JPH102823A - Differential pressure measuring device - Google Patents

Differential pressure measuring device

Info

Publication number
JPH102823A
JPH102823A JP15540996A JP15540996A JPH102823A JP H102823 A JPH102823 A JP H102823A JP 15540996 A JP15540996 A JP 15540996A JP 15540996 A JP15540996 A JP 15540996A JP H102823 A JPH102823 A JP H102823A
Authority
JP
Japan
Prior art keywords
differential pressure
signal
value
differential
absolute value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15540996A
Other languages
Japanese (ja)
Other versions
JP3223501B2 (en
Inventor
Eiji Taya
英治 田谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP15540996A priority Critical patent/JP3223501B2/en
Publication of JPH102823A publication Critical patent/JPH102823A/en
Application granted granted Critical
Publication of JP3223501B2 publication Critical patent/JP3223501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the load on a host device by determining the variation of a detected differential pressure signal from the differential pressure signal of one sampling period before, performing a primary delay operation to the variation, and outputting the resulting value as a rocking signal. SOLUTION: A differential pressure detecting part 1 measures the pressure to be measured as discrete value, and outputs a differential pressure signal to a signal shaping part 2 and a differential pressure absolute value converting part 21 every prescribed sampling period. The signal noise-removed and shaped by the shaping part 2 is outputted from a signal converting part 3. The converting part 21 determines the difference of the differential pressure signal from the differential pressure signal of one sampling period before, converts the differential value to an absolute value, and outputs it to a digital primary delay filter 22. The filter 22 reads the time constant held in a memory 23 in order to determine the average value of the differential absolute value and smoothes the differential absolute value. A rocking signal converting part 24 converts the magnitude of the differential absolute value to a prescribed output signal, and outputs it as rocking signal. Thus, the load on a host computer side can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、揺動信号の計算処
理を、簡便に処理可能に構成して、差圧測定装置側での
揺動信号の計算処理を可能にして、装置の診断に必要な
整理された揺動情報のみを上位装置に出力可能とした差
圧測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating a swing signal on a differential pressure measuring device, which is capable of easily calculating a swing signal. The present invention relates to a differential pressure measuring device capable of outputting only necessary arranged swing information to a host device.

【0002】[0002]

【従来の技術】図2は従来より一般に使用されている従
来例の構成説明図で、例えば、「横河技報」 Vol.36
No.1(通巻167) P25 図8 横河電機株式会社発行
1992年1月20日発行に示されている。図におい
て、1は、測定対象の差圧を、あるサンプリング周期で
測定して、差圧力値データを出力する差圧検出部であ
る。
2. Description of the Related Art FIG. 2 is a diagram illustrating the configuration of a conventional example generally used in the prior art. For example, "Yokogawa Technical Report" Vol.
No.1 (Vol.167) P25 Figure 8 Published by Yokogawa Electric Corporation
Issued January 20, 1992. In the figure, reference numeral 1 denotes a differential pressure detecting unit that measures a differential pressure of a measurement target at a certain sampling cycle and outputs differential pressure value data.

【0003】2は差圧検出部1の出力信号を波形整形す
る信号整形部である。3は信号整形部2からの出力信号
を所定スパン幅、例えば、4〜20mAスパン幅に対応
する様に信号変換して出力する信号変換部である。
[0005] Reference numeral 2 denotes a signal shaping unit for shaping the waveform of the output signal of the differential pressure detecting unit 1. Reference numeral 3 denotes a signal conversion unit that converts an output signal from the signal shaping unit 2 so as to correspond to a predetermined span width, for example, a 4 to 20 mA span width, and outputs the converted signal.

【0004】以上の構成において、測定差圧Pmが差圧
検出部1で検出され、測定差圧Pmに対応した電気信号
出力Ioutが信号変換部3より出力される。
In the above configuration, the measured differential pressure Pm is detected by the differential pressure detecting section 1, and an electric signal output I out corresponding to the measured differential pressure Pm is output from the signal converting section 3.

【0005】[0005]

【発明が解決しようとする課題】差圧測定装置は、主に
オリフィスと一緒に利用することにより、配管内を流れ
る流体の流量を測定する流量計とて使われる。配管中に
設置されたオリフィスによりその前後に発生した圧力差
は、導圧管を介して差圧測定装置まで伝えられ測定され
る。
The differential pressure measuring device is mainly used together with an orifice to be used as a flow meter for measuring a flow rate of a fluid flowing in a pipe. The pressure difference generated before and after the orifice installed in the pipe is transmitted to and measured by a differential pressure measuring device via a pressure guiding tube.

【0006】ここで発生するトラブルとして、導圧管の
詰まりが挙げられる。導圧管が詰まることにより、配管
中の圧力が正しく差圧測定装置に伝わらなくなり、誤っ
た圧力信号を出力してしまう。
The troubles that occur here include clogging of the pressure guiding tube. When the pressure guiding tube is clogged, the pressure in the piping is not correctly transmitted to the differential pressure measuring device, and an erroneous pressure signal is output.

【0007】現状では、保守作業員が定期的に現場で、
詰まりの点検を行ったり、運転員が制御コンピュータの
モニターや記録計に出力される差圧測定装置の指示が通
常と違うことから、詰まりを推測している。
[0007] At present, maintenance workers are regularly on-site,
The clogging is presumed from checking the clogging and the operator's instructions of the differential pressure measuring device output to the monitor of the control computer or the recorder from the normal.

【0008】しかし、このような方法では、点検のため
の工数が発生したり、詰まり発生の判断が人により異な
るため検出が不正確となり、適切な処置が遅れてしまう
可能性がある。
However, in such a method, there is a possibility that a man-hour for inspection is generated, and the detection of the clogging is inaccurate because the judgment of the occurrence of the clogging is different for each person, and an appropriate measure is delayed.

【0009】ところで、図3に示す如く、差圧測定装置
で測定する圧力は、常に一定ということはなく、必ず揺
動成分を含んでいる。今まで、この揺動成分は、プラン
ト制御の信号としては不要であったため、ノイズとし
て、差圧測定装置内もしくは制御コンピュータ内で取り
除かれている。
By the way, as shown in FIG. 3, the pressure measured by the differential pressure measuring device is not always constant, but always includes a swing component. Until now, this oscillating component was unnecessary as a signal for plant control, and has been removed as noise in the differential pressure measuring device or the control computer.

【0010】しかし、図4に示す如く、導圧管に詰まり
が発生すると、この揺動成分が小さくなり、完全に詰ま
ると揺動成分は無くなり、圧力値は一定となる。このこ
とから、この揺動成分を利用して、揺動成分の変化を定
量的に捉えることにより、詰まりの発生の予測が可能と
なる。このように、今まで使われていなかった、信号に
含まれる揺動成分を利用することにより、プラントの状
態を知ることが出来るようになる。
However, as shown in FIG. 4, when the pressure guiding tube is clogged, the oscillating component is reduced, and when the pressure guiding tube is completely clogged, the oscillating component is eliminated and the pressure value becomes constant. From this, it is possible to predict the occurrence of clogging by using this swing component to quantitatively grasp the change in the swing component. Thus, the state of the plant can be known by using the swing component included in the signal, which has not been used until now.

【0011】いま、測定される圧力値P(t)は、一定時間
毎に更新される離散値とする。揺動の大きさを計算する
にあたって、現在の圧力値P(t)と一つ前の測定値P(t-1)
の差dP(t)を計算する。 dP(t) = P(t) - P(t-1)
Now, the measured pressure value P (t) is a discrete value that is updated at regular intervals. In calculating the magnitude of oscillation, the current pressure value P (t) and the immediately preceding measured value P (t-1)
The difference dP (t) is calculated. dP (t) = P (t)-P (t-1)

【0012】揺動が大きければ、このdP(t)の値が大き
くなる。しかし、この値は各時間毎に大きく変化するた
め、このままでは、詰まり検出のパラメータとしては活
用できない。何等かの方法で平滑化する必要がある。
そこで、dP(t)のある時間内の平均値を揺動成分の大き
さX(t)とする。
If the swing is large, the value of dP (t) becomes large. However, since this value greatly changes every time, it cannot be used as a clogging detection parameter as it is. It needs to be smoothed in some way.
Therefore, the average value of dP (t) within a certain time is defined as the magnitude X (t) of the swing component.

【0013】この場合、図5に示す如く、移動平均を計
算するにあたり、平均値を算出する測定値の個数分だけ
メモリ領域が必要である。測定値の個数n = 20とする
と、これに測定値の計算のための1つのメモリ領域が必
要なので、21コのメモリ領域が必要となる。
In this case, as shown in FIG. 5, in calculating the moving average, memory areas are required for the number of measured values for calculating the average value. If the number of measured values is n = 20, this requires one memory area for calculating the measured values, so that 21 memory areas are required.

【0014】図5は、時間tで新しい測定値を読み取る
と、メモリMeに保持された一番古い測定値を廃棄Ab
して、新しい測定値をメモリMeに記憶する。全てのメ
モリの内容を和算し、全メモリ数で割り、平均値を求め
ることを表わす。また、平均値を計算するにあたり、測
定値の個数分の和算を行い、結果を個数分で除算する必
要がある。 X(t) = { dP(t-n) + dP(t-n+1) + ・ ・ ・ + dP(t-1) + d
P(t) } / ( n + 1 )
[0014] FIG. 5, and read the new measured value at time t, discarding the oldest measurement values held in the memory Me A b
Then, the new measured value is stored in the memory Me. This means that the contents of all memories are added, divided by the total number of memories, and an average value is obtained. In addition, when calculating the average value, it is necessary to add up the number of measured values and divide the result by the number. X (t) = (dP (tn) + dP (t-n + 1) + ・ ・ ・ + dP (t-1) + d
P (t)} / (n + 1)

【0015】この様な複雑な計算が必要とされるので、
揺動に関する測定値のデータを上位のコンピュータに送
り計算しなければ処理ができない。。
Since such a complicated calculation is required,
The data cannot be processed unless the data of the measurement value relating to the swing is sent to a host computer and calculated. .

【0016】しかしながら、この様な装置において、差
圧測定装置から上位のコンピュータへ、差圧の測定信号
に加えて、揺動に関する測定値まで全部送るのは、通信
速度等の通信能力の制限から困難である。揺動に関する
測定値に付いては、差圧の測定信号に比較して、連続的
なデータである必要はなく、ある程度、間欠的なデータ
でも診断情報としては、十分と考えられる。
However, in such a device, in addition to the differential pressure measurement signal, all of the measured values relating to fluctuations are sent from the differential pressure measuring device to the host computer due to the limitation of the communication capability such as the communication speed. Have difficulty. It is not necessary that the measurement value relating to the swing is continuous data as compared with the measurement signal of the differential pressure, and it is considered that intermittent data to some extent is sufficient as diagnostic information.

【0017】そこで、この揺動成分の処理を差圧測定装
置側で処理できる様に構成し、診断に必要な情報を適切
に得られる様にすることが求められる。
Therefore, it is required that the processing of the oscillating component be processed on the differential pressure measuring device side so that information necessary for diagnosis can be appropriately obtained.

【0018】本発明は、これらの問題点を解決するもの
である。本発明の目的は、揺動信号の計算処理を、簡便
に処理可能に構成して、差圧測定装置側での揺動信号の
計算処理を可能にして、装置の診断に必要な整理された
揺動情報のみを上位装置に出力可能とした差圧測定装置
を提供するにある。
The present invention solves these problems. SUMMARY OF THE INVENTION An object of the present invention is to arrange a calculation process of a swing signal so as to be easily processable, to enable a calculation process of a swing signal on a differential pressure measuring device side, and to organize the necessary process for diagnosis of the device. It is an object of the present invention to provide a differential pressure measuring device capable of outputting only swing information to a host device.

【0019】[0019]

【課題を解決するための手段】この目的を達成するため
に、本発明は、所定のサンプリング周期毎に差圧を検出
して差圧信号を出力する差圧検出部と、該差圧検出部で
検出された差圧信号から揺動成分を除去する信号整形部
と、該信号整形部で整形された差圧信号を所定の出力信
号に変換する差圧信号変換部とを具備する差圧測定装置
において、前記差圧検出部で検出された差圧信号と1サ
ンプリング周期前に検出された差圧信号との変化量を計
算する差分絶対値計算部と、該変化量に対して一次遅れ
演算を行い該演算値を揺動信号として出力する一次遅れ
演算部とを具備したことを特徴とする差圧測定装置を構
成したものである。
In order to achieve the above object, the present invention provides a differential pressure detecting section for detecting a differential pressure at a predetermined sampling period and outputting a differential pressure signal; Differential pressure measurement, comprising: a signal shaping section for removing a swing component from the differential pressure signal detected in step (a); and a differential pressure signal converting section for converting the differential pressure signal shaped by the signal shaping section into a predetermined output signal. In the apparatus, a difference absolute value calculation unit for calculating an amount of change between the differential pressure signal detected by the differential pressure detection unit and the differential pressure signal detected one sampling cycle before, and a first-order lag calculation for the amount of change And a first-order lag calculating section for outputting the calculated value as a swing signal.

【0020】[0020]

【作用】以上の構成において、差圧検出部は、例えば、
半導体圧力センサとCPUとを使用して、測定対象の圧
力を離散値として測定し、所定サンプリング周期毎に出
力している。
In the above configuration, for example, the differential pressure detecting section
Using a semiconductor pressure sensor and a CPU, the pressure of a measurement target is measured as a discrete value, and is output at predetermined sampling intervals.

【0021】差圧検出部から出力された差圧信号は、信
号整形部と差分絶対値変換部とに出力される。信号整形
部へ出力された信号値は、信号整形されてノイズが除去
され、差圧信号として信号変換部より出力される。
The differential pressure signal output from the differential pressure detecting section is output to a signal shaping section and a differential absolute value converting section. The signal value output to the signal shaping unit is shaped to remove noise, and is output from the signal conversion unit as a differential pressure signal.

【0022】一方、差分絶対値変換部へ出力された差圧
信号は、差分絶対値変換部において、1サンプリング周
期前に出力された1つ前の差圧信号との差を計算され、
その差分値を絶対値に変換し、デジタル一次遅れフィル
タへ出力される。
On the other hand, a difference between the differential pressure signal output to the differential absolute value converter and the previous differential pressure signal output one sampling cycle before is calculated by the differential absolute value converter.
The difference value is converted to an absolute value and output to a digital first-order lag filter.

【0023】デジタル一次遅れフィルタでは、差分絶対
値の平均的な値を求める為に、メモリに保持されている
時定数を読んで、デジタル一次遅れフィルタで差分絶対
値を平滑している。
The digital first-order lag filter reads the time constant stored in the memory and smoothes the absolute value of the difference with the digital first-order lag filter in order to obtain an average value of the difference absolute value.

【0024】揺動信号変換部では、デジタル一次遅れフ
ィルタから出力される平滑された差分絶対値の大きさを
所定の出力信号へ変換して、揺動信号として出力され
る。以下、実施例に基づき詳細に説明する。
The swing signal converter converts the magnitude of the smoothed absolute difference value output from the digital first-order lag filter into a predetermined output signal, and outputs the output signal as a swing signal. Hereinafter, a detailed description will be given based on embodiments.

【0025】[0025]

【発明の実施の形態】図1は本発明の一実施例の要部構
成説明図である。図において、図2と同一記号の構成は
同一機能を表わす。以下、図2と相違部分のみ説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of a main part of an embodiment of the present invention. In the figure, the configuration of the same symbol as FIG. 2 represents the same function. Hereinafter, only differences from FIG. 2 will be described.

【0026】21は、差圧検出部1から出力される差圧
信号と一つ前に出力された差圧信号との差を取り、その
値を絶対値に変換する差分絶対値変換部である。22
は、差分絶対値を安定した値にするデジタル一次遅れフ
ィルタである。23は、デジタル一次遅れフィルタ22
で使用される設定可能な時定数を記憶するメモリであ
る。
Numeral 21 denotes a difference absolute value converter for taking the difference between the differential pressure signal output from the differential pressure detector 1 and the differential pressure signal output immediately before, and converting the difference into an absolute value. . 22
Is a digital first-order lag filter that makes the difference absolute value a stable value. 23 is a digital first-order lag filter 22
This is a memory for storing a settable time constant used in.

【0027】差分絶対値変換部21とデジタル一次遅れ
フィルタ22とにより、差圧信号に含まれている、揺動
成分の大きさを計算している。24は、デジタル一次遅
れフィルタ22から出力される、平滑された差分絶対値
を揺動信号として、所定の信号、例えば、デジタル信号
へ変換する揺動信号変換部である。
The magnitude of the swing component included in the differential pressure signal is calculated by the absolute difference converter 21 and the digital first-order lag filter 22. Reference numeral 24 denotes an oscillating signal converter that converts the smoothed absolute difference value output from the digital first-order lag filter 22 into a predetermined signal, for example, a digital signal, as an oscillating signal.

【0028】以上の構成において、差圧検出部1は、例
えば、半導体圧力センサとCPUとを使用して、測定対
象の圧力を離散値として測定し、所定サンプリング周期
毎に出力している。
In the above configuration, the differential pressure detecting section 1 measures the pressure of the object to be measured as a discrete value by using, for example, a semiconductor pressure sensor and a CPU, and outputs it at predetermined sampling intervals.

【0029】差圧検出部1から出力された差圧信号は、
信号整形部2と差分絶対値変換部21とに出力される。
信号整形部2へ出力された信号値は、信号整形されてノ
イズが除去され、図2従来例と同様の差圧信号として、
信号変換部3より出力される。
The differential pressure signal output from the differential pressure detector 1 is
The signal is output to the signal shaping unit 2 and the absolute difference conversion unit 21.
The signal value output to the signal shaping unit 2 is subjected to signal shaping to remove noise, and as a differential pressure signal similar to the conventional example in FIG.
The signal is output from the signal converter 3.

【0030】一方、差分絶対値変換部21へ出力された
差圧信号は、差分絶対値変換部21において、1サンプ
リング周期前に出力された1つ前の差圧信号との差を計
算され、その差分値を絶対値に変換し、デジタル一次遅
れフィルタ22へ出力される。
On the other hand, a difference between the differential pressure signal output to the differential absolute value converter 21 and the immediately preceding differential pressure signal output one sampling cycle before is calculated in the differential absolute value converter 21. The difference value is converted into an absolute value and output to the digital first-order lag filter 22.

【0031】デジタル一次遅れフィルタ22では、差分
絶対値の平均的な値を求める為に、メモリ23に保持さ
れている時定数を読んで、デジタル一次遅れフィルタ2
2で差分絶対値を平滑している。
The digital first-order lag filter 22 reads the time constant held in the memory 23 in order to obtain an average value of the absolute value of the difference.
2, the absolute difference value is smoothed.

【0032】揺動信号変換部24では、デジタル一次遅
れフィルタ22から出力される、平滑された差分絶対値
の大きさを所定の出力信号へ変換して、揺動信号Ia
して出力される。
[0032] In the oscillating signal converter 24, is outputted from the digital first-order lag filter 22, the magnitude of the smoothed difference absolute value is converted into a predetermined output signal is output as oscillating signal I a.

【0033】しかして、いま、測定される圧力値P(t)
は、一定時間毎に更新される離散値とする。揺動の大き
さを計算するにあたって、差分絶対値変換部21におい
て、現在の圧力値P(t)と一つ前の測定値P(t-1)の差dP
(t)を計算する。 dP(t) = P(t) - P(t-1)
Thus, the measured pressure value P (t)
Is a discrete value that is updated every fixed time. In calculating the magnitude of the swing, the difference dP between the current pressure value P (t) and the immediately preceding measured value P (t-1) is calculated by the difference absolute value converter 21.
Calculate (t). dP (t) = P (t)-P (t-1)

【0034】揺動が大きければ、このdP(t)の値が大き
くなる。しかし、この値は各時間毎に大きく変化するた
め、このままでは、詰まり検出のパラメータとしては活
用できない。何等かの方法で平滑化する必要がある。
If the swing is large, the value of dP (t) becomes large. However, since this value greatly changes every time, it cannot be used as a clogging detection parameter as it is. It needs to be smoothed in some way.

【0035】本発明においては、平滑化処理の方法とし
て、一次遅れフィルタ22を使用した。揺動成分X(t)
は、 X(t) = X(t-1) + K{ dP(t) - X(t-1) } K = 1 -exp( -Ts/T) Ts:離散値の出力周期 T :時定数 となる。
In the present invention, a first-order lag filter 22 is used as a method of the smoothing processing. Swing component X (t)
X (t) = X (t-1) + K {dP (t)-X (t-1)} K = 1 -exp (-Ts / T) Ts: Output period of discrete values T: Time constant Becomes

【0036】この結果、保持しておく変数は、X(t-1)と
Kのみであり、算出に必要な計算能力も非常に小さくて
良い。従って、計算処理能力が小さいCPU等しか載置
されてないのが一般的な差圧測定装置でも、計算処理が
可能となり、差圧測定装置側で揺動信号の計算処理を処
理することができ、上位のコンピュタ側の負担を軽くす
ることができる。
As a result, the variables to be stored are X (t-1) and
Only K is required, and the computational power required for the calculation may be very small. Therefore, even in the case of a general differential pressure measuring device in which only a CPU or the like having a small processing capacity is mounted, the calculation process becomes possible, and the differential pressure measuring device can process the swing signal calculation process. Thus, the burden on the upper computer can be reduced.

【0037】また、図2従来例の如き、移動平均を使っ
た方法では、平滑の度合は平均値算出に使われる測定値
の個数で決まるが、本発明の如き、一次遅れフィルタ2
2を使用した方法では、Kの値を変えることにより簡単
に変えることが出来る。従って、揺動を計算する対象に
よって柔軟に対応可能である。以上のように、本発明の
方式は計算処理、メモリ領域に関して全てにわたって有
利となる。
In the method using the moving average as in the conventional example shown in FIG. 2, the degree of smoothing is determined by the number of measured values used for calculating the average value.
In the method using 2, the value can be easily changed by changing the value of K. Therefore, it is possible to flexibly respond to the object for which the swing is calculated. As described above, the method of the present invention is advantageous in all respects of calculation processing and memory area.

【0038】[0038]

【発明の効果】以上詳細に説明したように、本発明にお
いては、揺動信号の平滑化処理の方法として、一次遅れ
フィルタ22を使用した。この結果、保持しておく変数
は、少なくて済み、算出に必要な計算能力も非常に小さ
くて良い。
As described above in detail, in the present invention, the first-order lag filter 22 is used as a method of smoothing the swing signal. As a result, the number of variables to be stored may be small, and the calculation capability required for the calculation may be very small.

【0039】従って、計算処理能力が小さいCPU等し
か載置されてないのが一般的な差圧測定装置でも、計算
処理が可能となり、揺動信号の計算処理を、差圧測定装
置側で処理することができ、上位のコンピュタ側の負担
を軽くすることができる。
Therefore, even in a general differential pressure measuring device in which only a CPU or the like having a small calculation processing capacity is mounted, the calculation process can be performed, and the calculation process of the swing signal is performed by the differential pressure measuring device side. And the burden on the host computer can be reduced.

【0040】また、従来例の如き、移動平均を使った方
法では、平滑の度合は平均値算出に使われる測定値の個
数で決まるが、本発明の如き、一次遅れフィルタを使用
した方法では、常数の値を変えることにより簡単に変え
ることが出来る。従って、揺動を計算する対象によって
柔軟に対応可能である。
In the method using the moving average as in the conventional example, the degree of smoothing is determined by the number of measured values used for calculating the average value. However, in the method using the first-order lag filter as in the present invention, It can be easily changed by changing the value of the constant. Therefore, it is possible to flexibly respond to the object for which the swing is calculated.

【0041】以上のように、本発明の方式は計算処理、
メモリ領域に関して全てにわたって有利となる。
As described above, the method of the present invention employs calculation processing,
This is advantageous over the entire memory area.

【0042】従って、揺動信号の計算処理を、簡便に処
理可能に構成して、差圧測定装置側での揺動信号の計算
処理を可能にして、装置の診断に必要な整理された揺動
情報のみを上位装置に出力可能とした差圧測定装置が得
られる。
Therefore, the swing signal calculation processing is configured to be easily processable, and the swing signal calculation processing on the differential pressure measuring device side is enabled, so that the sorted swing necessary for the diagnosis of the device is obtained. A differential pressure measuring device capable of outputting only dynamic information to a host device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.

【図2】従来より一般に使用されている従来例の構成説
明図である。
FIG. 2 is an explanatory diagram of a configuration of a conventional example generally used in the related art.

【図3】図2の動作説明図である。FIG. 3 is an operation explanatory diagram of FIG. 2;

【図4】図2の動作説明図である。FIG. 4 is an operation explanatory diagram of FIG. 2;

【図5】図2の動作説明図である。FIG. 5 is an operation explanatory diagram of FIG. 2;

【符号の説明】[Explanation of symbols]

1 差圧検出部 2 信号整形部 3 信号変換部 21 差分絶対値変換部 22 デジタル一次遅れフィルタ 23 メモリ 24 揺動信号変換部 REFERENCE SIGNS LIST 1 differential pressure detecting section 2 signal shaping section 3 signal converting section 21 absolute difference value converting section 22 digital first order lag filter 23 memory 24 swing signal converting section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定のサンプリング周期毎に差圧を検出し
て差圧信号を出力する差圧検出部と、該差圧検出部で検
出された差圧信号から揺動成分を除去する信号整形部
と、該信号整形部で整形された差圧信号を所定の出力信
号に変換する差圧信号変換部とを具備する差圧測定装置
において、 前記差圧検出部で検出された差圧信号と1サンプリング
周期前に検出された差圧信号との変化量を計算する差分
絶対値計算部と、 該変化量に対して一次遅れ演算を行い該演算値を揺動信
号として出力する一次遅れ演算部とを具備したことを特
徴とする差圧測定装置。
1. A differential pressure detecting section for detecting a differential pressure at every predetermined sampling period and outputting a differential pressure signal, and a signal shaping for removing a swing component from the differential pressure signal detected by the differential pressure detecting section. Unit, and a differential pressure measuring device comprising a differential pressure signal converting unit for converting the differential pressure signal shaped by the signal shaping unit to a predetermined output signal, wherein the differential pressure signal detected by the differential pressure detecting unit is A difference absolute value calculation unit for calculating a change amount from a differential pressure signal detected one sampling period before; a first order delay calculation unit for performing a first order delay operation on the change amount and outputting the operation value as a swing signal A differential pressure measuring device comprising:
JP15540996A 1996-06-17 1996-06-17 Differential pressure measuring device Expired - Fee Related JP3223501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15540996A JP3223501B2 (en) 1996-06-17 1996-06-17 Differential pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15540996A JP3223501B2 (en) 1996-06-17 1996-06-17 Differential pressure measuring device

Publications (2)

Publication Number Publication Date
JPH102823A true JPH102823A (en) 1998-01-06
JP3223501B2 JP3223501B2 (en) 2001-10-29

Family

ID=15605361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15540996A Expired - Fee Related JP3223501B2 (en) 1996-06-17 1996-06-17 Differential pressure measuring device

Country Status (1)

Country Link
JP (1) JP3223501B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538420A (en) * 1999-02-25 2002-11-12 ローズマウント インコーポレイテッド Diagnostic flow measurement
JP2009180643A (en) * 2008-01-31 2009-08-13 Yamatake Corp Differential pressure transmitter
JP2014020898A (en) * 2012-07-18 2014-02-03 Azbil Corp Clogging diagnostic device and clogging diagnostic method of lead pipe
JP2014020897A (en) * 2012-07-18 2014-02-03 Azbil Corp Clogging diagnostic device and clogging diagnostic method of lead pipe
JP2015190877A (en) * 2014-03-28 2015-11-02 横河電機株式会社 Adjustment method of field equipment, adjustment device for field equipment, and field equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646134B (en) * 2019-10-28 2021-07-23 潍坊歌尔微电子有限公司 Calibration method and calibration device for air pressure sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538420A (en) * 1999-02-25 2002-11-12 ローズマウント インコーポレイテッド Diagnostic flow measurement
JP2009180643A (en) * 2008-01-31 2009-08-13 Yamatake Corp Differential pressure transmitter
JP2014020898A (en) * 2012-07-18 2014-02-03 Azbil Corp Clogging diagnostic device and clogging diagnostic method of lead pipe
JP2014020897A (en) * 2012-07-18 2014-02-03 Azbil Corp Clogging diagnostic device and clogging diagnostic method of lead pipe
JP2015190877A (en) * 2014-03-28 2015-11-02 横河電機株式会社 Adjustment method of field equipment, adjustment device for field equipment, and field equipment

Also Published As

Publication number Publication date
JP3223501B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
EP1247268B1 (en) Low power two-wire self validating temperature transmitter
JP4422412B2 (en) Flow diagnostic system
KR101226774B1 (en) Equipment for diagnosing blockage of lead pipe and method for diagnosing blockage
CA2535163A1 (en) A method and apparatus for correcting output information of flow measurement apparatus
JPH0574008B2 (en)
RU2006105010A (en) DIAGNOSTICS OF THE PROCESS
US5942698A (en) Detecting and measuring liquid flow in remote sewer structures
JP5425027B2 (en) Random noise signal detection and filtering method
JP3223501B2 (en) Differential pressure measuring device
CN110864776B (en) Weighing equipment predictive maintenance algorithm and weighing equipment predictive maintenance method
JP2009085769A (en) Apparatus for measuring fluid in pipe line, and system for diagnosing clogging in connecting pipe
US11029181B2 (en) Vortex flowmeter with flow instability detection
JPH04152220A (en) Method and device for failure sensing
JP2587474B2 (en) Plant abnormality sign detection device
JP2014020898A (en) Clogging diagnostic device and clogging diagnostic method of lead pipe
CN209085709U (en) Material-level detecting device
JP6952952B2 (en) Multiphase flow measuring device, multiphase flow measuring method and program
JP3225693B2 (en) Sensor mutual diagnosis method
JPS6348300B2 (en)
JPS642203B2 (en)
JP2008070292A (en) Method for predicting and diagnosing clogging of vortex flowmeter
JPH06274784A (en) Plant monitoring diagnostic device and its abnormal sign identification method
US11788933B2 (en) Method for monitoring measured variables measured on a process plant with measuring instruments
JP2601896B2 (en) Plant abnormality diagnosis system
JPS61153099A (en) Method and device of detecting leak of gas pipe line

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20070824

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100824

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120824

LAPS Cancellation because of no payment of annual fees