JPH10286425A - Separation method of gaseous mixture - Google Patents

Separation method of gaseous mixture

Info

Publication number
JPH10286425A
JPH10286425A JP9096824A JP9682497A JPH10286425A JP H10286425 A JPH10286425 A JP H10286425A JP 9096824 A JP9096824 A JP 9096824A JP 9682497 A JP9682497 A JP 9682497A JP H10286425 A JPH10286425 A JP H10286425A
Authority
JP
Japan
Prior art keywords
gas
adsorption tank
adsorption
product
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9096824A
Other languages
Japanese (ja)
Other versions
JP3755622B2 (en
Inventor
Hiromi Kiyama
洋実 木山
Takeji Shimamoto
武治 嶋本
Takahiko Yasuda
貴彦 安田
Nobuyuki Oyagi
信之 大八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Hoxan Inc
Original Assignee
Daido Hoxan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Hoxan Inc filed Critical Daido Hoxan Inc
Priority to JP09682497A priority Critical patent/JP3755622B2/en
Publication of JPH10286425A publication Critical patent/JPH10286425A/en
Application granted granted Critical
Publication of JP3755622B2 publication Critical patent/JP3755622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for separating a gaseous mixture good in recovery efficiency and without lowering the blower efficiency by using two adsorption vessels. SOLUTION: The left and right adsorption vessels 3, 4 and a receiver tank 7 are provided, after the following five stages have been operated in this order, the adsorption vessels 3 and 4 are reversed, the following five stages are operated in the order and the total ten stages are executed repeatedly. Namely, product gaseous oxygen remaining in the left adsorption vessel 3 is recovered in the right adsorption vessel 4 and the right vessel, 4 is evacuated, desorbed and exhausted in the first stage (A). Raw air is introduced into the right adsorption vessel 4 and the evacuation, desorption and exhaustion are continued in the left adsorption vessel 3 in the second stage (B). The product gaseous oxygen is introduced into the right adsorption vessel 4 from the receiver tank 7 and the evacuation, desorption and exhaustion are continued in the left adsorption vessel 3 in the third stage (C). Gaseous nitrogen is adsorbed on an adsorbent in the right adsorption vessel 4, the gaseous oxygen is generated as the product gas and the evacuation, desorption and exhaustion are continued in the left adsorption vessel 3 in the fourth stage (D). A part of the product gaseous oxygen generated from the right adsorption vessel 4 is introduced into the left adsorption vessel 3 and the evacuation, desorption and exhaustion are continued in the left adsorption vessel 3 in the fifth stage (E).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、圧力スイング吸
着法(PSA法)による混合ガス分離方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating a mixed gas by a pressure swing adsorption method (PSA method).

【0002】[0002]

【従来の技術】従来から、空気等の混合ガスから酸素等
の製品ガスを分離する方法として種々の方法が用いられ
ているが、最近では、装置の設計の容易さや設備費,運
転費等の安価なことから、吸着剤を用いた分離方法が広
く用いられている。この吸着剤を用いる分離方法は、一
般に圧力スイング吸着法(PSA法)と呼ばれており、
複数の吸着槽に窒素ガスを選択的に吸着する吸着剤を充
填し、各吸着槽に対する原料空気の導入、加圧による窒
素ガスの吸着、減圧による窒素ガスの脱着(吸着槽の再
生)、昇圧等の操作を繰り返し行うことにより酸素ガス
を分離発生するようになっている。このようなPSA法
では、3槽以上の吸着槽を用いる方法が主流であるが、
最近では、装置規模や設備費の低減等に有効な2槽の吸
着槽を用いる方法も多く考え出されている。
2. Description of the Related Art Conventionally, various methods have been used as a method for separating a product gas such as oxygen from a gas mixture such as air. Because of the low cost, a separation method using an adsorbent is widely used. The separation method using this adsorbent is generally called a pressure swing adsorption method (PSA method),
A plurality of adsorption tanks are filled with an adsorbent for selectively adsorbing nitrogen gas, and air is introduced into each adsorption tank, nitrogen gas is adsorbed by pressurization, nitrogen gas is desorbed by depressurization (regeneration of adsorption tank), and pressure is increased. By repeating such operations, oxygen gas is separated and generated. In such a PSA method, a method using three or more adsorption tanks is mainly used.
Recently, many methods have been devised which use two adsorption tanks which are effective in reducing the scale of the apparatus and equipment costs.

【0003】上記のような、2槽の吸着槽を用いる方法
として、特開平7−265635号公報に示す分離方法
が提案されている。この分離方法は、図11に示すよう
に、2つの床31,32と製品溜め33と供給材料ブロ
アー34と真空ポンプ35を用い、まず、供給材料空気
(周囲空気)を供給材料ブロアー34により圧縮し、す
でに吸着圧に加圧されている第1の床31に導入し、吸
着剤に空気中の窒素を吸着させ、吸着剤に吸着されない
空気中の酸素を製品酸素としてマニホールド36を経由
して製品溜め33に引き出す。このとき、第2の床32
を真空ポンプ35により減圧排気する。ついで、第1の
床31における酸素生産の後半期に製品酸素の一部をパ
ージ用ガスとしてマニホールド37を経由して第2の床
32に送る。つぎに、第2の床32に供給材料ブロアー
34により圧縮した供給材料空気を導入し、一方、第1
および第2の床31,32の出口同士を接続し、第1の
床31の残留ガスをマニホールド38を経由して第2の
床32に回収するとともに、第1の床31を真空ポンプ
35により減圧排気する。つぎに、第1および第2の床
31,32の出口同士の接続を中断し、その状態で第1
の床31からの減圧排気と第2の床32への供給材料空
気の導入を続ける。そののち、第1の床31と第2の床
32を入れ換えて、上記の方法を繰り返すことを行う。
この分離方法では、供給材料ブロアー34と真空ポンプ
35が間断なく作動している。
As a method using two adsorption tanks as described above, a separation method disclosed in Japanese Patent Application Laid-Open No. Hei 7-265635 has been proposed. This separation method uses two beds 31, 32, a product reservoir 33, a feed blower 34 and a vacuum pump 35, as shown in FIG. 11, and first feed air (ambient air) is compressed by the feed blower 34. Then, the mixture is introduced into the first bed 31 which has been already pressurized to the adsorption pressure, adsorbs nitrogen in the air to the adsorbent, and oxygen in the air not adsorbed by the adsorbent is used as product oxygen via the manifold 36 as product oxygen. Pull out to product reservoir 33. At this time, the second floor 32
Is evacuated by a vacuum pump 35. Next, in the latter half of the oxygen production in the first bed 31, a part of the product oxygen is sent to the second bed 32 via the manifold 37 as a purge gas. Next, feed air compressed by a feed blower 34 is introduced into the second bed 32, while the first
And the outlets of the second floors 31 and 32 are connected to each other, and the residual gas in the first floor 31 is recovered to the second floor 32 via the manifold 38, and the first floor 31 is connected to the vacuum pump 35. Evacuate under reduced pressure. Next, the connection between the outlets of the first and second floors 31 and 32 is interrupted, and the first
, And the introduction of feed air to the second bed 32 is continued. After that, the first floor 31 and the second floor 32 are exchanged, and the above method is repeated.
In this separation method, the feed blower 34 and the vacuum pump 35 operate continuously.

【0004】また、特開平8−71350号公報に示す
吸着方法も提案されている。すなわち、段階1におい
て、下方脱着圧力にある第1の床の上端に上方供給圧力
にある第2の床から並流減圧(第2の床の上端からの残
留気体放出)により取り出した気体を回収する。この段
階1では、供給ブロワーおよび排気ブロワーは無負荷状
態にある。つぎに、段階1A(オーバラップ段階)にお
いて、段階1を続行し、同時に第1の床の下端に供給ブ
ロワーにより供給気体を導入し、第2の床から排気ブロ
ワーにより減圧排気する。第1の床が上方吸着圧力に達
すると、段階2になる。この段階2において、追加供給
空気を第1の床の下端に導入し、生成物気体(供給気体
中の容易に吸着されない成分)を上端から抜き出す。つ
ぎに、段階3では、供給気体の追加供給を続行する。そ
して、第1の床の上端から回収した生成物気体の一部を
パージ気体として第2の床の上端へ転流する。段階3の
完了に際して、第1の床の再生を、並流減圧−圧力均等
化段階である段階4でもって始め、第1の床の残留気体
を第1の床の上端から抜き出して第2の床の上端に回収
する(この期間中、供給ブロワーおよび排気ブロワーは
無負荷状態にある)。このような段階4以降は、第1の
床と第2の床を入れ換えて、上記の方法を繰り返すこと
を行う。
[0004] An adsorption method disclosed in JP-A-8-71350 has also been proposed. That is, in step 1, the gas taken out from the second bed at the upper supply pressure by the co-current depressurization (residual gas release from the upper end of the second bed) is collected at the upper end of the first bed at the lower desorption pressure. I do. In this stage 1, the supply blower and the exhaust blower are in an unloaded state. Next, in Step 1A (overlapping step), Step 1 is continued, and at the same time, the supply gas is introduced into the lower end of the first bed by the supply blower, and the gas is evacuated and reduced from the second bed by the exhaust blower. Stage 2 is reached when the first bed reaches the upper adsorption pressure. In this stage 2, additional feed air is introduced at the lower end of the first bed and product gas (a component that is not easily adsorbed in the feed gas) is withdrawn from the upper end. Next, in step 3, the additional supply of the supply gas is continued. Then, a part of the product gas recovered from the upper end of the first bed is diverted to the upper end of the second bed as a purge gas. Upon completion of Step 3, regeneration of the first bed begins with Step 4, a co-current depressurization-pressure equalization step, in which residual gas in the first bed is withdrawn from the top of the first bed and a second gas is removed. Collect at the top of the floor (during this period the supply and exhaust blowers are unloaded). After such a stage 4, the first floor is replaced with the second floor, and the above method is repeated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
分離方法では、第1の床31の残留ガスを第2の床32
の出口から回収する際に、同時にこの第2の床32の入
口から供給材料ブロアー34により圧縮した供給材料空
気をも導入しているため、残留ガスの回収効率が悪いと
いう問題がある。すなわち、上記残留ガスの回収は、第
1および第2の床31,32の出口同士を接続し、第2
の床32の真空を利用して(すなわち、第1および第2
の床31,32の圧力差を利用して)行うものであり、
上記残留ガスの回収時に供給材料空気の導入をも行う場
合には、第2の床32の内圧がすぐに上昇し、大きな圧
力差を長く得ることができないためである。一方、上記
の吸着方法では、残留気体の回収時に排気ブロワーが無
負荷状態にあり、ブロワー効率が低下したり、動力を無
駄に消費したりする等の問題がある。すなわち、排気ブ
ロワーが無負荷状態にあるということは、通常、排気ブ
ロワーを全く休止させているのではなく、無負荷運転を
しているということであり、このような排気ブロワーの
無駄な使用によるブロワー効率の低下や無駄な動力消費
等の悪影響が出てくるためである。
However, in the above separation method, the residual gas in the first bed 31 is removed from the second bed 32.
Since the feed air compressed by the feed blower 34 is also introduced from the inlet of the second bed 32 at the same time when the feed gas is recovered from the outlet of the second bed 32, there is a problem that the recovery efficiency of the residual gas is poor. That is, the recovery of the residual gas is performed by connecting the outlets of the first and second beds 31 and 32 to each other,
Utilizing the vacuum of the bed 32 (ie, the first and second
Using the pressure difference between the floors 31 and 32).
This is because, when the feed air is also introduced during the recovery of the residual gas, the internal pressure of the second bed 32 immediately rises and a large pressure difference cannot be obtained for a long time. On the other hand, in the above-mentioned adsorption method, the exhaust blower is in a no-load state when the residual gas is recovered, and there are problems such as a decrease in blower efficiency and wasteful consumption of power. That is, the fact that the exhaust blower is in a no-load state means that the exhaust blower is normally operating without a load, not at all, and the exhaust blower is wastefully used. This is because adverse effects such as a decrease in blower efficiency and wasteful power consumption appear.

【0006】この発明は、このような事情に鑑みなされ
たもので、2槽の吸着槽を用い、回収効率が良く、ブロ
ワー効率の低下を招くことのない混合ガス分離方法の提
供をその目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a mixed gas separation method that uses two adsorption tanks, has a high recovery efficiency, and does not cause a decrease in blower efficiency. I do.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の混合ガス分離方法は、特定ガスを選択的
に吸着する吸着剤を充填した第1および第2の吸着槽と
製品ガス貯槽とを設け、下記の(A)〜(E)の5工程
をこの順に操作したのち第1吸着槽と第2吸着槽を逆に
して再度下記の(A)〜(E)の5工程をこの順に操作
するという10工程を繰り返して行うようにしたという
構成をとる。 (A)減圧脱着排気を終了した第1吸着槽のガス出口と
吸着を終了した第2吸着槽のガス出口を連通して第1吸
着槽に第2吸着槽に残留するガスを回収し、第2吸着槽
のガス入口からこの第2吸着槽の吸着剤に吸着された特
定ガスを減圧脱着し排気する工程。 (B)残留ガスの回収を継続する第1吸着槽のガス入口
に原料ガスを導入し、第2吸着槽での減圧脱着排気を継
続する工程。 (C)残留ガスの回収を終了し原料ガスの導入を継続す
る第1吸着槽のガス出口に製品ガス貯槽の製品ガスを導
入し、第2吸着槽での減圧脱着排気を継続する工程。 (D)製品ガスの導入を終了し原料ガスの導入を継続す
る第1吸着槽の吸着剤に原料ガス中の特定ガスを吸着さ
せ、吸着剤に吸着されないガスを製品ガスとしてガス出
口から発生させて製品ガス貯槽に導入し、第2吸着槽で
の減圧脱着排気を継続する工程。 (E)原料ガスの導入および製品ガスの発生を継続する
第1吸着槽のガス出口から発生した製品ガスの一部を第
2吸着槽のガス出口に導入し、第2吸着槽での減圧脱着
排気を継続する工程。
In order to achieve the above object, a mixed gas separation method according to the present invention comprises a first and a second adsorption tank filled with an adsorbent for selectively adsorbing a specific gas and a product gas. A storage tank is provided, and the following five steps (A) to (E) are operated in this order, then the first adsorption tank and the second adsorption tank are reversed, and the following five steps (A) to (E) are performed again. The configuration is such that ten steps of operating in this order are repeatedly performed. (A) The gas remaining in the second adsorption tank is recovered in the first adsorption tank through communication between the gas outlet of the first adsorption tank that has been decompressed and exhausted and the gas outlet of the second adsorption tank that has been adsorbed. (2) a step of depressurizing and desorbing the specific gas adsorbed by the adsorbent of the second adsorption tank from the gas inlet of the adsorption tank and exhausting the gas. (B) a step of introducing a raw material gas into the gas inlet of the first adsorption tank where the recovery of the residual gas is continued, and continuing the decompression / desorption exhaust in the second adsorption tank; (C) A step in which the product gas in the product gas storage tank is introduced into the gas outlet of the first adsorption tank where the recovery of the residual gas is completed and the introduction of the source gas is continued, and the desorption / desorption exhaust in the second adsorption tank is continued. (D) The specific gas in the raw material gas is adsorbed by the adsorbent in the first adsorption tank in which the introduction of the product gas is completed and the introduction of the raw material gas is continued, and a gas not adsorbed by the adsorbent is generated from the gas outlet as a product gas. And introducing the product gas into the product gas storage tank and continuing the decompression and desorption in the second adsorption tank. (E) A part of the product gas generated from the gas outlet of the first adsorption tank, which continues the introduction of the raw material gas and the generation of the product gas, is introduced into the gas outlet of the second adsorption tank, and desorbed and decompressed in the second adsorption tank. The process of continuing exhaust.

【0008】すなわち、この発明の混合ガス分離方法
は、特定ガスを選択的に吸着する吸着剤を充填した第1
および第2の吸着槽と製品ガス貯槽とを設けている。そ
して、下記の(A)〜(E)の5工程をこの順に操作し
たのち第1吸着槽と第2吸着槽を逆にして再度下記の
(A)〜(E)の5工程をこの順に操作するという10
工程を繰り返して行うようにしている。すなわち、
(A)工程では、製品ガスの回収率を高めるために、吸
着の終了した第2吸着槽(加圧状態)に残留するガス
(製品成分を多く含むガス)を、減圧脱着の終了した第
1吸着槽(減圧状態)に、両槽の圧力差を利用して回収
する。このとき、第1吸着槽への原料ガスの導入を休止
しており、より大きな圧力差を利用した回収を行うこと
ができる。また、第2吸着槽の減圧脱着排気を開始す
る。これにより、第1吸着槽の圧力は上昇し、第2吸着
槽の圧力は降下し、両槽の圧力は均圧化に向かう。
(B)工程では、両槽の圧力がほぼ等しくなるまで均圧
化を継続し、さらに回収を行う。また、第1吸着槽への
原料ガスの導入を開始し、これにより第1吸着槽の昇圧
時間を短縮しながら、より多くの原料ガスを導入するこ
とができる。第1吸着槽への原料ガスの導入は、この均
圧化と同時に、または終了後に開始しても良い。(C)
工程では、両槽の均圧化回収が終了しており、その状態
で第1吸着槽への原料ガスの導入を継続しながら、この
第1の吸着槽に製品ガス貯槽から高濃度製品ガスを導入
する。この操作により、第1吸着槽は吸着槽の能力が損
なわれることなく昇圧され、次の(D)工程において、
製品ガスを安定して発生することができる。また、第2
吸着槽の減圧脱着排気をさらに継続する。(D)工程で
は、第1吸着槽への原料ガスの導入を継続し、製品ガス
を安定して発生し、製品ガス貯槽に供給する。また、第
2吸着槽の減圧脱着排気をさらに継続する。(E)工程
では、(D)工程の状態を継続しながら、製品ガスの一
部を第2吸着槽に導入し、製品ガス分圧を上昇させるこ
とにより、吸着された特定ガスの減圧脱着を促進する。
That is, according to the mixed gas separation method of the present invention, the first gas filled with an adsorbent for selectively adsorbing a specific gas is used.
And a second adsorption tank and a product gas storage tank. After the following five steps (A) to (E) are operated in this order, the first adsorption tank and the second adsorption tank are reversed, and the following five steps (A) to (E) are again operated in this order. 10 to do
The process is repeated. That is,
In the step (A), in order to increase the recovery rate of the product gas, the gas (gas containing a large amount of product components) remaining in the second adsorption tank (pressurized state) after the adsorption is removed from the first adsorption tank after the decompression and desorption is completed. The water is collected in the adsorption tank (under reduced pressure) using the pressure difference between both tanks. At this time, the introduction of the raw material gas into the first adsorption tank is stopped, and the recovery using a larger pressure difference can be performed. In addition, the decompression and desorption of the second adsorption tank is started. As a result, the pressure in the first adsorption tank increases, the pressure in the second adsorption tank decreases, and the pressures in both tanks are equalized.
In the step (B), pressure equalization is continued until the pressures in both tanks become substantially equal, and further recovery is performed. Further, the introduction of the raw material gas into the first adsorption tank is started, whereby it is possible to introduce a larger amount of the raw material gas while shortening the pressure rising time of the first adsorption tank. The introduction of the raw material gas into the first adsorption tank may be started at the same time as the equalization or after the end. (C)
In the process, the equalization and recovery of both tanks have been completed, and in this state, while continuing the introduction of the raw material gas into the first adsorption tank, a high-concentration product gas is supplied from the product gas storage tank to the first adsorption tank. Introduce. By this operation, the pressure of the first adsorption tank is increased without impairing the capacity of the adsorption tank, and in the next step (D),
Product gas can be generated stably. Also, the second
The vacuum desorption of the adsorption tank is further continued. In the step (D), the introduction of the raw material gas into the first adsorption tank is continued, and the product gas is generated stably and supplied to the product gas storage tank. Further, the decompression and desorption of the second adsorption tank is further continued. In the step (E), while continuing the state of the step (D), a part of the product gas is introduced into the second adsorption tank, and the partial pressure of the product gas is increased, so that the adsorbed specific gas is desorbed under reduced pressure. Facilitate.

【0009】このように、この発明では、2槽の吸着槽
を用いるPSA法により、製品ガスを安定して分離発生
させることができる。しかも、回収工程では、一方の吸
着槽への原料ガスの導入を休止した状態で、この一方の
吸着槽に他方の吸着槽から残留ガスを回収するようにし
ているため、大きな圧力差を利用した回収が行える。し
たがって、回収工程での回収効率が良く、より少ない吸
着剤量および少ない動力で、効率良く原料ガスから製品
ガスを分離発生することができる。さらに、両吸着槽の
減圧脱着排気を休止することがなく、減圧脱着排気のた
めに無駄に動力を消費することがなく、減圧脱着排気の
ための手段(ブロアー等)の効率低下を招くこともな
い。この発明は、主に空気から酸素ガスを分離発生する
用途に用いられるが、混合ガスより有益な成分ガスを分
離発生することにも利用できる。
As described above, according to the present invention, the product gas can be stably separated and generated by the PSA method using two adsorption tanks. Moreover, in the recovery step, while the introduction of the raw material gas into one of the adsorption tanks is stopped, the residual gas is recovered from the other adsorption tank to the one adsorption tank, so that a large pressure difference is used. Can be collected. Therefore, the recovery efficiency in the recovery step is good, and the product gas can be efficiently separated and generated from the raw material gas with a smaller amount of adsorbent and less power. Further, the vacuum desorption / exhaust of both adsorption tanks is not paused, the power is not wasted for the vacuum desorption / exhaustion, and the efficiency of the vacuum desorption / exhaust means (blower, etc.) is reduced. Absent. The present invention is mainly used for separating and generating oxygen gas from air, but can also be used for separating and generating more useful component gas than mixed gas.

【0010】[0010]

【発明の実施の形態】つぎに、この発明の実施の形態を
図面にもとづいて詳しく説明する。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.

【0011】図1はこの発明の混合ガス分離方法に用い
る混合ガス分離装置を示している。図において、1は原
空ブロワであり、外部から原料空気(大気空気)を取り
入れて圧縮したのち原料空気取入パイプ11に送り込
む。3,4は同様構造に作製された左右一対の吸着槽で
ある。両吸着槽3,4には、その内部に、除湿用の吸着
剤(活性アルミナ)が充填されてなる下側アルミナ層5
と、窒素吸着用の吸着剤(ゼオライト)が充填されてな
る上側吸着剤層6(下側アルミナ層5上に載置されてい
る)とが上下積層状に収容されている。7はレシーバー
タンク(製品酸素ガス貯蔵槽)であり、両吸着槽3,4
で製造された製品酸素ガスを貯留する。8は真空ポンプ
であり、両吸着槽3,4内を減圧排気する。
FIG. 1 shows a mixed gas separation apparatus used in the mixed gas separation method of the present invention. In the drawing, reference numeral 1 denotes a raw air blower which takes in raw air (atmospheric air) from the outside, compresses the raw air, and sends it to a raw air intake pipe 11. Reference numerals 3 and 4 denote a pair of left and right adsorption tanks having the same structure. Each of the adsorption tanks 3 and 4 has a lower alumina layer 5 filled with an adsorbent for dehumidification (activated alumina).
And an upper adsorbent layer 6 (placed on the lower alumina layer 5) filled with an adsorbent (zeolite) for nitrogen adsorption are housed in a vertically stacked manner. Reference numeral 7 denotes a receiver tank (product oxygen gas storage tank).
The product oxygen gas produced in the above is stored. Reference numeral 8 denotes a vacuum pump, which evacuates the inside of both adsorption tanks 3 and 4 under reduced pressure.

【0012】12は原料空気取入パイプ11と左吸着槽
3の(入口端3aから延びる)入口パイプ3cとを連結
する自動開閉弁12a付き第1導入パイプであり、13
は原料空気取入パイプ11と右吸着槽4の(入口端4a
から延びる)入口パイプ4cとを連結する自動開閉弁1
3a付き第2導入パイプである。14は左吸着槽3の入
口パイプ3cと真空ポンプ8の入口パイプ8aとを連結
する自動開閉弁14a付き第1排気パイプであり、15
は右吸着槽4の入口パイプ4cと真空ポンプ8の入口パ
イプ8aとを連結する自動開閉弁15a付き第2排気パ
イプである。図において、22は原空ブロワ1の上流側
部分と下流側部分とを連結する自動開閉弁22a付き戻
しパイプである。
Reference numeral 12 denotes a first introduction pipe having an automatic opening / closing valve 12a for connecting the raw material air intake pipe 11 and an entrance pipe 3c (extending from the entrance end 3a) of the left adsorption tank 3.
Of the raw material air intake pipe 11 and the right adsorption tank 4 (the inlet end 4a
Automatic opening / closing valve 1 for connecting an inlet pipe 4c)
It is a 2nd introduction pipe with 3a. Reference numeral 14 denotes a first exhaust pipe with an automatic opening / closing valve 14a for connecting the inlet pipe 3c of the left adsorption tank 3 and the inlet pipe 8a of the vacuum pump 8;
Is a second exhaust pipe with an automatic opening / closing valve 15a connecting the inlet pipe 4c of the right adsorption tank 4 and the inlet pipe 8a of the vacuum pump 8. In the drawing, reference numeral 22 denotes a return pipe with an automatic opening / closing valve 22a for connecting the upstream portion and the downstream portion of the original air blower 1.

【0013】16は左吸着槽3の(出口端3bから延び
る)出口パイプ3dとレシーバータンク7の入口パイプ
7aとを連結する自動開閉弁16a付き第1導出パイプ
であり、17は右吸着槽4の(出口端4bから延びる)
出口パイプ4dとレシーバータンク7の入口パイプ7a
とを連結する自動開閉弁17a付き第2導出パイプであ
る。18は左吸着槽3の出口パイプ3dの中間部と右吸
着槽4の出口パイプ4dの中間部とを連結する自動開閉
弁18a,手動流量調整弁18b付き第1連結パイプで
あり、19は左吸着槽3の出口パイプ3dの先端部と右
吸着槽4の出口パイプ4bの先端部とを連結する自動開
閉弁19a,手動流量調整弁19b付き第2連結パイプ
である。20はレシーバータンク7の入口パイプ7aに
設けた自動開閉弁であり、この自動開閉弁20の上流側
部分と下流側部分が手動流量調整弁21a付きバイパス
用パイプ21で連結されている。このバイパス用パイプ
21の手動流量調整弁21aの流量設定は自動開閉弁2
0の流量設定より少量に設定されている。
Reference numeral 16 denotes a first outlet pipe with an automatic opening / closing valve 16a for connecting an outlet pipe 3d (extending from the outlet end 3b) of the left adsorption tank 3 and an inlet pipe 7a of the receiver tank 7, and 17 denotes a right adsorption tank 4 (Extends from the exit end 4b)
Outlet pipe 4d and inlet pipe 7a of receiver tank 7
And a second lead-out pipe with an automatic opening / closing valve 17a. Reference numeral 18 denotes a first connection pipe having an automatic opening / closing valve 18a and a manual flow control valve 18b for connecting an intermediate portion of the outlet pipe 3d of the left adsorption tank 3 and an intermediate portion of the exit pipe 4d of the right adsorption tank 4, and 19 denotes a left connection pipe. This is a second connection pipe with an automatic opening / closing valve 19a and a manual flow control valve 19b for connecting the tip of the outlet pipe 3d of the adsorption tank 3 and the tip of the outlet pipe 4b of the right adsorption tank 4. Reference numeral 20 denotes an automatic opening / closing valve provided on the inlet pipe 7a of the receiver tank 7, and the upstream side portion and the downstream side portion of the automatic opening / closing valve 20 are connected by a bypass pipe 21 with a manual flow control valve 21a. The flow rate of the manual flow control valve 21a of the bypass pipe 21 is controlled by the automatic on-off valve 2.
The flow rate is set smaller than the flow rate setting of 0.

【0014】上記の混合ガス分離装置を用い、つぎのよ
うにして原料空気から酸素ガスと窒素ガスとを分離する
ことができる。すなわち、第1工程(図2参照)では、
自動開閉弁12a,15a,16a,20を開弁し、自
動開閉弁13a,14a,17a,18a,19a,2
2aを閉弁する。その状態で、原空ブロワ1により取り
入れた原料空気を圧縮して原料空気取入パイプ11に送
り出し、第1導入パイプ12,入口パイプ3cを経て入
口端3aから左吸着槽3に供給する。この左吸着槽3に
おいては、供給された原料空気(圧縮空気)をさきに下
側アルミナ層5に通し、この下側アルミナ層5の吸着剤
で原料空気中の水分,炭酸ガス等を吸着除去し、つぎに
上側吸着剤層6に通し、この上側吸着剤層6の吸着剤で
圧縮空気中の窒素を主に吸着したのち、下側アルミナ層
5および上側吸着剤層6で吸着されない酸素を製品酸素
ガス(純度93%程度)として出口端3bから抜き出す
(吸着分離工程)。そして、この出口端3bから抜き出
した製品酸素ガスを出口パイプ3d,第1導出パイプ1
6,入口パイプ7aを経てレシーバータンク7に供給す
る。一方、右吸着槽4においては、その内部を入口パイ
プ4c,第2排気パイプ15,入口パイプ8aを介して
真空ポンプ8により減圧排気し、下側アルミナ層5の吸
着剤に吸着されている水分,炭酸ガス等と、上側吸着剤
層6の吸着剤に吸着されている窒素等を脱着させる(減
圧再生工程)。
Using the above mixed gas separation apparatus, oxygen gas and nitrogen gas can be separated from the raw air in the following manner. That is, in the first step (see FIG. 2),
The automatic opening / closing valves 12a, 15a, 16a, 20 are opened, and the automatic opening / closing valves 13a, 14a, 17a, 18a, 19a, 2
2a is closed. In this state, the raw air taken in by the raw air blower 1 is compressed and sent out to the raw air intake pipe 11, and supplied to the left adsorption tank 3 from the inlet end 3a via the first inlet pipe 12 and the inlet pipe 3c. In the left adsorption tank 3, the supplied raw air (compressed air) is first passed through the lower alumina layer 5, and the adsorbent of the lower alumina layer 5 adsorbs and removes moisture, carbon dioxide, and the like in the raw air. Then, the mixture is passed through the upper adsorbent layer 6 to mainly adsorb nitrogen in the compressed air with the adsorbent of the upper adsorbent layer 6, and then remove oxygen not adsorbed by the lower alumina layer 5 and the upper adsorbent layer 6. It is extracted from the outlet end 3b as product oxygen gas (purity of about 93%) (adsorption separation step). The product oxygen gas extracted from the outlet end 3b is supplied to the outlet pipe 3d and the first outlet pipe 1
6, supply to the receiver tank 7 via the inlet pipe 7a. On the other hand, the inside of the right adsorption tank 4 is evacuated to a reduced pressure by the vacuum pump 8 through the inlet pipe 4c, the second exhaust pipe 15, and the inlet pipe 8a, and the water adsorbed by the adsorbent of the lower alumina layer 5 is removed. , Carbon dioxide and the like, and nitrogen and the like adsorbed on the adsorbent of the upper adsorbent layer 6 are desorbed (reduced pressure regeneration step).

【0015】第2工程(図3参照)では、左吸着槽3に
おいて、上記の吸着分離工程を継続している。一方、右
吸着槽4においては、上記の減圧再生工程の最終段階で
自動開閉弁19aを開弁し、出口パイプ3dを通る製品
酸素ガスの一部を第2連結パイプ19,出口パイプ4d
を経由して出口端4bから右吸着槽4に供給する。この
製品酸素ガスの供給により、上側吸着剤層6の吸着剤か
らの窒素の脱着が促進され、再生効率が向上する(製品
パージ工程)。
In the second step (see FIG. 3), the above-mentioned adsorption separation step is continued in the left adsorption tank 3. On the other hand, in the right adsorption tank 4, the automatic opening / closing valve 19a is opened at the final stage of the above-mentioned decompression regeneration step, and a part of the product oxygen gas passing through the outlet pipe 3d is supplied to the second connecting pipe 19 and the outlet pipe 4d.
To the right adsorption tank 4 from the outlet end 4b. By supplying the product oxygen gas, the desorption of nitrogen from the adsorbent of the upper adsorbent layer 6 is promoted, and the regeneration efficiency is improved (product purging step).

【0016】第3工程(図4参照)では、自動開閉弁1
4a,18aを開弁し、自動開閉弁12a,15a,1
6a,19aを閉弁し、右吸着槽4の負圧(真空圧)を
利用し、(上記の吸着分離工程が終了した)左吸着槽3
の塔頂に残留している比較的酸素純度が高いガス(酸素
純度:21〜93%程度)を第1連結パイプ18を経由
して(上記の減圧再生工程が終了しており、右吸着槽4
を真空ポンプ8により減圧排気していない)右吸着槽4
の出口パイプ4dから回収する(回収工程の前半段
階)。一方、左吸着槽3においては、その内部を入口パ
イプ3c,第1排気パイプ14,入口パイプ8aを介し
て真空ポンプ8により減圧排気する。このため、自動開
閉弁22aを開弁し、左吸着槽3に対する原空ブロワ1
からの原料空気の供給を停止する。
In the third step (see FIG. 4), the automatic on-off valve 1
4a, 18a are opened, and the automatic on-off valves 12a, 15a, 1
6a and 19a are closed, and the negative pressure (vacuum pressure) of the right adsorption tank 4 is used to open the left adsorption tank 3 (the above-mentioned adsorption separation step is completed).
The gas having a relatively high oxygen purity (oxygen purity: about 21 to 93%) remaining at the top of the column is passed through the first connecting pipe 18 (the above-described reduced pressure regeneration step has been completed, and the right adsorption tank 4
Is not exhausted by the vacuum pump 8).
From the outlet pipe 4d (first half of the recovery process). On the other hand, the inside of the left adsorption tank 3 is evacuated and reduced by the vacuum pump 8 through the inlet pipe 3c, the first exhaust pipe 14, and the inlet pipe 8a. Therefore, the automatic on-off valve 22a is opened, and the original air blower 1 for the left adsorption tank 3 is opened.
Of supply of raw material air from is stopped.

【0017】第4工程(図5参照)では、自動開閉弁1
3aを開弁し、自動開閉弁22aを閉弁し、原空ブロワ
1により取り入れた原料空気を入口パイプ4cから右吸
着槽4に供給する。このとき、左吸着槽3の出口端3b
から右吸着槽4の出口端4bに、引き続き残留ガスを供
給する(回収工程の後半段階)。
In the fourth step (see FIG. 5), the automatic on-off valve 1
3a is opened, the automatic on-off valve 22a is closed, and the raw air taken in by the raw air blower 1 is supplied to the right adsorption tank 4 from the inlet pipe 4c. At this time, the outlet end 3b of the left adsorption tank 3
, The residual gas is continuously supplied to the outlet end 4b of the right adsorption tank 4 (the latter half of the recovery process).

【0018】第5工程(図6参照)では、自動開閉弁1
8aを閉弁し、左吸着槽3から右吸着槽4への残留ガス
の供給を終了する。この時点で、右吸着槽4の内部はま
だ負圧の状態にあり、これを大気圧付近にまで復圧する
ために、自動開閉弁17aを開弁し、自動開閉弁20を
閉弁し、レシーバータンク7内の製品酸素ガスを入口パ
イプ7a,バイパス用パイプ21,第2導出パイプ1
7,出口パイプ4dを経由して右吸着槽4に供給する。
このとき、右吸着槽4の入口端4aからは、引き続き原
空ブロワ1により取り入れた原料空気を供給する(復圧
工程)。
In the fifth step (see FIG. 6), the automatic on-off valve 1
8a is closed, and the supply of the residual gas from the left adsorption tank 3 to the right adsorption tank 4 is terminated. At this point, the inside of the right adsorption tank 4 is still under a negative pressure, and in order to restore the pressure to near atmospheric pressure, the automatic opening and closing valve 17a is opened, the automatic opening and closing valve 20 is closed, and the receiver is closed. The product oxygen gas in the tank 7 is supplied to the inlet pipe 7a, the bypass pipe 21, the second outlet pipe 1
7. Supply to the right adsorption tank 4 via the outlet pipe 4d.
At this time, the raw air taken in by the raw air blower 1 is continuously supplied from the inlet end 4a of the right adsorption tank 4 (pressure recovery step).

【0019】第6工程(図7参照)では、自動開閉弁2
0を開弁する。すなわち、全体としては、自動開閉弁1
3a,14a,17a,20を開弁し、自動開閉弁12
a,15a,16a,18a,19a,22aを閉弁す
る。その状態で、原空ブロワ1から送りだした圧縮空気
を原料空気取入パイプ11,第2導入パイプ13を経て
入口端4aから右吸着槽4に供給し、出口端4bから製
品酸素ガスを抜き出す。この第6工程は、上記の第1工
程に相当する工程であり、両吸着槽3,4の作用が入れ
替わったものである。そして、第6工程以降も、第2〜
第5工程と同様の工程(第2〜第5工程において、両吸
着槽3,4の作用が入れ替わった工程)を行う。このよ
うにして第1〜第5の工程を繰り返し行い、原料空気か
ら酸素ガスと窒素ガスとを分離する。
In the sixth step (see FIG. 7), the automatic on-off valve 2
0 is opened. That is, as a whole, the automatic on-off valve 1
3a, 14a, 17a and 20 are opened, and the automatic on-off valve 12 is opened.
a, 15a, 16a, 18a, 19a and 22a are closed. In this state, the compressed air sent from the raw air blower 1 is supplied to the right adsorption tank 4 from the inlet end 4a via the raw material air intake pipe 11 and the second introduction pipe 13, and product oxygen gas is extracted from the outlet end 4b. This sixth step is a step corresponding to the above-mentioned first step, in which the operations of both adsorption tanks 3 and 4 are interchanged. And, even after the sixth step, the second to second steps
A step similar to the fifth step (a step in which the operations of the two adsorption tanks 3 and 4 are switched in the second to fifth steps) is performed. In this way, the first to fifth steps are repeated to separate oxygen gas and nitrogen gas from the raw material air.

【0020】上記のように、この実施の形態では、2槽
の吸着槽3,4を用いるPSA法により、安価で、製品
酸素ガスを安定して分離発生することができる。しか
も、回収効率が良く、より少ない吸着剤量および少ない
動力で、効率良く原料空気から製品酸素ガスを分離発生
することができる。さらに、真空ポンプ8を休止させる
ことがなく、無駄に動力を消費することがない。また、
吸着剤の能力を十分に引出し利用することにより、高い
回収率で効濃度の目的成分ガスを混合ガスより分離発生
できる。
As described above, in this embodiment, the product oxygen gas can be separated and generated stably at low cost by the PSA method using the two adsorption tanks 3 and 4. Moreover, the product oxygen gas can be efficiently separated and generated from the raw material air with high recovery efficiency, a smaller amount of adsorbent and less power. Furthermore, the vacuum pump 8 is not stopped, and power is not wasted. Also,
By sufficiently drawing out and utilizing the capacity of the adsorbent, a target component gas having an effective concentration and a high concentration can be separated and generated from the mixed gas.

【0021】図8はこの発明の他の実施の形態を示して
いる。この実施の形態では、図1の混合ガス分離装置に
おいて、第2導入パイプ13の自動開閉弁13a上流側
部分から自動開閉弁25a付き分岐パイプ25が分岐
し、大気に開放されている。この実施の形態では、上記
の第4工程および第5工程において、自動開閉弁25a
が開弁し、右吸着槽4内の負圧(真空圧)を利用するこ
とにより、大気空気を分岐パイプ25に自然流入させた
のち、第2導入パイプ13を経由して入口端4aから右
吸着槽4に導入するようにしている(図9および図10
参照)。それ以外の部分は図1に示す実施の形態と同様
であり、同様の部分には同じ符号を付している。(すな
わち、第4工程および第5工程以外の工程は、図2〜図
4,図7に示す工程と同様である)
FIG. 8 shows another embodiment of the present invention. In this embodiment, in the mixed gas separation device of FIG. 1, a branch pipe 25 with an automatic opening / closing valve 25a branches from an upstream side of the automatic opening / closing valve 13a of the second introduction pipe 13, and is opened to the atmosphere. In this embodiment, in the fourth and fifth steps, the automatic on-off valve 25a
Is opened, atmospheric air is allowed to flow naturally into the branch pipe 25 by utilizing the negative pressure (vacuum pressure) in the right adsorption tank 4, and then the air flows right from the inlet end 4 a via the second introduction pipe 13. It is introduced into the adsorption tank 4 (FIGS. 9 and 10).
reference). Other parts are the same as those of the embodiment shown in FIG. 1, and the same parts are denoted by the same reference numerals. (That is, steps other than the fourth step and the fifth step are the same as the steps shown in FIGS. 2 to 4 and FIG. 7)

【0022】この実施の形態でも、図1に示す実施の形
態と同様の作用効果を奏する。しかも、この実施の形態
では、第4工程および第5工程において、原空ブロワ1
により原料空気を右吸着槽4に供給する際に、右吸着槽
4内の負圧(真空圧)により大気空気をも(原空ブロワ
1を通さずに)同時に供給しているため、原空ブロワ1
の容量を小さくすることができる。したがって、従来と
同容量の原空ブロワ1を用いる場合には、製品酸素ガス
の製造効率が向上する。
This embodiment has the same operation and effect as the embodiment shown in FIG. Moreover, in this embodiment, in the fourth step and the fifth step, the original air blower 1 is used.
When the raw material air is supplied to the right adsorption tank 4 by the above method, the atmospheric air is also supplied simultaneously (without passing through the original air blower 1) by the negative pressure (vacuum pressure) in the right adsorption tank 4, so that the original air Blower 1
Capacity can be reduced. Therefore, when the original air blower 1 having the same capacity as the conventional one is used, the production efficiency of the product oxygen gas is improved.

【0023】なお、図8に示す実施の形態において、第
4工程および第5工程の一方だけに分岐パイプ25の自
動開閉弁25aを開閉してもよい。
In the embodiment shown in FIG. 8, the automatic opening / closing valve 25a of the branch pipe 25 may be opened and closed only in one of the fourth step and the fifth step.

【0024】また、この発明が対象とする混合ガスの分
離としては、例えば、空気からの酸素ガスの分離、また
は工業用ガス製造中の混合ガスからの特定有効ガス(例
えば水素,一酸化炭素,ハイドロカーボン類等のあらゆ
る有効ガス)の濃縮,回収あるいは有毒ガスを含んだガ
スの浄化等を挙げることができる。また、本発明で用い
る吸着剤としては、ゼオライト,シリカゲル,活性アル
ミナ,活性炭等の粒状物が挙げられ、単独でもしくは併
せて用いられる。例えば、窒素の吸着剤としてはゼオラ
イト,酸素の吸着剤としてはカーボン,炭酸ガスに対し
てはゼオライト等が用いられる。また、除湿用としては
シリカゲル,活性アルミナが好適に用いられ、空気中の
ハイドロカーボンの吸着に対しては活性炭等が用いられ
る。
The separation of the mixed gas to which the present invention is applied includes, for example, separation of oxygen gas from air or specific effective gas (for example, hydrogen, carbon monoxide, Concentration and recovery of any effective gas such as hydrocarbons, or purification of a gas containing a toxic gas. Examples of the adsorbent used in the present invention include granules such as zeolite, silica gel, activated alumina, and activated carbon, and they are used alone or in combination. For example, zeolite is used as a nitrogen adsorbent, carbon is used as an oxygen adsorbent, zeolite is used as a carbon dioxide adsorbent, and the like. Silica gel and activated alumina are preferably used for dehumidification, and activated carbon or the like is used for adsorption of hydrocarbons in the air.

【0025】[0025]

【発明の効果】以上のように、この発明の混合ガス分離
方法によれば、2槽の吸着槽を用いるPSA法により、
製品ガスを安定して分離発生させることができる。しか
も、回収工程では、一方の吸着槽への原料ガスの導入を
休止した状態で、この一方の吸着槽に他方の吸着槽から
残留ガスを回収するようにしているため、大きな圧力差
を利用した回収が行える。したがって、回収工程での回
収効率が良く、より少ない吸着剤量および少ない動力
で、効率良く原料ガスから製品ガスを分離発生すること
ができる。さらに、両吸着槽の減圧脱着排気を休止する
ことがなく、減圧脱着排気のために無駄に動力を消費す
ることがなく、減圧脱着排気のための手段(ブロアー
等)の効率低下を招くこともない。この発明は、主に空
気から酸素ガスを分離発生する用途に用いられるが、混
合ガスより有益な成分ガスを分離発生することにも利用
できる。
As described above, according to the mixed gas separation method of the present invention, the PSA method using two adsorption tanks can be used.
Product gas can be separated and generated stably. Moreover, in the recovery step, while the introduction of the raw material gas into one of the adsorption tanks is stopped, the residual gas is recovered from the other adsorption tank to the one adsorption tank, so that a large pressure difference is used. Can be collected. Therefore, the recovery efficiency in the recovery step is good, and the product gas can be efficiently separated and generated from the raw material gas with a smaller amount of adsorbent and less power. Further, the vacuum desorption / exhaust of both adsorption tanks is not paused, the power is not wasted for the vacuum desorption / exhaustion, and the efficiency of the vacuum desorption / exhaust means (blower, etc.) is reduced. Absent. The present invention is mainly used for separating and generating oxygen gas from air, but can also be used for separating and generating more useful component gas than mixed gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に用いる混合ガス分離装置の構成図で
ある。
FIG. 1 is a configuration diagram of a mixed gas separation device used in the present invention.

【図2】上記混合ガス分離装置の作用を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing the operation of the mixed gas separation device.

【図3】上記混合ガス分離装置の作用を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing an operation of the mixed gas separation device.

【図4】上記混合ガス分離装置の作用を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing the operation of the mixed gas separation device.

【図5】上記混合ガス分離装置の作用を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing the operation of the mixed gas separation device.

【図6】上記混合ガス分離装置の作用を示す説明図であ
る。
FIG. 6 is an explanatory view showing the operation of the mixed gas separation device.

【図7】上記混合ガス分離装置の作用を示す説明図であ
る。
FIG. 7 is an explanatory view showing the operation of the mixed gas separation device.

【図8】上記混合ガス分離装置の他の実施の形態を示す
構成図である。
FIG. 8 is a configuration diagram showing another embodiment of the mixed gas separation device.

【図9】上記他の実施の形態の作用を示す説明図であ
る。
FIG. 9 is an explanatory diagram showing the operation of the other embodiment.

【図10】上記他の実施の形態の作用を示す説明図であ
る。
FIG. 10 is an explanatory diagram showing the operation of the other embodiment.

【図11】従来例の作用を示す説明図である。FIG. 11 is an explanatory diagram showing the operation of a conventional example.

【符号の説明】[Explanation of symbols]

1 原空ブロワ 3 左吸着槽 4 右吸着槽 7 レシーバータンク 10 真空ポンプ DESCRIPTION OF SYMBOLS 1 Original air blower 3 Left adsorption tank 4 Right adsorption tank 7 Receiver tank 10 Vacuum pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大八木 信之 大阪府堺市築港新町2丁6番地40 大同ほ くさん株式会社堺工場内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Nobuyuki Oyagi, Inventor 2-6-6 Chikushinmachi, Sakai-shi, Osaka Daido Hokusan Co., Ltd. Sakai Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 特定ガスを選択的に吸着する吸着剤を充
填した第1および第2の吸着槽と製品ガス貯槽とを設
け、下記の(A)〜(E)の5工程をこの順に操作した
のち第1吸着槽と第2吸着槽を逆にして再度下記の
(A)〜(E)の5工程をこの順に操作するという10
工程を繰り返して行うようにしたことを特徴とする混合
ガス分離方法。 (A)減圧脱着排気を終了した第1吸着槽のガス出口と
吸着を終了した第2吸着槽のガス出口を連通して第1吸
着槽に第2吸着槽に残留するガスを回収し、第2吸着槽
のガス入口からこの第2吸着槽の吸着剤に吸着された特
定ガスを減圧脱着し排気する工程。 (B)残留ガスの回収を継続する第1吸着槽のガス入口
に原料ガスを導入し、第2吸着槽での減圧脱着排気を継
続する工程。 (C)残留ガスの回収を終了し原料ガスの導入を継続す
る第1吸着槽のガス出口に製品ガス貯槽の製品ガスを導
入し、第2吸着槽での減圧脱着排気を継続する工程。 (D)製品ガスの導入を終了し原料ガスの導入を継続す
る第1吸着槽の吸着剤に原料ガス中の特定ガスを吸着さ
せ、吸着剤に吸着されないガスを製品ガスとしてガス出
口から発生させて製品ガス貯槽に導入し、第2吸着槽で
の減圧脱着排気を継続する工程。 (E)原料ガスの導入および製品ガスの発生を継続する
第1吸着槽のガス出口から発生した製品ガスの一部を第
2吸着槽のガス出口に導入し、第2吸着槽での減圧脱着
排気を継続する工程。
1. A first and a second adsorption tank filled with an adsorbent for selectively adsorbing a specific gas and a product gas storage tank are provided, and the following five steps (A) to (E) are operated in this order. After that, the first adsorption tank and the second adsorption tank are reversed, and the following five steps (A) to (E) are operated again in this order.
A mixed gas separation method characterized by repeating the steps. (A) The gas remaining in the second adsorption tank is recovered in the first adsorption tank through communication between the gas outlet of the first adsorption tank that has been decompressed and exhausted and the gas outlet of the second adsorption tank that has been adsorbed. (2) a step of depressurizing and desorbing the specific gas adsorbed by the adsorbent of the second adsorption tank from the gas inlet of the adsorption tank and exhausting the gas. (B) a step of introducing a raw material gas into the gas inlet of the first adsorption tank where the recovery of the residual gas is continued, and continuing the decompression / desorption exhaust in the second adsorption tank; (C) A step in which the product gas in the product gas storage tank is introduced into the gas outlet of the first adsorption tank where the recovery of the residual gas is completed and the introduction of the source gas is continued, and the desorption / desorption exhaust in the second adsorption tank is continued. (D) The specific gas in the raw material gas is adsorbed by the adsorbent in the first adsorption tank in which the introduction of the product gas is completed and the introduction of the raw material gas is continued, and a gas not adsorbed by the adsorbent is generated from the gas outlet as a product gas. And introducing the product gas into the product gas storage tank and continuing the decompression and desorption in the second adsorption tank. (E) A part of the product gas generated from the gas outlet of the first adsorption tank, which continues the introduction of the raw material gas and the generation of the product gas, is introduced into the gas outlet of the second adsorption tank, and desorbed and decompressed in the second adsorption tank. The process of continuing exhaust.
JP09682497A 1997-04-15 1997-04-15 Mixed gas separation method Expired - Fee Related JP3755622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09682497A JP3755622B2 (en) 1997-04-15 1997-04-15 Mixed gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09682497A JP3755622B2 (en) 1997-04-15 1997-04-15 Mixed gas separation method

Publications (2)

Publication Number Publication Date
JPH10286425A true JPH10286425A (en) 1998-10-27
JP3755622B2 JP3755622B2 (en) 2006-03-15

Family

ID=14175320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09682497A Expired - Fee Related JP3755622B2 (en) 1997-04-15 1997-04-15 Mixed gas separation method

Country Status (1)

Country Link
JP (1) JP3755622B2 (en)

Also Published As

Publication number Publication date
JP3755622B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP2634138B2 (en) Separation method of gas components by vacuum swing adsorption method
US6641645B1 (en) Vacuum swing adsorption process with controlled waste gas withdrawal
CA2189232C (en) Method of recovering oxygen-rich gas
JPH04227812A (en) Method for recovering nitrogen gas from air
JP3310249B2 (en) Oxygen production method and apparatus using one adsorber and one blower
JP3464766B2 (en) PSA method using simultaneous evacuation of top and bottom of adsorbent bed
JP2006239692A (en) Pressure swing adsorption process and apparatus
JPH07265635A (en) Method for selective separation of component relatively strong in adsorbing power from component relatively weak in adsorbing power in feed material gas mixture
JPH09150028A (en) Single bed pressure swing type adsorption method for recovering oxygen from air
JP3050881B2 (en) How to separate oxygen from air
JPH08224428A (en) Continuous method for separating component of gas mixture bymeans of pressure swing adsorption
JPH0788316A (en) Separation of nitrogen-enriched gas and device therefor
JPH0321207B2 (en)
JPH0871350A (en) Simultaneous stage pressure variation type adsorption method
JPH10314531A (en) Method and apparatus for pressure swinging type adsorption
JPH07745A (en) Gas separation
US5997611A (en) Single vessel gas adsorption system and process
US6428607B1 (en) Pressure swing adsorption process which provides product gas at decreasing bed pressure
US4848985A (en) Separation of gas mixtures
JPH04265104A (en) Pressure swing type adsorbing method
JP3755622B2 (en) Mixed gas separation method
JP3654661B2 (en) Oxygen generation method by pressure fluctuation adsorption separation method
TW587955B (en) Pressure swing adsorption process with controlled internal depressurization flow
JPS6238281B2 (en)
JPH0938443A (en) Gas separator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees