JP6952952B2 - Multiphase flow measuring device, multiphase flow measuring method and program - Google Patents

Multiphase flow measuring device, multiphase flow measuring method and program Download PDF

Info

Publication number
JP6952952B2
JP6952952B2 JP2017226701A JP2017226701A JP6952952B2 JP 6952952 B2 JP6952952 B2 JP 6952952B2 JP 2017226701 A JP2017226701 A JP 2017226701A JP 2017226701 A JP2017226701 A JP 2017226701A JP 6952952 B2 JP6952952 B2 JP 6952952B2
Authority
JP
Japan
Prior art keywords
flow rate
measurement value
volume flow
density
accompanying water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017226701A
Other languages
Japanese (ja)
Other versions
JP2019095369A (en
Inventor
季子 小林
季子 小林
壮一郎 勝島
壮一郎 勝島
賢志 小林
賢志 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2017226701A priority Critical patent/JP6952952B2/en
Publication of JP2019095369A publication Critical patent/JP2019095369A/en
Application granted granted Critical
Publication of JP6952952B2 publication Critical patent/JP6952952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コリオリ流量計の計測値を利用して混相流の各成分体積流量を測定する技術に関する。 The present invention relates to a technique for measuring the volumetric flow rate of each component of a multiphase flow using the measured value of a Koriori flow meter.

石油生産井における産出物は、一般に、ガス、油、随伴水の混合物であり、混相流として産出される。ここでは、油、随伴水の液相が主であり、ときおり気相としてガスが混入している混相流を想定する。なお、固相は含まれていないものとする。 The output in oil-producing wells is generally a mixture of gas, oil and accompanying water and is produced as a multiphase flow. Here, it is assumed that the liquid phase of oil and accompanying water is the main, and a mixed phase flow in which gas is occasionally mixed as the gas phase is assumed. It is assumed that the solid phase is not included.

石油生産井から産出される混相流については、各成分の体積流量を把握することが重要である。例えば、産出物における随伴水やガスの占有率を知ることで、井戸の投資対効果等の経済性を評価したり、井戸の劣化度合い等を診断することができる。また、産出中に各成分の体積流量のおおよその傾向を把握することで、施設設備に影響を与えるガス混入を監視したり、随伴水、ガスの体積に応じた採取制御を行なうことができるようになる。特に、このような場合は、高精度な計測値よりもリアルタイム性が要求される。 For multiphase flows produced from oil production wells, it is important to understand the volumetric flow rate of each component. For example, by knowing the occupancy rate of accompanying water and gas in the product, it is possible to evaluate the economic efficiency such as the return on investment of the well and to diagnose the degree of deterioration of the well. In addition, by grasping the approximate tendency of the volumetric flow rate of each component during production, it is possible to monitor gas contamination that affects facility equipment and perform sampling control according to the volume of accompanying water and gas. become. In particular, in such a case, real-time performance is required rather than highly accurate measured values.

特表2002−525623号公報Special Table 2002-525623

従来、混相流の各成分の体積流量を把握するために、例えば、主分離装置やテスト分離装置等の分離装置を用いてガス、油、随伴水に分離してから、それぞれの流量計を用いて成分毎に体積流量を計測することが行なわれている。しかしながら、分離装置を用いることで設備が大がかりで、リアルタイム性がなく、主分離装置に集約した場合は井戸毎の成分把握が困難となる。 Conventionally, in order to grasp the volumetric flow rate of each component of a multiphase flow, for example, a separation device such as a main separation device or a test separation device is used to separate gas, oil, and accompanying water, and then each flow meter is used. The volumetric flow rate is measured for each component. However, by using the separation device, the equipment is large-scale and there is no real-time performance, and when it is integrated into the main separation device, it becomes difficult to grasp the components of each well.

複数のセンサを組み合わせた混相流量計を用いてそれぞれの成分毎の体積流量を計測することも行なわれているが、構成が複雑であり装置が高価となる。 It is also practiced to measure the volumetric flow rate for each component using a multiphase flow meter that combines a plurality of sensors, but the configuration is complicated and the device becomes expensive.

そこで、本発明は、混相流の成分毎の体積流量を簡易な構成でリアルタイムに把握することを目的とする。 Therefore, an object of the present invention is to grasp the volumetric flow rate of each component of the multiphase flow in real time with a simple configuration.

上記課題を解決するため、本発明の一態様である混相流測定装置は、石油生産井からの石油と随伴水とを含む測定対象流体を測定するコリオリ流量計からの少なくとも質量流量計測値および密度計測値、前記測定対象流体の温度を測定する温度センサの温度計測値を取得する計測値取得部と、この計測値取得部からの前記質量流量計測値および前記密度計測値に基づいてガス体積流量と液相体積流量を算出し、前記液相体積流量と、前記計測値取得部により取得した前記温度計測値に基づいて、前記石油と前記随伴水の各体積流量を算出する体積流量算出部とを設けたことを特徴とする。
ここで、前記コリオリ流量計から励振信号を取得し、この励振信号に基づいて、前記測定対象流体にガスが混入したことを検出するガス混入検出部を設け、前記体積流量算出部は、前記ガス混入検出部の検出があるとき、ガス体積流量と液相体積流量を演算することができる。
このとき、前記体積流量算出部は、前記ガス混入検出部の検出がないとき、前記温度計測値に基づいて、前記石油と前記随伴水の各体積流量を算出することができる。
また、標準状態石油密度および標準状態随伴水密度の入力を受け付ける標準状態入力部と、前記標準状態入力部に入力された前記標準状態石油密度および前記標準状態随伴水密度、前記温度計測値に基づいて前記測定対象流体のうち前記随伴水の割合を算出する随伴水割合算出部と、が設けられ、前記体積流量算出部は、前記液相体積流量と、前記随伴水割合算出部が算出した前記随伴水の割合とに基づいて、前記石油と前記随伴水の各体積流量を算出するようにしてもよい。
上記課題を解決するため、本発明の一態様である混相流測定方法は、石油生産井からの石油と随伴水とを含む測定対象流体を測定するコリオリ流量計からの少なくとも質量流量計測値および密度計測値を計測値取得部に入力するステップと、前記測定対象流体の温度を測定する温度センサの温度計測値を前記計測値取得部に入力するステップと、前記質量流量計測値および前記密度計測値に基づいてガス体積流量と液相体積流量を体積流量算出部が算出するステップと、この液相体積流量と前記温度計測値に基づいて、前記石油と前記随伴水の各体積流量を前記体積流量算出部が算出するステップとを設けたことを特徴とする。
上記課題を解決するため、本発明の一態様であるプログラムは、コンピュータに用いられ、石油生産井からの石油と随伴水とを含む測定対象流体を測定するコリオリ流量計からの少なくとも質量流量計測値および密度計測値を入力するステップと、前記測定対象流体の温度を測定する温度センサの温度計測値を入力するステップと、前記質量流量計測値および前記密度計測値に基づいてガス体積流量と液相体積流量を算出するステップと、この液相体積流量と前記温度計測値に基づいて、前記石油と前記随伴水の各体積流量を算出するステップとを設けたことを特徴とする。
In order to solve the above problems, the mixed phase flow measuring device according to one aspect of the present invention is at least a mass flow rate measurement value and a density from a Koriori flow meter that measures a fluid to be measured including oil and accompanying water from an oil production well. A gas volume flow rate based on a measurement value acquisition unit that acquires a measured value and a temperature measurement value of a temperature sensor that measures the temperature of the fluid to be measured, and a mass flow rate measurement value and a density measurement value from the measurement value acquisition unit. And a volume flow rate calculation unit that calculates each volume flow rate of the oil and the accompanying water based on the liquid phase volume flow rate and the temperature measurement value acquired by the measurement value acquisition unit. Is characterized by the provision of.
Here, an excitation signal is acquired from the Koriori flow meter, and a gas mixing detection unit for detecting that gas is mixed in the measurement target fluid is provided based on the excitation signal, and the volume flow rate calculation unit is the gas. When the contamination detection unit is detected, the gas volume flow rate and the liquid phase volume flow rate can be calculated.
At this time, the volumetric flow rate calculation unit can calculate each volumetric flow rate of the petroleum and the accompanying water based on the temperature measurement value when the gas mixing detection unit is not detected.
Further, based on the standard state input unit that accepts the input of the standard state oil density and the standard state accompanying water density, the standard state oil density, the standard state accompanying water density, and the temperature measurement value input to the standard state input unit. A concomitant water ratio calculation unit for calculating the ratio of the concomitant water in the fluid to be measured is provided, and the volume flow rate calculation unit is calculated by the liquid phase volume flow rate and the concomitant water ratio calculation unit. The volumetric flow rates of the oil and the accompanying water may be calculated based on the proportion of the accompanying water.
In order to solve the above problems, the mixed phase flow measurement method according to one aspect of the present invention is at least a mass flow rate measurement value and a density from a Koriori flow meter that measures a fluid to be measured including oil and accompanying water from an oil production well. The step of inputting the measured value to the measured value acquisition unit, the step of inputting the temperature measured value of the temperature sensor for measuring the temperature of the measurement target fluid into the measured value acquisition unit, the mass flow rate measured value, and the density measured value. Based on the step of calculating the gas volume flow rate and the liquid phase volume flow rate by the volume flow rate calculation unit based on the above, and the volume flow rate of each of the oil and the accompanying water based on the liquid phase volume flow rate and the temperature measurement value, the volume flow rate. It is characterized by providing a step for calculation by the calculation unit.
In order to solve the above problems, the program according to one aspect of the present invention is used in a computer, and at least a mass flow rate measurement value from a Koriori flow meter that measures a fluid to be measured including oil and accompanying water from an oil production well. And the step of inputting the density measurement value, the step of inputting the temperature measurement value of the temperature sensor for measuring the temperature of the measurement target fluid, and the gas volume flow rate and the liquid phase based on the mass flow rate measurement value and the density measurement value. It is characterized in that a step of calculating the volume flow rate and a step of calculating each volume flow rate of the oil and the accompanying water based on the liquid phase volume flow rate and the temperature measurement value are provided.

本発明によれば、混相流の成分毎の体積流量を簡易な構成でリアルタイムに把握することができる。 According to the present invention, the volumetric flow rate of each component of the multiphase flow can be grasped in real time with a simple configuration.

本実施形態に係る混相流測定装置を含んだ混相流測定システムの構成を示すブロック図である。It is a block diagram which shows the structure of the multiphase flow measurement system including the multiphase flow measurement apparatus which concerns on this embodiment. コリオリ流量計、混相流測定装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of a Coriolis flow meter and a multiphase flow measuring apparatus. ガス混入時の駆動電流値と密度計測値の変化を説明する図である。It is a figure explaining the change of the drive current value and the density measurement value at the time of mixing with gas. 参照密度値の生成方法について説明する図である。It is a figure explaining the generation method of the reference density value. 混相流測定装置の動作について説明するフローチャートである。It is a flowchart explaining operation of a multiphase flow measuring apparatus.

本発明の実施の形態について図面を参照して説明する。図1は、本実施形態に係る混相流測定装置100を含んだ混相流測定システム10の構成を示すブロック図である。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a multiphase flow measuring system 10 including a multiphase flow measuring device 100 according to the present embodiment.

混相流測定システム10は、混相流の成分毎の体積流量を測定するためのシステムであり、混相流測定装置100、コリオリ流量計200、圧力伝送器300を備えている。 The multiphase flow measurement system 10 is a system for measuring the volumetric flow rate of each component of the multiphase flow, and includes a multiphase flow measuring device 100, a colioli flow meter 200, and a pressure transmitter 300.

生産井からの産出物は、配管を介して圧力伝送器300で圧力を測定された後、コリオリ流量計200で質量流量等が測定され、主分離装置に導かれる。混相流測定装置100は、圧力伝送器300、コリオリ流量計200の計測値等を取得して、産出物の成分毎の体積流量を算出する。 After the pressure of the product from the production well is measured by the pressure transmitter 300 via the pipe, the mass flow rate and the like are measured by the Koriori flow meter 200 and guided to the main separation device. The multiphase flow measuring device 100 acquires the measured values of the pressure transmitter 300 and the Koriori flow meter 200, and calculates the volumetric flow rate for each component of the product.

図2は、混相流測定装置100、コリオリ流量計200の機能構成を示すブロック図である。 FIG. 2 is a block diagram showing a functional configuration of the multiphase flow measuring device 100 and the Coriolis flow meter 200.

コリオリ流量計200は、検出部210と変換部220とを有している。コリオリ流量計200は、測定対象流体が流れる測定管を、両端を支点として上下振動させたときに働くコリオリ力を利用した流量計であり、測定管の上流の振動と下流の振動との位相差と振動周波数とに基づいて測定対象流体の質量流量を測定する。 The Coriolis flowmeter 200 has a detection unit 210 and a conversion unit 220. The Koriori flow meter 200 is a flow meter that utilizes the Koriori force that acts when the measuring tube through which the fluid to be measured flows is vibrated up and down with both ends as fulcrums, and the phase difference between the upstream vibration and the downstream vibration of the measuring tube. And the vibration frequency, the mass flow rate of the fluid to be measured is measured.

検出部210は、測定対象流体を流す測定管211、測定管211を上下に機械振動させる加振器212、測定管211の上流側の振動変位を検出する上流側センサ213、下流側の振動変位を検出する下流側センサ214、温度補正等に用いる温度を計測する温度センサ215を備えている。 The detection unit 210 includes a measuring tube 211 through which the fluid to be measured flows, a vibrating device 212 that mechanically vibrates the measuring tube 211 up and down, an upstream sensor 213 that detects the vibration displacement on the upstream side of the measuring tube 211, and a vibration displacement on the downstream side. It is provided with a downstream sensor 214 for detecting the above and a temperature sensor 215 for measuring the temperature used for temperature correction and the like.

また、変換部220は、加振器212を駆動する励振信号である駆動電流を生成して出力する励振回路221、質量流量等の演算を行なう演算部222、計測結果等を出力する出力部225を備えている。 Further, the conversion unit 220 includes an excitation circuit 221 that generates and outputs a drive current that is an excitation signal for driving the exciter 212, a calculation unit 222 that calculates a mass flow rate, and an output unit 225 that outputs measurement results and the like. It has.

コリオリ流量計200では、測定管211を固有周波数で振動させるため、測定管211の振動周波数を測定することで、測定対象流体の密度も計測することができる。このため、演算部222は、振動周波数、温度等に基づいて測定対象流体の密度を算出する密度演算部223と、位相差、振動周波数、温度等に基づいて測定対象流体の質量流量を算出する質量流量演算部224とを備えている。密度演算部223、質量流量演算部224の演算ロジックは従来と同様とすることができる。 Since the Koriori flow meter 200 vibrates the measuring tube 211 at a natural frequency, the density of the fluid to be measured can also be measured by measuring the vibration frequency of the measuring tube 211. Therefore, the calculation unit 222 calculates the mass flow rate of the fluid to be measured based on the phase difference, vibration frequency, temperature, etc., and the density calculation unit 223, which calculates the density of the fluid to be measured based on the vibration frequency, temperature, and the like. It is provided with a mass flow rate calculation unit 224. The calculation logic of the density calculation unit 223 and the mass flow rate calculation unit 224 can be the same as in the conventional case.

出力部225は、密度演算部223が算出した密度計測値、質量流量演算部224が算出した質量流量計測値、励振回路221が励振信号として生成した駆動電流値、温度センサ215が計測した温度計測値を、混相流測定装置100に出力する。測定管211の振動周波数、振幅を混相流測定装置100に出力するようにしてもよい。なお、温度伝送器(温度センサ)を別途設け、温度伝送器が計測した測定対象流体の温度計測値を混相流測定装置100に出力するようにしてもよい。つまり、温度センサは、コリオリ流量計の内外のどちらでもよく、温度センサを除いた部分がコリオリ流量計ということもできる。 The output unit 225 includes a density measurement value calculated by the density calculation unit 223, a mass flow rate measurement value calculated by the mass flow rate calculation unit 224, a drive current value generated by the excitation circuit 221 as an excitation signal, and a temperature measurement measured by the temperature sensor 215. The value is output to the mixed phase flow measuring device 100. The vibration frequency and amplitude of the measuring tube 211 may be output to the multiphase flow measuring device 100. A temperature transmitter (temperature sensor) may be separately provided, and the temperature measurement value of the fluid to be measured measured by the temperature transmitter may be output to the multiphase flow measuring device 100. That is, the temperature sensor may be inside or outside the Coriolis flowmeter, and the portion excluding the temperature sensor can be said to be the Coriolis flowmeter.

圧力伝送器300は、測定対象流体の圧力を計測し、圧力計測値を混相流測定装置100に出力する。圧力伝送器300からの圧力値をコリオリ流量計200の変換部220に入力し,出力部225から計測値取得部110に値を送ってもよい。この場合、圧力値はコリオリ流量計200の圧力補正演算にも使用することができる。なお、圧力計測値は、密度の補正に用いられるが、一般にこの影響は非常に小さいため、圧力伝送器300を省いてもよい。 The pressure transmitter 300 measures the pressure of the fluid to be measured and outputs the measured pressure value to the multiphase flow measuring device 100. The pressure value from the pressure transmitter 300 may be input to the conversion unit 220 of the Coriolis flow meter 200, and the value may be sent from the output unit 225 to the measurement value acquisition unit 110. In this case, the pressure value can also be used for the pressure correction calculation of the Coriolis flow meter 200. The measured pressure value is used for correcting the density, but since this effect is generally very small, the pressure transmitter 300 may be omitted.

混相流測定装置100は、計測値取得部110、標準状態密度入力部120、ガス混入検出部130、参照密度値生成部140、ガス空隙率算出部150、随伴水割合算出部160、体積流量算出部170を備えている。これらのブロックは、例えば、マイクロコンピュータ、入出力インタフェース等を備えた演算処理装置が所定の動作プログラムを実行することにより構築することができる。 The multiphase flow measuring device 100 includes a measured value acquisition unit 110, a standard state density input unit 120, a gas mixing detection unit 130, a reference density value generation unit 140, a gas porosity calculation unit 150, an accompanying water ratio calculation unit 160, and a volume flow rate calculation. The unit 170 is provided. These blocks can be constructed, for example, by executing a predetermined operation program by an arithmetic processing unit including a microcomputer, an input / output interface, and the like.

混相流測定装置100は、例えば、PLC、制御コントローラ等のコリオリ流量計200の上位装置に構成することができる。ただし、これに限定されず、例えば、独立した装置として構成してもよいし、一部または全部の機能ブロックをコリオリ流量計200の変換部220内に構成するようにしてもよい。独立した装置として構成する場合は、単独の装置としてもよいし、複数個の装置に機能ブロックを分散させてもよい。 The multiphase flow measuring device 100 can be configured as a higher-level device of the Coriolis flow meter 200 such as a PLC and a control controller, for example. However, the present invention is not limited to this, and for example, it may be configured as an independent device, or a part or all of the functional blocks may be configured in the conversion unit 220 of the Coriolis flow meter 200. When configured as an independent device, it may be a single device or the functional blocks may be distributed among a plurality of devices.

計測値取得部110は、コリオリ流量計200の出力部225から密度計測値、質量流量計測値、駆動電流値、温度計測値を取得し、圧力伝送器300から圧力計測値を取得する。これらの値は、所定の時間間隔の時系列データとして取得する。計測値取得部110は、取得した計測値のうち、少なくとも密度計測値を、履歴データとして所定期間記憶する。 The measurement value acquisition unit 110 acquires the density measurement value, the mass flow rate measurement value, the drive current value, and the temperature measurement value from the output unit 225 of the Koriori flow meter 200, and acquires the pressure measurement value from the pressure transmitter 300. These values are acquired as time-series data at predetermined time intervals. The measurement value acquisition unit 110 stores at least the density measurement value among the acquired measurement values as historical data for a predetermined period.

標準状態密度入力部120は、測定対象流体を構成する油と随伴水の標準状態の密度の入力を受け付け、記憶する。操作者は、混相流体積流量の測定に先立ち、測定対象流体のサンプル調査を行ない、標準状態油密度と標準状態随伴水密度を測定する。そして、得られた標準状態油密度と標準状態随伴水密度とを標準状態密度入力部120に入力する。標準状態の密度を入力するのではなく、測定状態の密度に対して温圧補正等を行ない、標準状態の密度に変換するようにしてもよい。 The standard state density input unit 120 receives and stores the input of the standard state densities of the oil and the accompanying water constituting the fluid to be measured. Prior to the measurement of the multiphase flow volume flow rate, the operator conducts a sample survey of the fluid to be measured and measures the standard state oil density and the standard state accompanying water density. Then, the obtained standard state oil density and the standard state accompanying water density are input to the standard state density input unit 120. Instead of inputting the density in the standard state, the density in the measured state may be subjected to temperature and pressure correction or the like to be converted to the density in the standard state.

ガス混入検出部130は、油、随伴水の液相が主である測定対象流体にガスが混入したことを検出する。ここで、図3(a)に示すように、液相にガスが混入すると、駆動電流値が大きくなる。これは、ガス混入により測定管の211の振幅が小さくなるのに対して、励振回路221が振幅を維持させようとして駆動電流を大きくするためである。 The gas mixing detection unit 130 detects that gas is mixed in the fluid to be measured, which is mainly the liquid phase of oil and accompanying water. Here, as shown in FIG. 3A, when gas is mixed in the liquid phase, the drive current value becomes large. This is because the amplitude of the measuring tube 211 is reduced due to gas mixing, whereas the excitation circuit 221 increases the drive current in an attempt to maintain the amplitude.

このため、ガス混入検出部130は、図3(b)に示すように、駆動電流値が所定の閾値を超えた場合に、測定対象流体にガスが混入したと判定することができる。所定の閾値は、実験的、理論的等に定めることができる。また、固定値としてもよいし、ガスが含まれていないときの駆動電流値等に応じた可変値としてもよい。駆動電流に限られず、測定管211の振動周波数や振幅に基づいてガス混入を判定してもよい。この場合、励振信号に振動周波数や振幅の情報を含め、出力部225に出力するようにする。 Therefore, as shown in FIG. 3B, the gas mixing detection unit 130 can determine that gas has been mixed in the fluid to be measured when the drive current value exceeds a predetermined threshold value. The predetermined threshold value can be set experimentally, theoretically, or the like. Further, it may be a fixed value or a variable value according to a drive current value or the like when gas is not contained. Not limited to the drive current, gas mixing may be determined based on the vibration frequency and amplitude of the measuring tube 211. In this case, the excitation signal includes the vibration frequency and amplitude information and is output to the output unit 225.

また、図3(a)に示すように、測定対象流体にガスが混入すると、計測感度が低下し、コリオリ流量計200の密度演算部223が算出する密度計測値が低下することが知られている(例えば、特許第3547708号公報)。このため、ガス混入時に算出された密度計測値をそのまま用いて測定を行なうことは好ましくなく、従来のコリオリ流量計では測定エラーとしていた。 Further, as shown in FIG. 3A, it is known that when gas is mixed in the fluid to be measured, the measurement sensitivity is lowered and the density measurement value calculated by the density calculation unit 223 of the Coriolis flow meter 200 is lowered. (For example, Japanese Patent No. 3547708). For this reason, it is not preferable to perform the measurement using the density measurement value calculated at the time of gas mixing as it is, and the conventional Coriolis flow meter causes a measurement error.

これに対して、本実施形態の混相流測定装置100では、参照密度値生成部140が、密度計測値の履歴データに基づいて参照密度値を生成し、ガスの混入が検出された際に、密度計測値に代えて参照密度値を利用して測定を行なうようにする。参照密度値は、ガス混入時にも、液相についてはそれまでの成分割合が当面維持されるとの仮定に基づくものである。 On the other hand, in the mixed phase flow measuring device 100 of the present embodiment, the reference density value generation unit 140 generates a reference density value based on the historical data of the density measurement value, and when gas contamination is detected, the reference density value is generated. The reference density value is used instead of the density measurement value for measurement. The reference density value is based on the assumption that the component ratio up to that point is maintained for the liquid phase even when gas is mixed.

図4を参照して、参照密度値の生成方法について説明する。図4(a)に再掲するように、液相にガスが混入すると密度計測値が低下する。この間の測定に用いる参照密度値は、例えば、図4(b)に示すように、ガス混入が検知される以前の期間における密度計測値の平均値とすることができる。ここでは、ガス混入検出時より時間Tr前までの所定期間を平均算出期間として定め、平均算出期間の密度計測値の平均値を参照密度値とする。 A method of generating a reference density value will be described with reference to FIG. As shown again in FIG. 4A, when gas is mixed in the liquid phase, the measured density value decreases. As shown in FIG. 4B, for example, the reference density value used for the measurement during this period can be the average value of the density measurement values in the period before the gas contamination is detected. Here, a predetermined period from the time when the gas mixture is detected to the time Tr before is defined as the average calculation period, and the average value of the density measurement values in the average calculation period is used as the reference density value.

平均算出期間、時間Trは、状況等に応じて適宜設定することができる、ただし、平均算出期間には、ガス混入期間が含まれないようにする。なお、ガス混入期間は、ガス混入検出部130によりガスが検出されている期間のことをいう。また、ガス混入検出の直前も密度計測値に影響が及んでいる可能性があるため避けることが望ましい。 The average calculation period and time Tr can be appropriately set according to the situation and the like, but the average calculation period does not include the gas mixing period. The gas mixing period refers to a period in which gas is detected by the gas mixing detection unit 130. In addition, it is desirable to avoid it because the measured density value may be affected immediately before the detection of gas contamination.

平均値は、ガス混入検出時に、記録済の履歴データを遡って算出してもよいし、移動平均のように逐次算出しておき、ガス混入検出時に、対応する平均値を読み出してもよい。また、コリオリ流量計200において、密度計測値には、計測時の状況に応じて、良好、不良、不明確等のステータスが付される場合があるが、平均値の算出には、平均算出期間中のステータスが良好である密度計測値を用いることが望ましい。 The average value may be calculated retroactively from the recorded historical data at the time of gas contamination detection, or may be calculated sequentially like a moving average, and the corresponding average value may be read out at the time of gas contamination detection. Further, in the Coriolis flow meter 200, the density measurement value may be given a status such as good, defective, or unclear depending on the situation at the time of measurement, but the average value is calculated by the average calculation period. It is desirable to use a density measurement with a good status inside.

また、例えば、図4(c)に示すように、ガス混入検出時から時間Tr前以前で、良好のステータスが付された密度計測値のうち、最新の密度計測値を参照密度値としてもよい。 Further, for example, as shown in FIG. 4C, the latest density measurement value may be used as the reference density value among the density measurement values having a good status before the time Tr from the time when the gas mixture is detected. ..

参照密度値は、密度計測値の履歴を用いて得られる値であれば、上記の例に限られない。例えば、履歴から作成したトレンドデータの中央値、最頻値等を参照密度値としてもよい。ガス混入が複数回検出される場合には、その都度参照密度値を更新することが望ましい。 The reference density value is not limited to the above example as long as it is a value obtained by using the history of density measurement values. For example, the median value, mode value, etc. of the trend data created from the history may be used as the reference density value. When gas contamination is detected multiple times, it is desirable to update the reference density value each time.

ガス空隙率算出部150は、ガス混入検出時に、流体の体積に占めるガスの割合を算出する。一般に、油とガスの混合物におけるガス空隙率GVFは、
ガス空隙率GVF=1−(密度計測値/油密度予測値)
により算出することができる(米国特許第9500576)。ここで、油密度予測値は、標準状態油密度を、そのときの温度値と圧力値とで補正した値である。
The gas porosity calculation unit 150 calculates the ratio of gas to the volume of the fluid at the time of detecting gas contamination. Generally, the gas porosity GVF in a mixture of oil and gas is
Gas porosity GVF = 1- (measured density / predicted oil density)
Can be calculated by (US Pat. No. 9500576). Here, the predicted oil density value is a value obtained by correcting the standard state oil density with the temperature value and the pressure value at that time.

しかしながら、油密度予測値は、油と随伴水の混合状態では算出できない。このため、本実施形態では、
ガス空隙率GVF=1−(密度計測値/参照密度値)
として、ガス空隙率を算出する。これは、ガス混入時の密度計測値の傾向は、混入しているガスの量と一致していると予測でき、また、ガス混入前後で液相の密度は急激には変化しないと考えられるためである。
However, the predicted oil density cannot be calculated in the mixed state of oil and accompanying water. Therefore, in this embodiment,
Gas porosity GVF = 1- (measured density value / reference density value)
To calculate the gas porosity. This is because it can be predicted that the tendency of the density measurement value at the time of gas mixing is consistent with the amount of gas mixed, and it is considered that the density of the liquid phase does not change rapidly before and after the gas mixing. Is.

随伴水割合算出部160は、液相中の随伴水の割合を算出する。一般に、随伴水割合(Water Cut)は、
随伴水割合=(液相密度−油密度予測値)/(随伴水密度予測値−油密度予測値)
により算出することができる(ERCB Directive017 Chapter 14-12 May 15,2013)。
The accompanying water ratio calculation unit 160 calculates the ratio of the accompanying water in the liquid phase. Generally, the associated water ratio (Water Cut) is
Accompanying water ratio = (Liquid phase density-Oil density predicted value) / (Accompanied water density predicted value-Oil density predicted value)
It can be calculated by (ERCB Directive017 Chapter 14-12 May 15, 2013).

随伴水割合算出部160は、ガス混入非検出時には、密度計測値を液相密度として用い、ガス混入検出時には、参照密度値を液相密度として用いて随伴水割合を算出する。すなわち、ガス混入非検出時は、
随伴水割合=(密度計測値−油密度予測値)/(随伴水密度予測値−油密度予測値)
とし、ガス混入検出時は、
随伴水割合=(参照密度値−油密度予測値)/(随伴水密度予測値−油密度予測値)
とする。
The accompanying water ratio calculation unit 160 calculates the accompanying water ratio by using the measured density value as the liquidus density when the gas contamination is not detected and using the reference density value as the liquidus density when the gas contamination is detected. That is, when gas contamination is not detected,
Accompanying water ratio = (measured density value-predicted oil density) / (predicted associated water density-predicted oil density)
When gas contamination is detected,
Accompanying water ratio = (reference density value-oil density predicted value) / (accompanying water density predicted value-oil density predicted value)
And.

なお、油密度予測値と随伴水密度予測値とは、標準状態密度入力部120が受け付けた標準状態油密度と標準状態随伴水密度とを、既知の手法により、温度計測値と圧力計測値とで補正することにより算出することができる。 The oil density predicted value and the accompanying water density predicted value are the standard state oil density and the standard state accompanying water density received by the standard state density input unit 120, and the temperature measured value and the pressure measured value by a known method. It can be calculated by correcting with.

また、参照密度値と同様に、ガス混入非検出時の随伴水割合の履歴データに基づいて参照随伴水割合を生成し、ガス混入が検出された際に、参照随伴水割合を利用するようにしてもよい。 In addition, as with the reference density value, the reference accompanying water ratio is generated based on the historical data of the accompanying water ratio when gas contamination is not detected, and when gas contamination is detected, the reference accompanying water ratio is used. You may.

体積流量算出部170は、油体積流量と随伴水体積流量とガス体積流量とを算出する。また、体積流量算出部170は、各体積流量を積算することで各相の体積を算出することができる。 The volume flow rate calculation unit 170 calculates the oil volume flow rate, the accompanying water volume flow rate, and the gas volume flow rate. Further, the volume flow rate calculation unit 170 can calculate the volume of each phase by integrating each volume flow rate.

体積流量の算出においては、まず、ガス混入検出、非検出にかかわらず、コリオリ流量計200の質量流量計測値と密度計測値とから測定対象流体の体積流量を算出する。すなわち、
測定対象流体体積流量=質量流量計測値/密度計測値
を求める。
In the calculation of the volumetric flow rate, first, the volumetric flow rate of the fluid to be measured is calculated from the mass flow rate measurement value and the density measurement value of the Koriori flow meter 200 regardless of whether gas mixing is detected or not. That is,
Calculate the volume flow rate of the fluid to be measured = mass flow rate measurement value / density measurement value.

そして、ガス混入非検出時には、測定対象流体は、油と随伴水とから構成されるため、測定対象流体の体積流量と随伴水割合とに基づいて油体積流量と随伴水体積流量とを算出する。すなわち、
随伴水体積流量=測定対象流体体積流量×随伴水割合
油体積流量=測定対象流体体積流量−随伴水体積流量
とする。
Then, when gas contamination is not detected, the fluid to be measured is composed of oil and accompanying water, so the oil volume flow rate and the accompanying water volume flow rate are calculated based on the volume flow rate of the measurement target fluid and the accompanying water ratio. .. That is,
Accompanying water volume flow rate = Measurement target fluid volume flow rate x Accompanying water ratio Oil volume flow rate = Measurement target fluid volume flow rate-Accompanied water volume flow rate.

ガス混入検出時には、測定対象流体は、ガスと、油と随伴水との混合液相とから構成されるため、まず、測定対象流体の体積流量とガス空隙率とに基づいて、ガス体積流量と液相体積流量とを算出する。すなわち、
ガス体積流量=測定対象流体体積流量×ガス空隙率
とし、
液相体積流量=測定対象流体体積流量−ガス体積流量
を求める。
At the time of detecting gas contamination, the fluid to be measured is composed of a gas and a mixed liquid phase of oil and accompanying water. Calculate the liquid phase volume flow rate. That is,
Gas volume flow rate = measurement target fluid volume flow rate x gas porosity
Liquid phase volume flow rate = Measured fluid volume flow rate-Gas volume flow rate is obtained.

そして、液相体積流量と随伴水割合とに基づいて油体積流量と随伴水体積流量とを算出する。すなわち、
随伴水体積流量=液相体積流量×随伴水割合
油体積流量=液相体積流量−随伴水体積流量
とする。
Then, the oil volume flow rate and the accompanying water volume flow rate are calculated based on the liquid phase volume flow rate and the accompanying water volume ratio. That is,
Accompanying water volume flow rate = Liquid phase volume flow rate x Accompanied water ratio Oil volume flow rate = Liquid phase volume flow rate-Accompanying water volume flow rate.

次に、上記構成の混相流測定装置100の動作について、図5のフローチャートを参照して説明する。ただし、処理の順序は一例であり、計測値の取得順序や産出手順等は適宜入れ替えることができる。 Next, the operation of the multiphase flow measuring device 100 having the above configuration will be described with reference to the flowchart of FIG. However, the processing order is an example, and the measurement value acquisition order, production procedure, etc. can be changed as appropriate.

まず、混相流体積流量の測定に先立ち、標準状態密度入力部120が、操作者から標準状態における随伴水密度と油密度との入力を受け付け、標準状態随伴水密度、標準状態油密度として記憶する(S101)。 First, prior to the measurement of the multiphase flow volume flow rate, the standard state density input unit 120 receives the input of the accompanying water density and the oil density in the standard state from the operator, and stores them as the standard state accompanying water density and the standard state oil density. (S101).

混相流体積流量の測定を開始し、計測値取得部110が、コリオリ流量計200の出力部225から密度計測値、質量流量計測値、駆動電流値、温度計測値を取得する(S102)。少なくとも密度計測値については、所定区間の時系列値の履歴として記録しておく(S103)。
また、圧力伝送器300から圧力計測値を取得する(S104)。
The measurement of the multiphase flow volume flow rate is started, and the measurement value acquisition unit 110 acquires the density measurement value, the mass flow rate measurement value, the drive current value, and the temperature measurement value from the output unit 225 of the Koriori flow meter 200 (S102). At least the measured density value is recorded as a history of time-series values in a predetermined section (S103).
Further, the pressure measurement value is acquired from the pressure transmitter 300 (S104).

取得した質量流量計測値と密度計測値とから、体積流量算出部170が、測定対象流体の体積流量を算出する(S105)。また、取得した温度計測値と圧力計測値とに基づいて、随伴水割合算出部160が、標準状態油密度と標準状態随伴水密度とを補正して、計測時における随伴水密度予測値、油密度予測値を算出する(S106)。 From the acquired mass flow rate measurement value and density measurement value, the volume flow rate calculation unit 170 calculates the volume flow rate of the fluid to be measured (S105). Further, based on the acquired temperature measurement value and pressure measurement value, the accompanying water ratio calculation unit 160 corrects the standard state oil density and the standard state accompanying water density, and the associated water density predicted value and oil at the time of measurement. The predicted density value is calculated (S106).

取得した駆動電流値に基づいて、ガス混入検出部130が、測定対象流体にガスが混入したかどうかを判定する(S107)。すなわち、駆動電流値が閾値Ith以下であれば、ガス非混入と判定し、駆動電流値が閾値Ithを超えていれば、ガス混入と判定する。 Based on the acquired drive current value, the gas mixing detection unit 130 determines whether or not gas is mixed in the fluid to be measured (S107). That is, if the drive current value is equal to or less than the threshold value Is, it is determined that gas is not mixed, and if the drive current value exceeds the threshold value Is, it is determined that gas is mixed.

ガス非混入と判定した場合には(S107:Yes)、随伴水割合算出部160が、随伴水密度予測値、油密度予測値、密度計測値に基づいて随伴水割合を算出する(S108)。そして、体積流量算出部170が、流体体積流量、随伴水割合から随伴水体積流量、油体積流量を算出する(S109)。 When it is determined that gas is not mixed (S107: Yes), the accompanying water ratio calculation unit 160 calculates the accompanying water ratio based on the associated water density predicted value, the oil density predicted value, and the density measurement value (S108). Then, the volume flow rate calculation unit 170 calculates the accompanying water volume flow rate and the oil volume flow rate from the fluid volume flow rate and the accompanying water ratio (S109).

一方、ガス混入と判定した場合には(S107:No)、参照密度値生成部140が、密度計測値の履歴から参照密度値を生成する(S110)。上述のように、参照密度値は逐次生成するようにしてもよい。この場合は、生成済の参照密度値を読み出すようにする。 On the other hand, when it is determined that gas is mixed (S107: No), the reference density value generation unit 140 generates a reference density value from the history of the density measurement values (S110). As described above, the reference density values may be generated sequentially. In this case, the generated reference density value is read out.

そして、ガス空隙率算出部150が、密度計測値、参照密度値から流体の体積に占めるガスの割合であるガス空隙率を算出する(S111)。算出されたガス空隙率と流体体積流量とから、体積流量算出部170が、ガス体積流量と、油と随伴水の混合である液相体積流量を算出する(S112)。 Then, the gas void ratio calculation unit 150 calculates the gas void ratio, which is the ratio of the gas to the volume of the fluid, from the density measurement value and the reference density value (S111). From the calculated gas void ratio and fluid volume flow rate, the volume flow rate calculation unit 170 calculates the gas volume flow rate and the liquid phase volume flow rate, which is a mixture of oil and accompanying water (S112).

また、随伴水割合算出部160が、随伴水密度予測値、油密度予測値、参照密度値に基づいて随伴水割合を算出する(S113)。そして、体積流量算出部170が、液相体積流量、随伴水割合から随伴水体積流量、油体積流量を算出する(S114)。 Further, the accompanying water ratio calculation unit 160 calculates the accompanying water ratio based on the associated water density predicted value, the oil density predicted value, and the reference density value (S113). Then, the volume flow rate calculation unit 170 calculates the accompanying water volume flow rate and the oil volume flow rate from the liquid phase volume flow rate and the accompanying water ratio (S114).

ガス非混入判定時、ガス混入判定時とも、体積流量算出部170は、算出された各成分の体積流量を所定の締期間で積算して、成分毎の体積を算出する(S115)。算出した成分毎の体積流量や成分毎の体積は、表示装置に表示したり、信号出力したり、記録等することができる。そして、次の各計測値を取得(S102)し、以降の処理を測定が終了するまで繰り返す。 In both the gas non-mixing determination and the gas mixing determination determination, the volume flow rate calculation unit 170 integrates the calculated volume flow rates of each component in a predetermined closing period to calculate the volume of each component (S115). The calculated volume flow rate for each component and the volume for each component can be displayed on a display device, output as a signal, recorded, or the like. Then, each of the following measured values is acquired (S102), and the subsequent processing is repeated until the measurement is completed.

以上説明したように、本実施形態の混相流測定装置100は、コリオリ流量計200の駆動電流値に基づいてガス混入を検出し、コリオリ流量計200の各計測値と、圧力伝送器300の出力値に基づいて、簡易な演算により、混相流の成分毎の体積流量を算出する。このため、混相流の成分毎の体積流量を簡易な構成でリアルタイムに把握することができる。 As described above, the multiphase flow measuring device 100 of the present embodiment detects gas mixing based on the drive current value of the Koriori flow meter 200, and each measured value of the Koriori flow meter 200 and the output of the pressure transmitter 300. Based on the value, the volumetric flow rate for each component of the multiphase flow is calculated by a simple calculation. Therefore, the volumetric flow rate for each component of the multiphase flow can be grasped in real time with a simple configuration.

10…混相流測定システム
100…混相流測定装置
110…計測値取得部
120…標準状態密度入力部
130…ガス混入検出部
140…参照密度値生成部
150…ガス空隙率算出部
160…随伴水割合算出部
170…体積流量算出部
200…コリオリ流量計
210…検出部
211…測定管
212…加振器
213…上流側センサ
214…下流側センサ
215…温度センサ
220…変換部
221…励振回路
222…演算部
223…密度演算部
224…質量流量演算部
225…出力部
300…圧力伝送器
10 ... Multiphase flow measurement system 100 ... Multiphase flow measurement device 110 ... Measurement value acquisition unit 120 ... Standard state density input unit 130 ... Gas mixture detection unit 140 ... Reference density value generation unit 150 ... Gas void ratio calculation unit 160 ... Accompanying water ratio Calculation unit 170 ... Volumetric flow rate calculation unit 200 ... Koriori flow meter 210 ... Detection unit 211 ... Measuring tube 212 ... Exciter 213 ... Upstream side sensor 214 ... Downstream side sensor 215 ... Temperature sensor 220 ... Conversion unit 221 ... Excitation circuit 222 ... Calculation unit 223 ... Density calculation unit 224 ... Mass flow rate calculation unit 225 ... Output unit 300 ... Pressure transmitter

Claims (6)

石油生産井からの石油と随伴水とを含む測定対象流体を測定するコリオリ流量計からの少なくとも質量流量計測値および密度計測値、前記測定対象流体の温度を測定する温度センサの温度計測値を取得する計測値取得部と、
この計測値取得部からの前記質量流量計測値および前記密度計測値に基づいてガス体積流量と液相体積流量を算出し、前記液相体積流量と、前記計測値取得部により取得した前記温度計測値に基づいて、前記石油と前記随伴水の各体積流量を算出する体積流量算出部と
を設けたことを特徴とする混相流測定装置。
Obtain at least the mass flow rate measurement value and density measurement value from the Koriori flow meter that measures the measurement target fluid including oil and accompanying water from the oil production well, and the temperature measurement value of the temperature sensor that measures the temperature of the measurement target fluid. Measurement value acquisition unit and
The gas volume flow rate and the liquid phase volume flow rate are calculated based on the mass flow rate measurement value and the density measurement value from the measured value acquisition unit, and the liquid phase volume flow rate and the temperature measurement acquired by the measurement value acquisition unit are performed. A mixed phase flow measuring device provided with a volume flow rate calculation unit that calculates each volume flow rate of the oil and the accompanying water based on the value.
前記コリオリ流量計から励振信号を取得し、この励振信号に基づいて、前記測定対象流体にガスが混入したことを検出するガス混入検出部を設け、
前記体積流量算出部は、前記ガス混入検出部の検出があるとき、ガス体積流量と液相体積流量を演算することを特徴とする請求項1記載の混相流測定装置。
An excitation signal is acquired from the Coriolis flow meter, and a gas mixing detection unit for detecting that gas is mixed in the fluid to be measured is provided based on the excitation signal.
The mixed phase flow measuring device according to claim 1, wherein the volume flow rate calculation unit calculates a gas volume flow rate and a liquid phase volume flow rate when the gas mixing detection unit is detected.
前記体積流量算出部は、前記ガス混入検出部の検出がないとき、前記温度計測値に基づいて、前記石油と前記随伴水の各体積流量を算出することを特徴とする請求項2記載の混相流測定装置。 The mixed phase according to claim 2, wherein the volumetric flow rate calculation unit calculates each volumetric flow rate of the petroleum and the accompanying water based on the temperature measurement value when the gas mixing detection unit is not detected. Flow measuring device. 標準状態石油密度および標準状態随伴水密度の入力を受け付ける標準状態入力部と、
前記標準状態入力部に入力された前記標準状態石油密度および前記標準状態随伴水密度、前記温度計測値に基づいて前記測定対象流体のうち前記随伴水の割合を算出する随伴水割合算出部と、が設けられ、
前記体積流量算出部は、前記液相体積流量と、前記随伴水割合算出部が算出した前記随伴水の割合とに基づいて、前記石油と前記随伴水の各体積流量を算出することを特徴とする請求項1乃至3に記載の混相流測定装置。
Standard state input unit that accepts input of standard state oil density and standard state accompanying water density,
An accompanying water ratio calculation unit that calculates the ratio of the accompanying water to the fluid to be measured based on the standard state oil density, the standard state accompanying water density, and the temperature measurement value input to the standard state input unit. Is provided,
The volume flow rate calculation unit is characterized in that each volume flow rate of the oil and the accompanying water is calculated based on the liquid phase volume flow rate and the ratio of the accompanying water calculated by the accompanying water ratio calculation unit. The mixed phase flow measuring apparatus according to any one of claims 1 to 3.
石油生産井からの石油と随伴水とを含む測定対象流体を測定するコリオリ流量計からの少なくとも質量流量計測値および密度計測値を計測値取得部に入力するステップと、
前記測定対象流体の温度を測定する温度センサの温度計測値を前記計測値取得部に入力するステップと、
前記質量流量計測値および前記密度計測値に基づいてガス体積流量と液相体積流量を体積流量算出部が算出するステップと、
この液相体積流量と前記温度計測値に基づいて、前記石油と前記随伴水の各体積流量を前記体積流量算出部が算出するステップと
を設けたことを特徴とする混相流測定方法。
The step of inputting at least the mass flow rate measurement value and the density measurement value from the Koriori flow meter that measures the fluid to be measured including oil from the oil production well and the accompanying water to the measurement value acquisition unit, and
A step of inputting a temperature measurement value of a temperature sensor for measuring the temperature of the fluid to be measured into the measurement value acquisition unit, and a step of inputting the temperature measurement value to the measurement value acquisition unit.
A step in which the volume flow rate calculation unit calculates the gas volume flow rate and the liquid phase volume flow rate based on the mass flow rate measurement value and the density measurement value, and
A mixed phase flow measurement method comprising: a step of calculating each volume flow rate of the oil and the accompanying water by the volume flow rate calculation unit based on the liquid phase volume flow rate and the temperature measurement value.
コンピュータに用いられ、
石油生産井からの石油と随伴水とを含む測定対象流体を測定するコリオリ流量計からの少なくとも質量流量計測値および密度計測値を入力するステップと、
前記測定対象流体の温度を測定する温度センサの温度計測値を入力するステップと、
前記質量流量計測値および前記密度計測値に基づいてガス体積流量と液相体積流量を算出するステップと、
この液相体積流量と前記温度計測値に基づいて、前記石油と前記随伴水の各体積流量を算出するステップと
を設けたことを特徴とするプログラム。
Used in computers
Steps to enter at least mass flow and density measurements from the Koriori flowmeter to measure the fluid to be measured, including oil from oil production wells and associated water.
The step of inputting the temperature measurement value of the temperature sensor for measuring the temperature of the fluid to be measured, and
A step of calculating the gas volume flow rate and the liquid phase volume flow rate based on the mass flow rate measurement value and the density measurement value, and
A program characterized in that a step of calculating each volume flow rate of the petroleum and the accompanying water based on the liquid phase volume flow rate and the temperature measurement value is provided.
JP2017226701A 2017-11-27 2017-11-27 Multiphase flow measuring device, multiphase flow measuring method and program Active JP6952952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017226701A JP6952952B2 (en) 2017-11-27 2017-11-27 Multiphase flow measuring device, multiphase flow measuring method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017226701A JP6952952B2 (en) 2017-11-27 2017-11-27 Multiphase flow measuring device, multiphase flow measuring method and program

Publications (2)

Publication Number Publication Date
JP2019095369A JP2019095369A (en) 2019-06-20
JP6952952B2 true JP6952952B2 (en) 2021-10-27

Family

ID=66971691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017226701A Active JP6952952B2 (en) 2017-11-27 2017-11-27 Multiphase flow measuring device, multiphase flow measuring method and program

Country Status (1)

Country Link
JP (1) JP6952952B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098477B (en) * 2020-08-28 2021-04-06 东北石油大学 Capacitance measuring method for water holding capacity of high-water-content oil-water two-phase flow without being influenced by temperature

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654502A (en) * 1995-12-28 1997-08-05 Micro Motion, Inc. Automatic well test system and method of operating the same
US6327914B1 (en) * 1998-09-30 2001-12-11 Micro Motion, Inc. Correction of coriolis flowmeter measurements due to multiphase flows
WO2006127527A1 (en) * 2005-05-20 2006-11-30 Micro Motion, Inc. Meter electronics and methods for rapidly determining a mass fraction of a multi-phase from a coriolis flow meter signal
CN102346058B (en) * 2010-07-29 2014-07-09 中国石油大学(华东) Model method for measuring flow rate of air-assisted liquid by Coriolis mass flowmeter (CMF)
RU2604954C2 (en) * 2012-08-01 2016-12-20 Майкро Моушн, Инк. Determination of characteristics of fluid medium for multicomponent fluid medium with compressible and incompressible components

Also Published As

Publication number Publication date
JP2019095369A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
RU2655022C1 (en) Coriolis direct wellhead measurement devices and methods
CA2344830C (en) Transient bubble remediation in coriolis flowmeters
EP3062070B1 (en) System and method for multiphase flow metering accounting for dissolved gas
KR20110110875A (en) Meter electronics and methods for verification diagnostics for a flow meter
RU2565849C2 (en) Method of operation of resonant measurement system
CA2892592C (en) Detection of a change in the cross - sectional area of a fluid tube in a vibrating meter by determining a lateral mode stiffness
JP2019505789A (en) Multiphase Coriolis measuring apparatus and method
JP6952952B2 (en) Multiphase flow measuring device, multiphase flow measuring method and program
JP6419296B2 (en) Coriolis type device for directly measuring the source and method for measuring the source directly
CN105571658A (en) Vortex flowmeter including pressure pulsation amplitude analysis
JP7024466B2 (en) Coriolis flowmeter, time prediction system, and time prediction method
JP7170049B2 (en) Method and apparatus for monitoring dissolution
JP7317199B2 (en) How the total verification time is determined
EP4036547A1 (en) Method for determining a physical parameter of a pipe-fluid system
RU2797555C1 (en) Method for determining total verification time using flow meter diagnostic tool in real time when flow meter verification and flow meter diagnostic tool
Henry Multiphase metering system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210912

R150 Certificate of patent or registration of utility model

Ref document number: 6952952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150