JPH10282046A - Solid electrolyte oxygen sensor - Google Patents

Solid electrolyte oxygen sensor

Info

Publication number
JPH10282046A
JPH10282046A JP9096477A JP9647797A JPH10282046A JP H10282046 A JPH10282046 A JP H10282046A JP 9096477 A JP9096477 A JP 9096477A JP 9647797 A JP9647797 A JP 9647797A JP H10282046 A JPH10282046 A JP H10282046A
Authority
JP
Japan
Prior art keywords
electromotive force
solid electrolyte
sensor
gas
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9096477A
Other languages
Japanese (ja)
Other versions
JP3534149B2 (en
Inventor
Keiichi Saji
啓市 佐治
Tadashi Nakamura
忠司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP09647797A priority Critical patent/JP3534149B2/en
Publication of JPH10282046A publication Critical patent/JPH10282046A/en
Application granted granted Critical
Publication of JP3534149B2 publication Critical patent/JP3534149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte oxygen sensor provided with a sensor element which achieves a higher stability with respect to thermal and service history of suddenly changing characteristic of electromotive force near a theoretical air/fuel ratio. SOLUTION: This solid electrolyte oxygen sensor is provided with a sensor element comprising an oxide ion transmitting solid electrolyte and a platinum electrode. In this case, at least one metal selected from elements of the II group, III group, V group, VI group and VIII group in the periodic table is added to the surface alone of the platinum electrode on the side of detecting a gas to be measured while the platinum is directly bonded to the added metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、理論空燃比付近で
の起電力急変特性の熱的及び使用履歴に対する安定性が
向上したセンサ素子を備えた固体電解質酸素センサに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte oxygen sensor provided with a sensor element having improved stability to thermal and usage history of a sudden change in electromotive force near a stoichiometric air-fuel ratio.

【0002】[0002]

【従来の技術】三元触媒と理論空燃比を検出する酸素セ
ンサとを組み合わせた排気ガス浄化システムは高い浄化
性能を持つので、自動車などにおける排気ガス浄化のた
めに広く用いられている。前記システムで用いられる酸
素センサは、白金電極の酸化触媒活性を積極的に利用
し、理論空燃比を検出しようとするものである。三元触
媒システムでは、酸素センサの理論空燃比検出精度がシ
ステムの浄化性能に大きく影響することから、検出精度
を向上させることが重要である。
2. Description of the Related Art An exhaust gas purification system combining a three-way catalyst and an oxygen sensor for detecting a stoichiometric air-fuel ratio has a high purification performance and is therefore widely used for exhaust gas purification in automobiles and the like. The oxygen sensor used in the system positively utilizes the oxidation catalyst activity of the platinum electrode to detect the stoichiometric air-fuel ratio. In a three-way catalyst system, the detection accuracy of the stoichiometric air-fuel ratio of the oxygen sensor greatly affects the purification performance of the system. Therefore, it is important to improve the detection accuracy.

【0003】酸化物イオン伝導性固体電解質と白金電極
とからなる起電力式空燃比センサ(酸素センサ)は、ほ
ぼ理論空燃比で起電力が急変する特性を示す。しかし、
自動車エンジンから排出される排気ガスのように未燃成
分のCO,HC,H2 やO2,NOx等が共存する化学
的に非平衡な混合ガスに対しては、起電力の急変する空
燃比は、混合ガスの非平衡の度合に応じて理論空燃比か
らシフトすることが知られている。これを防止するに
は、三元触媒の下流側で酸素センサを使用して動作ガス
を化学平衡に近いものとする方法が効果的である。前記
方法は、酸素センサにおける検出空燃比と理論空燃比と
の不一致の度合を低減し、システムの浄化性能を著しく
向上させる有力な方法である。この場合も、従来と同様
の酸化物イオン伝導性固体電解質と白金電極とからなる
基本的な構成の酸素センサが用いられる。
[0003] An electromotive force type air-fuel ratio sensor (oxygen sensor) comprising an oxide ion conductive solid electrolyte and a platinum electrode has a characteristic that the electromotive force changes suddenly at almost the stoichiometric air-fuel ratio. But,
For a chemically non-equilibrium mixed gas in which unburned components such as CO, HC, H 2 , O 2 , and NOx coexist, such as exhaust gas discharged from an automobile engine, the air-fuel ratio at which the electromotive force changes rapidly Is known to shift from the stoichiometric air-fuel ratio depending on the degree of non-equilibrium of the mixed gas. In order to prevent this, it is effective to use an oxygen sensor downstream of the three-way catalyst to make the working gas close to the chemical equilibrium. The above method is an effective method for reducing the degree of mismatch between the detected air-fuel ratio and the stoichiometric air-fuel ratio in the oxygen sensor and significantly improving the purification performance of the system. Also in this case, an oxygen sensor having a basic configuration including a conventional oxide ion conductive solid electrolyte and a platinum electrode is used.

【0004】酸化物イオン伝導性固体電解質と白金電極
とからなるセンサ素子の空燃比対起電力の特性は、前述
のように理論空燃比で起電力が急変するものであるが、
起電力が急峻に変化する特性を穏やかにして任意の空燃
比が検出できるようにするため、種々の提案がなされて
いる。具体的には、例えば、白金電極に触媒能を有する
遷移金属酸化物(例えば、NiO)を添加し、低温動作
性を向上させた固体電解質酸素検出器(特開昭52−4
6889号公報)、半触媒性能を有する電極にHCを酸
化してCOを生成する金属酸化物(例えば、SnO2
In2 3 ,NiO,Co3 4 ,CuO)を組み合わ
せた広域空燃比センサ(特開昭59−100854号公
報,特開昭59−142455号公報)、白金電極上に
Ni膜を形成し、理論空燃比付近の起電力勾配を緩やか
にした燃焼検知素子(特開昭60−115844号公
報)、白金電極上にCOからCO2 への酸化反応を促進
するための白金を触媒成分とする触媒層を形成した酸素
センサ(特公平6−90176号公報)が提案されてい
る。又、耐熱性を向上させる目的で、白金電極に酸化ジ
ルコニウムと酸化セリウムの複合酸化物を添加成分とし
て含ませた酸素センサ(特開平5−256816号公
報)が提案されている。更に、被測定ガスである混合気
中の平衡調節を触媒反応させない測定電極(白金及びビ
スマスを含有する)を有する電気化学的センサ(酸素セ
ンサ)(特表平8−510561号公報)が提案されて
いる。
[0004] The characteristic of the air-fuel ratio versus the electromotive force of the sensor element comprising the oxide ion conductive solid electrolyte and the platinum electrode is such that the electromotive force changes abruptly at the stoichiometric air-fuel ratio as described above.
Various proposals have been made in order to make the characteristic in which the electromotive force changes steep so that an arbitrary air-fuel ratio can be detected. More specifically, for example, a solid electrolyte oxygen detector in which a low-temperature operability is improved by adding a transition metal oxide having catalytic activity (for example, NiO) to a platinum electrode (Japanese Patent Laid-Open No. Sho 52-4)
No. 6889), a metal oxide (for example, SnO 2 ,
A wide-range air-fuel ratio sensor (JP-A-59-100854, JP-A-59-142455) combining In 2 O 3 , NiO, Co 3 O 4 , and CuO, and a Ni film formed on a platinum electrode , combustion sensing element (Sho 60-115844 JP) was gently electromotive force gradient in the vicinity of the stoichiometric air-fuel ratio to platinum for promoting oxidation of CO to CO 2 on the platinum electrode and the catalyst component An oxygen sensor having a catalyst layer (Japanese Patent Publication No. 6-90176) has been proposed. For the purpose of improving heat resistance, there has been proposed an oxygen sensor in which a platinum oxide contains a composite oxide of zirconium oxide and cerium oxide as an additional component (JP-A-5-256816). Further, an electrochemical sensor (oxygen sensor) having a measurement electrode (containing platinum and bismuth) that does not cause a catalytic reaction in the equilibrium adjustment in a gas mixture to be measured (Japanese Patent Application Laid-Open No. 8-510561) has been proposed. ing.

【0005】[0005]

【発明が解決しようとする課題】従来の酸化物イオン伝
導性固体電解質と白金電極とからなる理論空燃比酸素セ
ンサを三元触媒の下流側で作動させても、ごく僅かの未
燃成分が浄化されずに残っているので、高精度化された
としても検出点が完全に理論空燃比に一致するには至ら
ない。この理由は、三元触媒から排出される成分には反
応性の低いガスの割合〔例えば、全HCに占めるパラフ
ィン系の割合及び酸化性ガス(O2 ,NOx)全体に占
めるNOxの割合〕が触媒上流側よりもむしろ高まって
いると考えられるからである。特に、三元触媒は、その
動作空燃比が理論空燃比からごく僅かに、例えば空気過
剰率(空燃比を理論空燃比14.6で除した値)で0.
001だけリーン側に移動した場合でも、急激にNOx
の浄化率が低下する特性を持つので、センサの使用過程
で特性がリーン側にシフトすると、システム全体の浄化
特性が悪化する恐れがある。このため、三元触媒の下流
側で使用する酸素センサでは、高温度の環境で長時間使
用しても空燃比対起電力の特性(静特性)が従来のセン
サより格段に高精度に維持される必要がある。
Even if a conventional stoichiometric air-fuel ratio oxygen sensor comprising a solid oxide ion conductive solid electrolyte and a platinum electrode is operated downstream of a three-way catalyst, only a small amount of unburned components is purified. However, even if the accuracy is improved, the detection point does not completely match the stoichiometric air-fuel ratio. The reason for this is that the component discharged from the three-way catalyst has a low-reactive gas ratio (for example, a paraffin-based ratio in the total HC and a NOx ratio in the entire oxidizing gas (O 2 , NOx)). This is because it is considered that it is higher than the upstream side of the catalyst. In particular, the three-way catalyst has an operating air-fuel ratio that is only slightly smaller than the stoichiometric air-fuel ratio, for example, at an air excess ratio (a value obtained by dividing the air-fuel ratio by the stoichiometric air-fuel ratio of 14.6).
Even if it moves to the lean side by 001, NOx suddenly
Therefore, if the characteristic shifts to the lean side during the use process of the sensor, the purification characteristic of the entire system may be deteriorated. For this reason, in the oxygen sensor used downstream of the three-way catalyst, the characteristics (static characteristics) of the air-fuel ratio to the electromotive force (static characteristics) are maintained with much higher accuracy than the conventional sensor even when used for a long time in a high temperature environment. Need to be

【0006】一方、酸素センサの使用過程では、燃料や
潤滑油などが燃焼した時に生成する僅かの固形物が酸素
センサの表面に付着する場合がある。酸素センサ表面の
付着物は、センサ電極をコーティングしている多孔性セ
ラミック層によって隔てられているので、電極にまで直
接浸入することはなく、センサの起電力特性に影響を及
ぼすことは少ないが、稀にエンジン排気ガス中の成分に
よって特性変化が起こることが知られている。このよう
な場合の防止策として、前述の特公平6−90176号
公報に記載された酸素センサにおいては、起電力特性に
影響する成分の浸透を低減する多孔性セラミック層が設
けられている。しかし、電極への極微量の浸入は避けら
れないので、精度の高い特性を有する酸素センサにおけ
る変動防止には電極自身の特性の変動を低減させる必要
がある。
[0006] On the other hand, in the process of using the oxygen sensor, a small amount of solid matter generated when fuel or lubricating oil is burned may adhere to the surface of the oxygen sensor. Deposits on the surface of the oxygen sensor are separated by the porous ceramic layer coating the sensor electrode, so that they do not directly penetrate into the electrode and have little effect on the electromotive force characteristics of the sensor, It is known that characteristic changes rarely occur due to components in engine exhaust gas. As a preventive measure in such a case, the oxygen sensor described in Japanese Patent Publication No. 6-90176 described above is provided with a porous ceramic layer for reducing penetration of components that affect electromotive force characteristics. However, since a very small amount of infiltration into the electrode is unavoidable, it is necessary to reduce the variation in the characteristics of the electrode itself in order to prevent the variation in the oxygen sensor having high accuracy.

【0007】本発明者らは、前記従来技術の問題点を解
決すべく鋭意研究した結果、酸化物イオン伝導性固体電
解質と白金電極とを用いた発生起電力の急変特性を利用
する理論空燃比酸素センサにおいて、被測定ガス検出側
の白金電極表面のみに異種元素(白金と異なる金属)を
添加し、白金と直接結合させることによって理論空燃比
付近での起電力急変特性の熱的及び使用履歴に対する安
定性を向上させ得ることを見出し、本発明を想到するに
至った。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems of the prior art, and as a result, have found that the stoichiometric air-fuel ratio utilizing the sudden change characteristic of the generated electromotive force using an oxide ion conductive solid electrolyte and a platinum electrode. Thermal and usage history of the electromotive force sudden change characteristic near the stoichiometric air-fuel ratio by adding a different element (a metal different from platinum) only to the surface of the platinum electrode on the measurement gas detection side of the oxygen sensor and directly bonding with platinum It has been found that the stability of the present invention can be improved, and the present invention has been made.

【0008】[0008]

【課題を解決するための手段】本発明の固体電解質酸素
センサは、酸化物イオン伝導性固体電解質と白金電極と
からなるセンサ素子を備えた固体電解質酸素センサにお
いて、被測定ガス検出側の白金電極の表面のみに、周期
律表の第II族,第III 族,第V族,第VI族及び第VIII族
の元素のうちから選択された少なくとも1種の金属が添
加され、且つ白金と添加金属とが直接結合してなること
を特徴とする。本発明の固体電解質酸素センサにおい
て、第II族の元素がバリウム(Ba)であり、第III 族
の元素がセリウム(Ce)であり、第V族の元素がビス
マス(Bi)であり、第VI族の元素がクロム(Cr)で
あり、第VIII族の元素が鉄(Fe)、コバルト(C
o)、ニッケル(Ni)であることが好ましい。本発明
の固体電解質酸素センサにおいて、添加金属が、白金電
極の表面を被覆してなることが好ましい。
According to the present invention, there is provided a solid electrolyte oxygen sensor having a sensor element comprising an oxide ion conductive solid electrolyte and a platinum electrode. At least one metal selected from Group II, Group III, Group V, Group VI and Group VIII elements of the periodic table is added only to the surface of And are directly bonded to each other. In the solid electrolyte oxygen sensor of the present invention, the group II element is barium (Ba), the group III element is cerium (Ce), the group V element is bismuth (Bi), and the group VI element is bismuth (Bi). Group VIII element is chromium (Cr) and Group VIII element is iron (Fe), cobalt (C
o) and nickel (Ni). In the solid electrolyte oxygen sensor of the present invention, it is preferable that the additional metal covers the surface of the platinum electrode.

【0009】原理 本発明の酸素センサの被測定ガス検出側の白金電極に
は、遷移金属、アルカリ土類金属などの異種添加元素
(金属)を熱処理等によって表面に結合させる。このよ
うにして得られた電極は、自動車排気ガス中に含まれる
未燃還元性ガス成分のうち、CO,H2 やパラフィン系
以外の炭化水素などの未燃還元性ガス成分については、
従来と同様に高い酸化活性を持つ。しかし、パラフィン
系炭化水素ガス成分に対しては、白金電極に添加物を加
えることにより人為的に所定の酸化反応活性に制御され
ている。前記電極を用いて構成されたセンサでは、C
O,H2に対して従来の酸素センサと同様の高い起電力
を発生するが、パラフィン系炭化水素ガスについては低
い起電力しか発生せず、リッチ側か又はリーン側かを判
定する比較電圧をパラフィン系炭化水素ガスにより発生
する起電力付近に設定することによって、パラフィン系
炭化水素ガスを雰囲気の全濃度の一定割合のみの濃度と
してセンサが感受する。すなわち、パラフィン系炭化水
素ガス濃度を、パラフィン系炭化水素ガスが全て存在す
るものとしてではなく、雰囲気中に一定割合のみしか存
在していないものとして検出する。従って、このように
構成した酸素センサは、存在していないとするパラフィ
ン系炭化水素ガスを酸化させるために見合う酸素濃度に
相当する分だけ空燃比検出点をリッチ側に移動させるこ
とができる。
Principle A heterogeneous additive element (metal) such as a transition metal or an alkaline earth metal is bonded to the surface of the platinum electrode on the detection side of the gas to be measured of the oxygen sensor of the present invention by heat treatment or the like. The electrode obtained in this manner has the following characteristics: Among the unburned reducing gas components contained in the vehicle exhaust gas, unburned reducing gas components such as CO, H 2 and non-paraffin hydrocarbons are
It has high oxidation activity as before. However, the paraffinic hydrocarbon gas component is artificially controlled to a predetermined oxidation reaction activity by adding an additive to the platinum electrode. In a sensor configured using the electrodes, C
O, but generates a similar high electromotive force and a conventional oxygen sensor with respect to H 2, generates only a low electromotive force for paraffinic hydrocarbon gas, the comparison voltage determines the rich side or the lean side By setting the vicinity of the electromotive force generated by the paraffin-based hydrocarbon gas, the sensor senses the paraffin-based hydrocarbon gas as a concentration of only a certain percentage of the total concentration of the atmosphere. That is, the paraffin-based hydrocarbon gas concentration is detected not as the presence of all the paraffin-based hydrocarbon gas but as the presence of only a certain percentage in the atmosphere. Therefore, the oxygen sensor configured as described above can move the air-fuel ratio detection point to the rich side by an amount corresponding to the oxygen concentration appropriate for oxidizing the paraffin-based hydrocarbon gas that does not exist.

【0010】三元触媒の下流側でのパラフィン系炭化水
素ガスの全濃度は、一般的に炭素数換算で100ppm
程度以下と低いので、空燃比検出点のリッチ側への移動
は、酸素濃度に換算して200ppm程度以下に相当す
る僅かな幅になる。この空燃比幅は、エンジンの燃焼前
の空気過剰率(空燃比を理論空燃比14.6で除した
値)で0.001以内と著しく狭いものとなる。このこ
とは、パラフィン系炭化水素ガスに対する酸化活性を安
定的に制御することにより、三元触媒の排気ガス浄化特
性の最も好ましい点付近に酸素センサの検出点を設定し
得ることを示す。従来の白金電極を用いた酸素センサで
はCO,H2 と同様にパラフィン系炭化水素ガスに対し
ても高い起電力を発生するが、不純物の多い使用環境で
はパラフィン系炭化水素ガスに対する起電力が比較的短
時間に低下し易い。しかし、本発明の酸素センサでは、
被測定ガス検出側の白金電極の反応活性が予め制御され
ているので、使用初期でもパラフィン系炭化水素ガスに
対しては低い起電力を発揮する特性を示し、不純物の多
い使用環境でも付着物による特性変動が大きくは生じな
い利点がある。
The total concentration of paraffinic hydrocarbon gas downstream of the three-way catalyst is generally 100 ppm in terms of carbon number.
Therefore, the shift of the air-fuel ratio detection point to the rich side has a slight width corresponding to about 200 ppm or less in terms of oxygen concentration. This air-fuel ratio width is as extremely narrow as 0.001 or less in excess air ratio (a value obtained by dividing the air-fuel ratio by the stoichiometric air-fuel ratio of 14.6) before the combustion of the engine. This indicates that the detection point of the oxygen sensor can be set near the most preferable point of the exhaust gas purification characteristics of the three-way catalyst by stably controlling the oxidation activity with respect to the paraffinic hydrocarbon gas. A conventional oxygen sensor using a platinum electrode generates a high electromotive force for paraffinic hydrocarbon gas as well as CO and H 2 , but in a usage environment with many impurities, the electromotive force for paraffinic hydrocarbon gas is compared. It tends to decrease in a short time. However, in the oxygen sensor of the present invention,
Since the reaction activity of the platinum electrode on the detection side of the gas to be measured is controlled in advance, it exhibits a characteristic of exhibiting a low electromotive force with respect to paraffin-based hydrocarbon gas even in the early stage of use. There is an advantage that characteristic fluctuation does not occur significantly.

【0011】[0011]

【発明の実施の形態】本発明の酸素センサは、白金電極
表面に異種元素(異種金属)を添加し、白金と直接結合
させることによって白金電極表面(電極内部のごく浅い
部分も含む)と異種金属とを直接反応・結合させ、白金
と添加金属との総合作用(例えば、合金化、金属間化合
物の形成)によってパラフィン系炭化水素ガスに対する
起電力を低下させる。従って、本発明の酸素センサにお
ける被測定ガス検出側の白金電極では添加金属は白金膜
表面付近にのみ存在するのが好ましく、白金膜の厚さが
薄いと電極とジルコニア固体電解質との界面付近にまで
添加元素が到達することとなりセンサの応答性が低下し
好ましくない。このため、白金電極における白金膜の厚
さは0.5〜2μmが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The oxygen sensor of the present invention differs from the platinum electrode surface (including a very shallow portion inside the electrode) by adding a different element (a different metal) to the platinum electrode surface and directly bonding to the platinum. The metal reacts and binds directly, and the electromotive force for the paraffinic hydrocarbon gas is reduced by the combined action of platinum and the added metal (for example, alloying, formation of an intermetallic compound). Therefore, in the platinum electrode on the side of the gas to be measured in the oxygen sensor of the present invention, the added metal is preferably present only near the surface of the platinum film, and when the thickness of the platinum film is small, it is near the interface between the electrode and the zirconia solid electrolyte. Undesirably, the added element reaches the sensor element until the response of the sensor decreases. For this reason, the thickness of the platinum film in the platinum electrode is desirably 0.5 to 2 μm.

【0012】異種金属の添加量も重要な要因である。本
発明と異なり、白金電極中にほぼ均一に異種金属を添加
した場合はセンサの応答性劣化があり、又、白金と結合
させずに電極上に単にコーティングした場合や白金電極
上に被覆する多孔質セラミックコーティングの内部に担
持したような場合には、添加金属は活性の低い酸化触媒
の効果を有するのみとなり、本発明のセンサの効果は得
られない。又、白金表面に直接結合させる異種金属の量
についても、多過ぎればパラフィン系炭化水素ガスに対
するのみでなく、H2 やCOに対しても起電力が低下す
ることになり、好ましくない。それ故、異種金属の添加
量は、種類や組み合わせに応じて、最適なセンサ性能が
得られるように適宜選択する。
The amount of different metals added is also an important factor. Unlike the present invention, when the dissimilar metal is added almost uniformly in the platinum electrode, the response of the sensor is deteriorated.In addition, when the platinum electrode is simply coated on the electrode without being combined with platinum, or when the porous electrode is coated on the platinum electrode. When the metal is supported inside the porous ceramic coating, the added metal only has the effect of an oxidation catalyst having low activity, and the effect of the sensor of the present invention cannot be obtained. In addition, if the amount of the dissimilar metal directly bonded to the platinum surface is too large, the electromotive force decreases not only for the paraffinic hydrocarbon gas but also for H 2 and CO, which is not preferable. Therefore, the amount of addition of the dissimilar metal is appropriately selected according to the type and combination so as to obtain optimum sensor performance.

【0013】本発明の酸素センサにおける白金電極の製
作方法としては、スパッタリング、真空蒸着、CVD、
メッキ等の慣用の薄膜形成手法を用いてよい。又、パラ
フィン系炭化水素ガス成分に対する前記電極の酸化反応
活性を制御する方法としては、白金電極上へ異種金属を
含有する溶液を塗布後熱処理する方法、白金電極上にス
パッタリングなどの薄膜形成手法にて堆積後熱処理する
方法、白金電極形成時に異種金属を含有する原料を用い
る方法等が適する。スパッタリング、真空蒸着などの薄
膜形成手法を用いる場合には、白金と添加金属との同時
スパッタリング、同時真空蒸着を用いてもよい。堆積処
理の際の温度において異種金属又は異種金属を含む化合
物の蒸気圧が高い場合には、CVD法を適用することも
できる。異種金属を白金電極に結合させるための添加後
の熱処理雰囲気は、中性ないし還元性雰囲気が好まし
い。前記熱処理は添加金属と白金とを反応させるもので
あり、これにより、パラフィン系炭化水素ガス成分に対
する白金電極表面の酸化反応活性が安定化する。白金電
極に添加された前記の金属成分は電極表面付近に比較的
高濃度で電極に直接結合した状態で存在するため、本セ
ンサ使用時のリッチ空燃比、リーン空燃比の繰り返しに
よっても、パラフィン系炭化水素ガス成分に対する酸化
反応活性を安定化された状態に制御することができる。
As a method of manufacturing the platinum electrode in the oxygen sensor of the present invention, sputtering, vacuum evaporation, CVD,
A conventional thin film forming technique such as plating may be used. As a method for controlling the oxidation reaction activity of the electrode with respect to the paraffinic hydrocarbon gas component, there are a method of applying a solution containing a dissimilar metal on a platinum electrode and then performing a heat treatment, and a method of forming a thin film such as sputtering on the platinum electrode. A method of performing heat treatment after deposition, a method of using a raw material containing a dissimilar metal when forming a platinum electrode, and the like are suitable. When a thin film forming technique such as sputtering or vacuum deposition is used, simultaneous sputtering and simultaneous vacuum deposition of platinum and an additional metal may be used. When the vapor pressure of the dissimilar metal or the compound containing the dissimilar metal is high at the temperature during the deposition treatment, the CVD method can be applied. The heat treatment atmosphere after the addition for binding the dissimilar metal to the platinum electrode is preferably a neutral or reducing atmosphere. The heat treatment causes the added metal to react with platinum, thereby stabilizing the oxidation reaction activity of the platinum electrode surface with respect to the paraffinic hydrocarbon gas component. The metal component added to the platinum electrode exists in the vicinity of the electrode surface at a relatively high concentration in a state directly bonded to the electrode, and therefore, even when the rich air-fuel ratio and lean air-fuel ratio at the time of using this sensor are repeated, the paraffin-based The oxidation reaction activity for the hydrocarbon gas component can be controlled in a stabilized state.

【0014】前記の添加金属は、アルカリ金属、アルカ
リ土類金属、遷移金属などの種々の金属を包含するが、
しかし、添加金属及びその酸化物の蒸気圧が高いと、高
温度のリッチ雰囲気及びリーン雰囲気に曝されたとき添
加金属が蒸発し易く、本センサの特性の安定性が悪い。
従って、安定なセンサ特性を有する添加金属としては、
金属及びその酸化物の状態での蒸気圧が低いものが適す
る。又、白金と反応して合金や金属間化合物を生成する
場合、それらが著しく低融点にならない添加金属が適す
る。比較的低融点の金属間化合物が生成する場合は、白
金(電極の主成分)の性質が損なわれないように添加量
を微量とする必要がある。
The above-mentioned additive metals include various metals such as alkali metals, alkaline earth metals and transition metals.
However, when the vapor pressure of the additive metal and its oxide is high, the additive metal is likely to evaporate when exposed to a high-temperature rich atmosphere and a lean atmosphere, and the stability of the characteristics of the sensor is poor.
Therefore, as an additive metal having stable sensor characteristics,
Those having a low vapor pressure in the state of a metal and its oxide are suitable. In addition, when an alloy or an intermetallic compound is formed by reacting with platinum, an additional metal that does not significantly lower the melting point is suitable. When an intermetallic compound having a relatively low melting point is formed, it is necessary to add a small amount so that the properties of platinum (a main component of the electrode) are not impaired.

【0015】[0015]

【実施例】以下の実施例(比較例を含む)により、本発
明を更に詳細に説明する。
The present invention will be described in more detail with reference to the following examples (including comparative examples).

【0016】実施例1 平板状のジルコニア焼結体固体電解質(φ17mm、厚
さ1mm)の両面にスパッタリング法により、φ6m
m、厚さ約1μmの白金膜を形成し、これにリード線を
取り付け、大気雰囲気中800℃で1時間熱処理して電
極を形成した。得られたセンサ素子は、白金電極/ジル
コニア固体電解質/白金電極からなる基本的な構成のジ
ルコニア固体電解質セルである。このセルを用いた試験
用センサについて、エンジン排気ガス中の未燃成分の主
要な還元性成分であるH2 、CO、及びセンサ特性のリ
ッチ傾向又はリーン傾向を判定するために、対応性の優
れたパラフィン系炭化水素としてC3 8 を選び、これ
らに対する起電力特性を500℃で調べた。
Example 1 A flat zirconia sintered solid electrolyte (φ17 mm, thickness 1 mm) was formed on both surfaces of a zirconia sintered body by φ6 m by sputtering.
A platinum film having a thickness of about 1 μm and a thickness of about 1 μm was formed, a lead wire was attached thereto, and heat treatment was performed at 800 ° C. for 1 hour in an air atmosphere to form an electrode. The obtained sensor element is a zirconia solid electrolyte cell having a basic configuration of platinum electrode / zirconia solid electrolyte / platinum electrode. The test sensor using this cell has excellent responsiveness in order to determine H 2 and CO, which are the main reducing components of the unburned components in the engine exhaust gas, and to determine the rich or lean tendency of the sensor characteristics. C 3 H 8 was selected as the paraffinic hydrocarbon, and the electromotive force characteristics thereof were examined at 500 ° C.

【0017】次に、前記と同様の方法でジルコニア固体
電解質センサを別に更に多数製作し、これらの個々のセ
ルの一方の電極の表面に各々各種硝酸塩又はその水和物
を溶解させた水溶液をφ6mmの白金電極上に20mg
滴下した。これらを乾燥後、N2 −1%H2 混合ガスに
室温で水蒸気(H2 O)を飽和させたガス雰囲気中で、
800℃で1時間熱処理してセンサ素子を得、前記と同
様の方法で試験用センサを製作した。
Next, a large number of zirconia solid electrolyte sensors were separately manufactured in the same manner as described above, and an aqueous solution in which various nitrates or hydrates thereof were dissolved on the surface of one electrode of each of these cells was φ6 mm. 20 mg on a platinum electrode
It was dropped. After drying these, in a gas atmosphere saturated with steam (H 2 O) at room temperature in a N 2 -1% H 2 mixed gas,
Heat treatment was performed at 800 ° C. for 1 hour to obtain a sensor element, and a test sensor was manufactured in the same manner as described above.

【0018】製作した固体電解質センサの電極への異種
金属添加の際に使用した硝酸塩の種類及びその濃度を下
記表1に示す。 表1:異種金属添加条件 ─────────────────────────────────── 添加金属 硝酸塩 硝酸塩濃度(mol/l) ─────────────────────────────────── Al Al(NO3 3 ・9H2 O 0.01 Ba Ba(NO3 2 0.01 Ce Ce(NO3 3 ・6H2 O 0.01 Cr Cr(NO3 3 ・9H2 O 0.01 Fe Fe(NO3 3 ・9H2 O 0.01 Co Co(NO3 3 ・6H2 O 0.01 Ni Ni(NO3 3 ・6H2 O 0.01 ─────────────────────────────────── 異種金属を添加しなかった場合の固体電解質センサのH
2 に対する起電力特性を図1に、同C3 8 に対する起
電力特性を図2に、同COに対する起電力特性を図3に
示す。これらの特性から判るように、起電力の急変する
酸素当量比(記号λ′;λ′=1が理論空燃比に対応)
は未燃成分の違いによって異なる値を示す。図1ないし
3の結果では、起電力急変点を起電力が0.45Vの酸
素当量比の値とした場合、H2 (図1)、C3 8 (図
2)、CO(図3)に対してそれぞれ約1.6〜1.
8、0.7〜0.8、約1となる。この理由は、白金電
極が高い酸化活性を示す未燃ガスに対しては、白金電極
に到達するまでのガス輸送過程で未燃ガス分子量が酸素
より小さいもの程、そのガスの輸送速度が大きくなるた
めである。エンジン排気ガスのような未燃ガスと酸素と
の共存雰囲気中では、それぞれの未燃ガスの特性と濃度
とによって加算的に合成された空燃比検出特性となる。
一方、電極が未燃ガスに対して低い酸化活性を示す場合
もこれは同様である。
Table 1 below shows the types and concentrations of nitrates used for adding different metals to the electrodes of the manufactured solid electrolyte sensor. Table 1: Conditions for adding different metals ─────────────────────────────────── Added metal nitrate Nitrate concentration (mol / l) ─────────────────────────────────── Al Al (NO 3 ) 3 .9H 2 O 01 Ba Ba (NO 3) 2 0.01 Ce Ce (NO 3) 3 · 6H 2 O 0.01 Cr Cr (NO 3) 3 · 9H 2 O 0.01 Fe Fe (NO 3) 3 · 9H 2 O 0.01 Co Co (NO 3 ) 3 .6H 2 O 0.01 Ni Ni (NO 3 ) 3 .6H 2 O 0.01 ─────────────────── H H of solid electrolyte sensor when no foreign metal is added
The electromotive force characteristic in FIG. 1 for 2, the electromotive force characteristic with respect to the C 3 H 8 in FIG. 2, showing the electromotive force characteristic with respect to the CO in FIG. As can be seen from these characteristics, the oxygen equivalent ratio at which the electromotive force changes rapidly (symbol λ ′; λ ′ = 1 corresponds to the stoichiometric air-fuel ratio)
Indicates different values depending on the difference in unburned components. In the results of FIGS. 1 to 3, when the electromotive force sudden change point is the value of the oxygen equivalent ratio where the electromotive force is 0.45 V, H 2 (FIG. 1), C 3 H 8 (FIG. 2), CO (FIG. 3) About 1.6 to 1.
8, 0.7 to 0.8, about 1. The reason for this is that, for an unburned gas in which the platinum electrode exhibits high oxidizing activity, the transport speed of the gas increases as the molecular weight of the unburned gas is smaller than oxygen in the gas transport process until reaching the platinum electrode. That's why. In an atmosphere in which unburned gas and oxygen coexist, such as engine exhaust gas, the air-fuel ratio detection characteristics are additively synthesized based on the characteristics and concentration of each unburned gas.
On the other hand, the same applies to the case where the electrode exhibits low oxidation activity with respect to the unburned gas.

【0019】すなわち、図1ないし3に示された特性と
比較して、各ガス成分の起電力特性がリッチ側に又はリ
ーン側にシフトしたものであれば、エンジン排気ガス中
でも同様に、リッチ側に又はリーン側にシフトしたもの
となる。この様な対応性からH2 、C3 8 、COに対
する起電力特性を測定することにより、エンジン排気ガ
ス中での起電力特性を拡大して(個々の成分について詳
しく)精密に予測することができる。なお、排気ガス浄
化用触媒の下流側で酸素センサを使用する場合には、未
燃成分のうちH2 、COの寄与より炭化水素の影響が大
きいので、図1ないし3に示された特性のうち特にパラ
フィン系炭化水素であるC3 8 に注目する必要があ
る。
That is, if the electromotive force characteristic of each gas component is shifted to the rich side or the lean side as compared with the characteristics shown in FIGS. Or to the lean side. By measuring the electromotive force characteristics for H 2 , C 3 H 8 , and CO from such correspondence, it is possible to expand the electromotive force characteristics in the engine exhaust gas (in detail about individual components) and accurately predict them. Can be. When an oxygen sensor is used on the downstream side of the exhaust gas purifying catalyst, the effect of hydrocarbons is larger than the contribution of H 2 and CO among unburned components, so that the characteristics shown in FIGS. It is necessary to pay particular attention to C 3 H 8 , which is a paraffinic hydrocarbon.

【0020】前記手法を用いて、種々の金属(Al、B
a、Ce)を添加し、熱処理したセンサについてC3
8 及びCOに対する起電力特性を調べた。添加した場合
及び無添加の場合の結果を図4(C3 8 の場合)及び
図5(COの場合)に示す。図4から、C3 8 に対す
る起電力特性への添加金属の影響は、アルミニウムでは
殆どないが、アルカリ土類金属のバリウムではリッチ側
(図中、左側)の起電力を大きく低下させることが判っ
た。この起電力低下は、エンジン排気ガス中でのλ検出
点をリッチ側にシフトさせる作用がある。又、遷移金属
のセリウムを添加した場合でも、図4に示されるように
リッチ側の起電力低下が見られ、λ検出点をリッチ側に
シフトさせる効果があることが判った。しかし、図5に
示されるように、バリウムを添加した場合では、COに
対するリーン側(図中、右側)の起電力の上昇傾向が見
られ、添加濃度が高過ぎる場合、リッチ側とリーン側と
での起電力振幅(起電力の変動幅)が低下する。従っ
て、バリウム添加の場合は、0.01mol/l の添加濃度
が限界である。
Using the above method, various metals (Al, B
a, was added Ce), the sensor was heat treated C 3 H
The electromotive force characteristics for 8 and CO were examined. The results with and without addition are shown in FIG. 4 (for C 3 H 8 ) and FIG. 5 (for CO). From FIG. 4, it can be seen that the effect of the added metal on the electromotive force characteristics with respect to C 3 H 8 is almost negligible for aluminum, but for barium alkaline earth metal, the electromotive force on the rich side (left side in the figure) can be greatly reduced. understood. This decrease in the electromotive force has the effect of shifting the λ detection point in the engine exhaust gas to the rich side. Further, even when cerium as a transition metal was added, a decrease in the electromotive force on the rich side was observed as shown in FIG. 4, indicating that there was an effect of shifting the λ detection point to the rich side. However, as shown in FIG. 5, when barium is added, the electromotive force on the lean side (right side in the figure) with respect to CO tends to increase, and when the addition concentration is too high, the rich side and the lean side are changed. , The amplitude of the electromotive force (the fluctuation width of the electromotive force) decreases. Therefore, in the case of barium addition, the addition concentration of 0.01 mol / l is the limit.

【0021】次に遷移金属のうち、鉄族(Fe、Ni、
Co)及びCrの影響について調べた。添加濃度は表1
の通りである。鉄を硝酸塩水溶液の形態で添加した後に
熱処理した場合に、電極表面では金属状態であることを
XPS(X線光電子分光法)により確認した。この結果
を図20に示す。この試験センサについて、C3 8
対する起電力特性を測定した結果を図6に示す。図6か
ら、鉄族及びCrも起電力特性をリッチ側にシフトさせ
る効果のあることが判る。これらの添加金属及び添加量
では、図7(H2 の場合),図8(COの場合)に示す
ようにH2 、COに対するリーン側起電力の上昇及びリ
ーン側起電力の大幅な低下がないので、リッチ側とリー
ン側との起電力振幅の低下がない特徴がある。特に、ニ
ッケル及びコバルトの添加では、リッチ側かリーン側か
の判定電圧が比較的低い0.45Vでもリッチシフト効
果が得られる。
Next, among the transition metals, an iron group (Fe, Ni,
The influence of Co) and Cr was examined. Table 1 shows the additive concentration.
It is as follows. It was confirmed by XPS (X-ray photoelectron spectroscopy) that, when iron was added in the form of a nitrate aqueous solution and then heat-treated, the electrode surface was in a metallic state. FIG. 20 shows the result. FIG. 6 shows the results of measuring the electromotive force characteristics of this test sensor with respect to C 3 H 8 . FIG. 6 shows that iron group and Cr also have the effect of shifting the electromotive force characteristics to the rich side. As shown in FIGS. 7 (in the case of H 2 ) and FIG. 8 (in the case of CO), the increase of the lean-side electromotive force and the significant decrease of the lean-side electromotive force with respect to H 2 and CO as shown in FIGS. Therefore, there is no decrease in the electromotive force amplitude between the rich side and the lean side. In particular, with the addition of nickel and cobalt, the rich shift effect can be obtained even at a relatively low voltage of 0.45 V for judging the rich side or the lean side.

【0022】更に、鉄の添加量を変化させた場合及び無
添加の場合のC3 8 に対する起電力特性を調べた結果
を図9に示す。図9から、C3 8 のリーン側起電力の
低下効果は、添加溶液濃度が0.0001mol/l 以上で
見られ、添加溶液濃度が高まるに従ってその効果は強く
なる。又、この添加量範囲では図10(H2 の場合),
図11(COの場合)に示すようにH2 、COに対する
リーン側起電力の上昇がなく好ましい特性を示す。しか
し、添加濃度が0.1mol/l を越えると電極表面での添
加量が多過ぎ、起電力応答性の低下及び電極の保護コー
ティングとの密着性が低下する問題が生じる。従って、
添加量は、0.0001〜0.1mol/lが良く、特に、
0.001〜0.01mol/l が特性上好ましい範囲であ
る。後者の添加量は、白金電極の直径6mmでのもので
あり、電極単位面積当り7×10-8〜7×10-7mol/cm
2 の添加量に相当する。鉄族などの遷移金属は金属状態
及び酸化物の状態での蒸気圧が低いのでセンサ使用雰囲
気での蒸発による濃度低減が殆どなく、これら金属を添
加した白金電極を用いたセンサでは、900℃の高温度
域使用での特性経時変化が小さい特徴がある。
FIG. 9 shows the results of examining the electromotive force characteristics with respect to C 3 H 8 when the amount of iron added was changed and when iron was not added. From FIG. 9, the effect of lowering the lean-side electromotive force of C 3 H 8 is seen when the concentration of the additive solution is 0.0001 mol / l or more, and the effect becomes stronger as the concentration of the additive solution increases. In this addition amount range, FIG. 10 (in the case of H 2 ),
As shown in FIG. 11 (in the case of CO), there is no increase in the lean-side electromotive force with respect to H 2 and CO, and preferable characteristics are shown. However, if the addition concentration exceeds 0.1 mol / l, the addition amount on the electrode surface is too large, which causes a problem that the electromotive force responsiveness is reduced and the adhesion of the electrode to the protective coating is reduced. Therefore,
The addition amount is preferably 0.0001 to 0.1 mol / l, particularly,
0.001 to 0.01 mol / l is a preferable range in terms of characteristics. The amount of the latter is based on the diameter of the platinum electrode of 6 mm, and is 7 × 10 −8 to 7 × 10 −7 mol / cm per unit area of the electrode.
This corresponds to the addition amount of 2 . Since transition metals such as iron group have a low vapor pressure in a metal state and an oxide state, there is almost no reduction in concentration due to evaporation in a sensor use atmosphere, and a sensor using a platinum electrode to which these metals are added has a temperature of 900 ° C. There is a characteristic that the characteristics change with time in a high temperature range is small.

【0023】図12は、鉄の0.01mol/l 硝酸塩水溶
液20mgを添加した本実施例の試験センサを、イソブ
タンと空気の燃焼排気ガス中で空気過剰率(λ)を0.
8及び0.9に設定し、温度を800℃及び900℃に
て各2時間熱処理し、それぞれの熱処理過程を経たもの
について、500℃でC3 8 に対する起電力特性を調
べた結果である。これから、特に鉄を添加したセンサで
は、高温域でのリッチ側、リーン側の繰り返しによって
も特性が変動しない利点の有ることが判った。
FIG. 12 shows the test sensor of this example to which 20 mg of a 0.01 mol / l nitrate aqueous solution of iron was added, and the excess air ratio (λ) in the combustion exhaust gas of isobutane and air was 0.1%.
This is a result of examining the electromotive force characteristics with respect to C 3 H 8 at 500 ° C. for those subjected to heat treatment at 800 ° C. and 900 ° C. for 2 hours each at a temperature of 800 ° C. and 900 ° C. . From this, it has been found that a sensor to which iron is added in particular has an advantage that the characteristics do not fluctuate even when the rich side and the lean side are repeated in a high temperature range.

【0024】実施例2 添加金属としてビスマスを選び、0.00001mol/l
から0.001mol/lの硝酸塩の濃度で電極に添加し、
乾燥後、N2 中に1%H2 を混合したガスに室温で水蒸
気(H2 O)を飽和させたガス雰囲気で800℃で熱処
理した。この試験センサのC3 8 に対する起電力特性
を図13に示す。図13から、ビスマスはC3 8 に対
するリッチ側起電力を著しく低下させ、リッチシフトさ
せる強い効果のあることが判る。この起電力低下効果
は、鉄などに比較し2桁程度強いといえる。従って、ビ
スマス添加では0.0001mol/l が添加の上限であ
る。これは、電極単位面積当り7×10-9mol/cm2 の添
加量に相当する。図14にCOに対する起電力特性を示
す。図14から明らかな如く、ビスマス添加量が0.0
001mol/l を越えるとCOに対する起電力特性が大き
な影響を受けるので好ましくない。
Example 2 Bismuth was selected as an additive metal, and 0.00001 mol / l
From 0.001 mol / l nitrate to the electrode,
After drying, a heat treatment was performed at 800 ° C. in a gas atmosphere saturated with water vapor (H 2 O) at room temperature in a gas obtained by mixing 1% H 2 in N 2 . FIG. 13 shows the electromotive force characteristics of this test sensor with respect to C 3 H 8 . From FIG. 13, it can be seen that bismuth has a strong effect of significantly lowering the rich-side electromotive force for C 3 H 8 and causing a rich shift. It can be said that the effect of reducing the electromotive force is about two orders of magnitude stronger than that of iron or the like. Therefore, in the case of adding bismuth, the upper limit of addition is 0.0001 mol / l. This corresponds to an addition amount of 7 × 10 −9 mol / cm 2 per unit area of the electrode. FIG. 14 shows the electromotive force characteristics for CO. As is clear from FIG.
If the amount exceeds 001 mol / l, the electromotive force characteristics for CO are greatly affected, which is not preferable.

【0025】一方、ビスマスは金属状態及び酸化物状態
での融点が低いのでリッチ側及びリーン側の雰囲気に曝
されることが繰り返されると白金との化合物を作り易
い。このため、ビスマスを高濃度に添加すると高温度で
のセンサの使用で白金電極の白金粒子が凝集し、センサ
抵抗が増大する。しかし、低濃度の添加であれば、これ
は避けられる。他方、金属状態及び酸化物状態でのビス
マスの蒸気圧は高く、又、ビスマスは酸化、還元され易
いので、高温度でリッチ側空燃比及びリーン側空燃比で
繰り返し使用されると特性が変動するため、使用最高温
度に限界がある。
On the other hand, since bismuth has a low melting point in a metal state and an oxide state, it is easy to form a compound with platinum when repeatedly exposed to an atmosphere on a rich side and a lean side. For this reason, when bismuth is added at a high concentration, the platinum particles of the platinum electrode aggregate when the sensor is used at a high temperature, and the sensor resistance increases. However, this can be avoided if low concentrations are added. On the other hand, the vapor pressure of bismuth in a metal state and an oxide state is high, and bismuth is easily oxidized and reduced. Therefore, the characteristics fluctuate when repeatedly used at a high temperature at a rich air-fuel ratio and a lean air-fuel ratio. Therefore, there is a limit to the maximum operating temperature.

【0026】ビスマスと似た起電力低下効果は、鉛を白
金電極に添加した場合も観察される。そこで、ビスマス
添加(0.0001mol/l 溶液20mg)と鉛添加
(0.0001mol/l 溶液20mg)の試験センサを製
作し、イソブタンと空気の燃焼排気ガス中で空気過剰率
(λ)を0.8及び1.2に設定し、温度を800℃及
び900℃にて各2時間熱処理し、それぞれの熱処理過
程でC3 8 に対する起電力特性を調べた。図15は、
ビスマス添加(0.0001mol/l 溶液20mg)の試
験結果であり、又、図16は鉛添加(0.0001mol/
l 溶液20mg)の試験結果である。図15と図16と
の比較から、500℃でのC3 8 に対する起電力特性
は、900℃でのリッチ側加熱、リーン側加熱により、
鉛添加電極試験センサの場合は大きく変動するのに対
し、ビスマス添加電極センサでは比較的小さな変動にな
っていることが判る。この結果から、ビスマス添加電極
では使用最高温度に限界があるものの900℃までの使
用では比較的安定性が良いことが判った。
An electromotive force lowering effect similar to bismuth is also observed when lead is added to a platinum electrode. Therefore, a test sensor with bismuth addition (0.0001 mol / l solution 20 mg) and lead addition (0.0001 mol / l solution 20 mg) was manufactured, and the excess air ratio (λ) in the combustion exhaust gas of isobutane and air was set at 0. The heat treatment was performed at 800 ° C. and 900 ° C. for 2 hours, and the electromotive force characteristics for C 3 H 8 were examined in each heat treatment process. FIG.
FIG. 16 shows the test results of bismuth addition (0.0001 mol / l solution 20 mg), and FIG. 16 shows the addition of lead (0.0001 mol / l solution).
l solution (20 mg). From the comparison between FIG. 15 and FIG. 16, the electromotive force characteristics for C 3 H 8 at 500 ° C. are as follows by the rich side heating and the lean side heating at 900 ° C.
It can be seen that the variation is large in the case of the lead-added electrode test sensor, while it is relatively small in the case of the bismuth-added electrode sensor. From this result, it was found that the bismuth-added electrode has a relatively high stability at a temperature up to 900 ° C., although the maximum use temperature is limited.

【0027】ビスマスや鉛のように蒸気圧の高い金属
(700〜1000℃で0.001mmHg以上)につ
いては、これらの金属又はその酸化物を加熱し、発生す
る蒸気を加熱したセンサに接触させるCVD法により、
付着させることができる。この方法は、電極表面に均一
に付着させると同時に前記金属を白金と反応させること
ができる利点がある。
For metals having a high vapor pressure such as bismuth and lead (at least 0.001 mmHg at 700 to 1000 ° C.), these metals or their oxides are heated, and the generated vapor is brought into contact with the heated sensor. By law,
Can be attached. This method has the advantage that the metal can react with platinum while being uniformly attached to the electrode surface.

【0028】この方法で、試験センサを以下のように製
作した。図17に基づいて説明する。実施例1と同様の
平板状のジルコニア焼結体固体電解質上に厚さ約1μm
の白金膜をスパッタリング法で形成したジルコニア固体
電解質セル1を石英製容器2に乗せ、この上流側にBi
2 3 (酸化ビスマス)粉末3,1gを石英製容器2に
乗せて、石英管4中に入れ、20%O2 −N2 ガス5の
気流(1リットル/分)中でジルコニア固体電解質セル
1及びBi2 3 粉末を電気炉6で750℃で1時間加
熱することにより、白金電極上にビスマスを付着させ
た。次いで、Bi2 3 粉末3を入れた石英容器2を石
英管4から取り去り、ビスマスの付着した固体電解質セ
ル1を1%H2 −H2 O(室温飽和)−N2 気流中で8
00℃で熱処理し、ビスマスと白金とを反応させた。
In this way, a test sensor was manufactured as follows. This will be described with reference to FIG. About 1 μm thick on a flat zirconia sintered body solid electrolyte similar to that in Example 1.
A zirconia solid electrolyte cell 1 having a platinum film formed by a sputtering method is placed on a quartz container 2, and Bi
3-1 g of 2 O 3 (bismuth oxide) powder is placed in a quartz vessel 2 and placed in a quartz tube 4, and a zirconia solid electrolyte cell is placed in a stream of 20% O 2 —N 2 gas 5 (1 liter / minute). Bismuth was deposited on the platinum electrode by heating 1 and Bi 2 O 3 powder in an electric furnace 6 at 750 ° C. for 1 hour. Next, the quartz container 2 containing the Bi 2 O 3 powder 3 is removed from the quartz tube 4, and the solid electrolyte cell 1 to which bismuth is attached is placed in a 1% H 2 -H 2 O (room temperature saturated) -N 2 gas stream.
Heat treatment was performed at 00 ° C. to cause bismuth and platinum to react.

【0029】前記処理によって製作した試験センサのC
3 8 に対する起電力特性を図18に示す。次いで、処
理条件のうちビスマス添加濃度を変えて試験センサを作
製するため、先ず図17に示す配置での処理を700℃
で1時間行い、別の石英管に固体電解質セルを移して、
更にN2 気流中で800℃で、次いで1%H2 −H2
(室温飽和)−N2 気流中で800℃で1時間熱処理し
た。この処理で得られた試験センサの特性も図18に示
す。これらの結果から、この方法によって、異種金属の
添加によりリッチ側起電力に添加効果が得られることが
判った。又、鉛の酸化物を用いた同様の手法によって
も、リッチ側起電力に添加効果が得られた。なお、電極
への異種金属の添加は、CVD法で一般的に用いられる
ハロゲン化物などの蒸気や熱分解蒸気などを用いること
も可能であり、この場合、添加物原料の加熱温度と固体
電解質セル温度を変えることにより添加濃度を制御する
ことができる利点がある。
The C of the test sensor manufactured by the above process
FIG. 18 shows the electromotive force characteristics for 3 H 8 . Next, in order to manufacture a test sensor by changing the bismuth addition concentration among the processing conditions, first, the processing in the arrangement shown in FIG.
1 hour, transfer the solid electrolyte cell to another quartz tube,
At 800 ° C. in a N 2 stream, then 1% H 2 —H 2 O
(Saturated at room temperature) Heat treatment was performed at 800 ° C. for 1 hour in a —N 2 gas stream. FIG. 18 also shows the characteristics of the test sensor obtained by this processing. From these results, it was found that by this method, the effect of adding a different side metal to the rich-side electromotive force can be obtained. Further, the effect of adding to the rich-side electromotive force was obtained by the same method using lead oxide. The addition of a different metal to the electrode can be carried out by using a vapor of a halide or a pyrolysis vapor generally used in the CVD method. In this case, the heating temperature of the additive material and the solid electrolyte cell There is an advantage that the addition concentration can be controlled by changing the temperature.

【0030】実施例3 実施例1と同様の平板状のジルコニア焼結体固体電解質
セルにおいて、白金膜表面にスパッタリングによりクロ
ム及び鉄膜をそれぞれ100Å、600Å堆積させ、そ
の後、1%H2 −H2 O(室温飽和)ガス雰囲気で80
0℃と引き続いて600℃で2%O2 中30分の熱処理
を行った。この添加量は、それぞれ1.4×10-7mol/
cm2 、8.5×10-7mol/cm2 に相当する。この試験セ
ンサのC3 8 に対する起電力特性を図19に示す。こ
の結果では、C3 8 に対するリッチ側起電力の低下効
果が見られ、スパッタリング法での異種金属添加による
電極反応活性制御も可能であることが判った。
Example 3 In a plate-like zirconia sintered solid electrolyte cell similar to that of Example 1, chromium and iron films were deposited on the platinum film surface by sputtering at 100 ° and 600 °, respectively, and then 1% H 2 -H 80 in a 2 O (room temperature saturated) gas atmosphere
After 0 ° C., a heat treatment was performed at 600 ° C. in 2% O 2 for 30 minutes. This addition amount is 1.4 × 10 −7 mol /
cm 2 , corresponding to 8.5 × 10 −7 mol / cm 2 . FIG. 19 shows the electromotive force characteristics of this test sensor with respect to C 3 H 8 . The results show that the effect of lowering the electromotive force on the rich side with respect to C 3 H 8 was observed, and it was found that the electrode reaction activity could be controlled by adding a different metal in the sputtering method.

【0031】[0031]

【発明の効果】以上のように、本発明の固体電解質酸素
センサによれば、酸化物イオン伝導性固体電解質と白金
電極とを用いた発生起電力の急変特性を利用する理論空
燃比酸素センサにおいて、検出ガス側の白金電極表面の
みに特定の異種金属を添加し、添加した異種金属と白金
とを白金表面において直接結合することによって排気ガ
ス中のパラフィン系炭化水素に対する電極のガス反応性
を制御しているので、センサが高温度でリッチ・リーン
空燃比が繰り返される条件下で使用される場合でも、排
気ガス浄化用触媒の下流側の雰囲気における起電力急変
特性の変化が小さい。従って、本発明の固体電解質酸素
センサを用いれば、安定な排気ガス制御が可能となる。
As described above, according to the solid electrolyte oxygen sensor of the present invention, in the stoichiometric air-fuel ratio oxygen sensor utilizing the sudden change characteristic of the generated electromotive force using the oxide ion conductive solid electrolyte and the platinum electrode. Controls the gas reactivity of the electrode to paraffinic hydrocarbons in exhaust gas by adding a specific dissimilar metal only to the platinum electrode surface on the detection gas side and directly bonding the added dissimilar metal and platinum on the platinum surface Therefore, even when the sensor is used under the condition that the rich / lean air-fuel ratio is repeated at a high temperature, the change of the electromotive force sudden change characteristic in the atmosphere on the downstream side of the exhaust gas purifying catalyst is small. Therefore, the use of the solid electrolyte oxygen sensor of the present invention enables stable exhaust gas control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】被測定ガス検出側の白金電極の表面に異種金属
を添加しなかった固体電解質センサのH2 に対する起電
力特性を示す図である。
FIG. 1 is a diagram showing an electromotive force characteristic with respect to H 2 of a solid electrolyte sensor in which a foreign metal is not added to the surface of a platinum electrode on a gas to be measured side.

【図2】被測定ガス検出側の白金電極の表面に異種金属
を添加しなかった固体電解質センサのC3 8 に対する
起電力特性を示す図である。
FIG. 2 is a diagram showing an electromotive force characteristic with respect to C 3 H 8 of a solid electrolyte sensor in which a foreign metal is not added to the surface of a platinum electrode on the detection side of a gas to be measured.

【図3】被測定ガス検出側の白金電極の表面に異種金属
を添加しなかった固体電解質センサのCOに対する起電
力特性を示す図である。
FIG. 3 is a diagram showing an electromotive force characteristic with respect to CO of a solid electrolyte sensor in which no foreign metal is added to the surface of a platinum electrode on the side of a gas to be measured.

【図4】被測定ガス検出側の白金電極の表面にAl、B
a、Ceを添加し、熱処理した固体電解質センサ、及び
無添加の固体電解質センサのC3 8 に対する起電力特
性を示す図である。
FIG. 4 shows that the surface of a platinum electrode on the side of a gas to be measured has Al and B
a, was added Ce, is a diagram showing an electromotive force characteristic with respect to C 3 H 8 of a solid electrolyte sensor heat-treated solid electrolyte sensor, and no additives.

【図5】被測定ガス検出側の白金電極の表面にAl、B
a、Ceを添加し、熱処理した固体電解質センサ、及び
無添加の固体電解質センサのCOに対する起電力特性を
示す図である。
FIG. 5 shows that the surface of a platinum electrode on the detection side of a gas to be measured has Al, B
It is a figure which shows the electromotive force characteristic with respect to CO of the solid electrolyte sensor which added and heat-processed Ce, and the solid electrolyte sensor which does not add.

【図6】被測定ガス検出側の白金電極の表面にFe、N
i、Co、Crを添加し、熱処理した固体電解質セン
サ、及び無添加の固体電解質センサのC3 8 に対する
起電力特性を示す図である。
FIG. 6 shows that Fe and N are formed on the surface of the platinum electrode on the detection side of the gas to be measured.
i, Co, added Cr, illustrates the electromotive force characteristic with respect to C 3 H 8 of a solid electrolyte sensor heat-treated solid electrolyte sensor, and no additives.

【図7】被測定ガス検出側の白金電極の表面にFe、N
i、Co、Crを添加し、熱処理した固体電解質セン
サ、及び無添加の固体電解質センサのH2 に対する起電
力特性を示す図である。
FIG. 7 shows that Fe and N are formed on the surface of the platinum electrode on the detection side of the gas to be measured.
i, Co, added Cr, illustrates the electromotive force characteristic with respect to the solid electrolyte sensor, and additive-free solid electrolyte of H 2 sensor and heat treated.

【図8】被測定ガス検出側の白金電極の表面にFe、N
i、Co、Crを添加し、熱処理した固体電解質セン
サ、及び無添加の固体電解質センサのCOに対する起電
力特性を示す図である。
FIG. 8: Fe, N on the surface of a platinum electrode on the detection side of a gas to be measured
It is a figure which shows the electromotive force characteristic with respect to CO of the solid electrolyte sensor which added i, Co, and Cr and heat-processed, and the solid electrolyte sensor which does not add.

【図9】被測定ガス検出側の白金電極の表面への鉄の添
加量を変化させた場合及び無添加の場合のC3 8 に対
する起電力特性を示す図である。
FIG. 9 is a graph showing electromotive force characteristics with respect to C 3 H 8 when the amount of iron added to the surface of the platinum electrode on the measurement gas detection side is changed and when iron is not added.

【図10】被測定ガス検出側の白金電極の表面への鉄の
添加量を変化させた場合及び無添加の場合のH2 に対す
る起電力特性を示す図である。
FIG. 10 is a graph showing electromotive force characteristics with respect to H 2 when the amount of iron added to the surface of the platinum electrode on the detection side of the measured gas is changed and when iron is not added.

【図11】被測定ガス検出側の白金電極の表面への鉄の
添加量を変化させた場合及び無添加の場合のCOに対す
る起電力特性を示す図である。
FIG. 11 is a diagram showing the electromotive force characteristics with respect to CO when the amount of iron added to the surface of the platinum electrode on the detection target gas detection side is changed and when iron is not added.

【図12】被測定ガス検出側の白金電極の表面に鉄を添
加した固体電解質センサのを、800℃及び900℃で
リッチ側、リーン側の雰囲気中で加熱した場合の、C3
8 に対する500℃での起電力特性の変化を示す図で
ある。
FIG. 12 is a graph showing C 3 when a solid electrolyte sensor obtained by adding iron to the surface of a platinum electrode on the side of a gas to be measured is heated at 800 ° C. and 900 ° C. in an atmosphere on a rich side and a lean side;
For H 8 is a diagram showing changes in the electromotive force characteristic at 500 ° C..

【図13】被測定ガス検出側の白金電極の表面へのビス
マスの添加量を変化させた場合及び無添加の場合のC3
8 に対する起電力特性を示す図である。
FIG. 13 shows C 3 in the case where the amount of bismuth added to the surface of the platinum electrode on the detection side of the gas to be measured was changed and in the case where no addition was made.
Is a diagram showing an electromotive force characteristic with respect to H 8.

【図14】被測定ガス検出側の白金電極の表面へのビス
マスの添加量を変化させた場合及び無添加の場合のCO
に対する起電力特性を示す図である。
FIG. 14 is a graph showing CO in the case where the addition amount of bismuth to the surface of the platinum electrode on the detection side of the gas to be measured was changed and in the case where no addition was made.
FIG. 7 is a diagram showing electromotive force characteristics with respect to FIG.

【図15】被測定ガス検出側の白金電極の表面にビスマ
スを添加した固体電解質センサをリッチ雰囲気、リーン
雰囲気中で加熱した場合のC3 8 に対する起電力特性
を示す図である。
FIG. 15 is a diagram showing electromotive force characteristics with respect to C 3 H 8 when a solid electrolyte sensor in which bismuth is added to the surface of a platinum electrode on the detection side of a gas to be measured is heated in a rich atmosphere or a lean atmosphere.

【図16】被測定ガス検出側の白金電極の表面に鉛を添
加した固体電解質センサをリッチ雰囲気、リーン雰囲気
中で加熱した場合のC3 8 に対する起電力特性を示す
図である。
FIG. 16 is a diagram showing electromotive force characteristics with respect to C 3 H 8 when a solid electrolyte sensor in which lead is added to the surface of a platinum electrode on the side of a gas to be measured is heated in a rich atmosphere or a lean atmosphere.

【図17】固体電解質セルの熱処理方法を説明するため
の図である。
FIG. 17 is a diagram for explaining a heat treatment method for the solid electrolyte cell.

【図18】図17に示す熱処理方法により白金電極にビ
スマスを添加した固体電解質センサのC3 8 に対する
起電力特性を示す図である。
18 is a diagram showing electromotive force characteristics with respect to C 3 H 8 of a solid electrolyte sensor in which bismuth is added to a platinum electrode by the heat treatment method shown in FIG. 17;

【図19】被測定ガス検出側の白金電極の表面にスパッ
タリング法によりCr、Feを添加した固体電解質セン
サのC3 8 に対する起電力特性を示す図である。
FIG. 19 is a view showing the electromotive force characteristics with respect to C 3 H 8 of a solid electrolyte sensor in which Cr and Fe are added to the surface of a platinum electrode on the detection side of a gas to be measured by sputtering.

【図20】被測定ガス検出側の白金電極の表面に鉄を添
加した場合の電極表面のX線光電子分光スペクトルを示
す図である。
FIG. 20 is a view showing an X-ray photoelectron spectroscopy spectrum of the electrode surface when iron is added to the surface of the platinum electrode on the side of the gas to be measured.

【符号の説明】[Explanation of symbols]

1:固体電解質セル 2:石英製容器 3:Bi2 3 粉末 4:石英管 5:20%O2 −N2 ガス 6:電気炉1: solid electrolyte cell 2: quartz container 3: Bi 2 O 3 powder 4: quartz tube 5: 20% O 2 -N 2 gas 6: electric furnace

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物イオン伝導性固体電解質と白金電
極とからなるセンサ素子を備えた固体電解質酸素センサ
において、被測定ガス検出側の白金電極の表面のみに、
周期律表の第II族,第III 族,第V族,第VI族及び第VI
II族の元素のうちから選択された少なくとも1種の金属
が添加され、且つ白金と添加金属とが直接結合してなる
ことを特徴とする固体電解質酸素センサ。
1. A solid electrolyte oxygen sensor having a sensor element composed of an oxide ion conductive solid electrolyte and a platinum electrode, wherein only the surface of the platinum electrode on the gas detection side is measured.
Groups II, III, V, VI and VI of the periodic table
A solid electrolyte oxygen sensor to which at least one metal selected from Group II elements is added, and wherein platinum and the added metal are directly bonded.
JP09647797A 1997-03-31 1997-03-31 Solid electrolyte oxygen sensor Expired - Fee Related JP3534149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09647797A JP3534149B2 (en) 1997-03-31 1997-03-31 Solid electrolyte oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09647797A JP3534149B2 (en) 1997-03-31 1997-03-31 Solid electrolyte oxygen sensor

Publications (2)

Publication Number Publication Date
JPH10282046A true JPH10282046A (en) 1998-10-23
JP3534149B2 JP3534149B2 (en) 2004-06-07

Family

ID=14166137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09647797A Expired - Fee Related JP3534149B2 (en) 1997-03-31 1997-03-31 Solid electrolyte oxygen sensor

Country Status (1)

Country Link
JP (1) JP3534149B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317429A (en) * 2005-04-14 2006-11-24 Toyota Central Res & Dev Lab Inc Limiting current type gas sensor and use thereof
JP2013205349A (en) * 2012-03-29 2013-10-07 Nippon Soken Inc Gas sensor element, gas sensor and exhaust emission control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317429A (en) * 2005-04-14 2006-11-24 Toyota Central Res & Dev Lab Inc Limiting current type gas sensor and use thereof
JP2013205349A (en) * 2012-03-29 2013-10-07 Nippon Soken Inc Gas sensor element, gas sensor and exhaust emission control device

Also Published As

Publication number Publication date
JP3534149B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
Brosha et al. Development of ceramic mixed potential sensors for automotive applications
Brosha et al. Mixed potential sensors using lanthanum manganate and terbium yttrium zirconium oxide electrodes
JP3690070B2 (en) Exhaust gas purification catalyst, method for producing the same, exhaust gas purification filter, and exhaust gas purification device
JPS5945416B2 (en) Catalyst for purifying waste gas from internal combustion engines, method for producing the same, and method for simultaneously removing carbon monoxide, hydrocarbons, and nitrogen oxides from waste gas from internal combustion engines
WO1996028722A1 (en) Nitrogen oxide sensor
JPS5924382B2 (en) Manufacturing method for a sensor that mainly measures oxygen concentration in exhaust gas from internal combustion engines
US4297192A (en) Catalyst supported oxygen sensor element and a method of manufacturing same
JPH06510854A (en) Exhaust gas sensor and its manufacturing method
JPH0442625B2 (en)
JP3488818B2 (en) Oxygen sensor
JPWO2006103781A1 (en) Exhaust gas purification device and exhaust gas purification catalyst
KR20070095988A (en) Catalyst for purifying exhaust gases and exhaust-gas purification controller using the same
US20130255228A1 (en) Catalyst deterioration diagnosis method, method for purification of exhaust gas using the diagnosis method, catalyst deterioration diagnosis apparatus, and apparatus for purification of exhaust gas using the diagnosis apparatus
EP0743431B1 (en) Method and system for detecting deterioration of exhaust gas catalyst
US5351029A (en) Sensor for determining carbon monoxide
JP6386150B2 (en) Nitrogen oxide sensor and method of manufacturing the same
JP3534149B2 (en) Solid electrolyte oxygen sensor
JP3981715B2 (en) Gas sensor
JPH09503062A (en) Detector for detecting nitric oxide NO and ammonia NH (3)
JP2637593B2 (en) Activation method of oxygen sensor element
JPH0980014A (en) Nitrogen oxide sensor
JP3328703B2 (en) Method for producing corrosion-resistant material, corrosion-resistant material and metal member for molten carbonate fuel cell
JP3623870B2 (en) Air-fuel ratio detection element, method for manufacturing the same, and method for stabilizing air-fuel ratio detection element
JPS62198749A (en) Oxygen concentration detector
JPWO2005015191A1 (en) Gas sensor and gas detection method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040302

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees