限公司 Novel moulded light carbon brick and its producing method
CN109836164A (en) * 2019-04-12 2019-06-04 王小玲 A kind of C with interfacial detachment self-healing performancef/ SiC ceramic matrix composite material and preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010070357A (en) * 2000-01-11 2001-07-25 도요탄소 가부시키가이샤 Jig
CN100396643C (en) * 2006-08-04 2008-06-25 郑州纪翔耐材股份有限公司 Novel moulded light carbon brick and its producing method
CN109836164A (en) * 2019-04-12 2019-06-04 王小玲 A kind of C with interfacial detachment self-healing performancef/ SiC ceramic matrix composite material and preparation method

Similar Documents

Publication Publication Date Title
US5835841A (en) Composite material and production thereof
JP6061592B2 (en) Friction material and friction material manufacturing method
US5552215A (en) Fiber reinforced glass matrix composites with secondary matrix reinforcement
WO2003068707A1 (en) Oxidation resistant carbon fiber reinforced carbon composite material and process for producing the same
JPH10287470A (en) Firing jig containing carbon fiber
CN115057692B (en) Aluminum-carbon sliding brick added with ferrotitanium alloy and production method thereof
EP0334577A1 (en) Carbon-coated silicon carbide whiskers for controlling the formation of an oxide coating
CN111943706B (en) Self-lubricating ceramic cutter added with SiC crystal whiskers as well as preparation method and application of self-lubricating ceramic cutter
JPH10502613A (en) SiC-molded member
JPH10251072A (en) Carbon fiber-containing jig for calcining
JPH0520382B2 (en)
CN111574209A (en) Self-lubricating ceramic cutter with self-repairing capability and preparation method, repairing method and application thereof
JPH11322405A (en) Low carbon refractory and its production
JP3762090B2 (en) Silicon nitride sintered body and cutting tool using the same
JPH1143372A (en) Silicon nitride-based ceramic and its production
WO2013054857A1 (en) Friction material
JPH10251064A (en) Sintering jig
Hong et al. Toughening mechanisms and properties of mullite matrix composites reinforced by the addition of SiC particles and Y-TZP
EP0501510A1 (en) Discontinuous carbon fiber reinforced glass matrix composites with secondary matrix reinforcement
JP3524668B2 (en) Nozzle refractories for continuous casting
JPH04243959A (en) Ceramics having toughness
JP2013087159A (en) Friction material
JP6093228B2 (en) Friction material
JP2979531B2 (en) Fiber reinforced ceramics and tools using the same
JP2887242B2 (en) Fiber reinforced ceramics