JPH10282011A - Defect inspection method for surface of object - Google Patents

Defect inspection method for surface of object

Info

Publication number
JPH10282011A
JPH10282011A JP9123397A JP9123397A JPH10282011A JP H10282011 A JPH10282011 A JP H10282011A JP 9123397 A JP9123397 A JP 9123397A JP 9123397 A JP9123397 A JP 9123397A JP H10282011 A JPH10282011 A JP H10282011A
Authority
JP
Japan
Prior art keywords
light source
parameters
observation point
distribution function
source distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9123397A
Other languages
Japanese (ja)
Inventor
Shinji Matsui
伸二 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
FFC Ltd
Original Assignee
Fuji Electric Co Ltd
FFC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, FFC Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9123397A priority Critical patent/JPH10282011A/en
Publication of JPH10282011A publication Critical patent/JPH10282011A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable fast inspection of defects by determining parameters of a light source distribution function with a limited volume of calculation. SOLUTION: In a defect inspection method in which the surface of an object is irradiated with light at an observation point to inspect the presence of a defect at the observation point based on a plurality of luminance values obtained by measuring the reflected light, among parameters of the light source distribution function indicating the above mentioned luminance values, approximation functions as regression models are separately generated for the first parameter indicating peak values of the light source distribution function, the second parameter indicating an expanse of the base of the light source distribution function and the third parameter indicating a deviation of the peak values. Regression coefficients of the respective approximation functions are determined by a regression analysis using the parameters thus obtained as purpose variables and the plurality of luminance values as description variables (S4, S6 and S8). Parameters are determined by the approximation functions using the plurality of luminance values measured per arbitrary observation point and the above- mentioned regression coefficients to inspect the presence of a defect at the observation point based on the parameters.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハードディスク等
の磁気記録媒体表面の観測点における光源分布関数のパ
ラメータを求めることにより、媒体表面の傷、ざらつき
等の欠陥を検出する物体表面の欠陥検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect inspection method for an object surface for detecting defects such as scratches and roughness on the surface of a magnetic recording medium by obtaining parameters of a light source distribution function at observation points on the surface of a magnetic recording medium such as a hard disk. About.

【0002】[0002]

【従来の技術】図3は、媒体表面の観測点に光源から光
を照射した場合の、反射光の二次元の輝度分布を光源分
布関数として模式的に示した図である。なお、図3にお
いて、10は光源、20はハードディスク等の検査媒
体、21は観測点、31〜35は観測点21からの反射
光を撮像するカメラを示す。ここで、カメラ31〜35
のうち中央のカメラ33は、観測点21からの正反射光
を受光する位置に配置され、その両側のカメラ32,3
4及び最も外側のカメラ31,35はそれぞれ等しい角
度だけ離れた位置に線対称で配置されているものとす
る。
2. Description of the Related Art FIG. 3 is a diagram schematically showing a two-dimensional luminance distribution of reflected light as a light source distribution function when an observation point on a medium surface is irradiated with light from a light source. In FIG. 3, reference numeral 10 denotes a light source, reference numeral 20 denotes an inspection medium such as a hard disk, reference numeral 21 denotes an observation point, and reference numerals 31 to 35 denote cameras for imaging reflected light from the observation point 21. Here, the cameras 31 to 35
The central camera 33 is disposed at a position for receiving the specularly reflected light from the observation point 21, and the cameras 32, 3 on both sides thereof
4 and the outermost cameras 31 and 35 are symmetrically arranged at positions separated by an equal angle.

【0003】いま、二次元の光源分布を考えた場合、各
カメラ31〜35によって測定される輝度値b1〜b
5は、数式1の光源分布関数f(θs)によって表され
る。
[0003] When a two-dimensional light source distribution is considered, luminance values b 1 to b measured by the cameras 31 to 35 are considered.
5 is represented by the light source distribution function f (θ s ) in Equation 1.

【0004】[0004]

【数1】 f(θs)=Aexp{(2θn−θs2/σ2F (θ s ) = Aexp {(2θ n −θ s ) 2 / σ 2 }

【0005】上記数式1において、θsは光源10から
の光軸と正規反射光の光軸とのなす角である。次に、数
式1における各パラメータを、図4を参照しつつ説明す
る。図4において、f(θs)は上記観測点21が鏡面
であると仮定したときの基準となる光源分布関数であ
り、中央のカメラ33の位置を中心として±1〔deg〕
の位置にカメラ34,32を配置し、±3〔deg〕の位
置にカメラ35,31を配置して輝度値b1〜b5を測定
した例である。
In the above equation 1, θ s is the angle between the optical axis from the light source 10 and the optical axis of the regular reflected light. Next, each parameter in Equation 1 will be described with reference to FIG. In FIG. 4, f (θ s ) is a light source distribution function serving as a reference when it is assumed that the observation point 21 is a mirror surface, and ± 1 [deg] with the position of the central camera 33 as the center.
This is an example of measuring the luminance values b 1 to b 5 by arranging the cameras 34 and 32 at the positions of, and arranging the cameras 35 and 31 at the positions of ± 3 [deg].

【0006】ここで、Aは観測点21の反射率を示すパ
ラメータであって光源分布関数のピーク値(輝度のピー
ク値)を示し、観測点21の傷等によって左右される。
また、θnは観測点21の傾斜を示すパラメータであっ
て基準となる光源分布関数f(θs)からのピーク値の
ずれ量を示し、更に、σは観測点21のざらつき等の表
面粗さを示すパラメータであって基準となる光源分布関
数f(θs)からの裾の拡がり具合を示している。
Here, A is a parameter indicating the reflectance of the observation point 21 and indicates a peak value (peak value of luminance) of the light source distribution function, and is influenced by a flaw of the observation point 21 or the like.
Further, θ n is a parameter indicating the inclination of the observation point 21 and indicates the amount of deviation of the peak value from the reference light source distribution function f (θ s ), and σ is the surface roughness of the observation point 21 such as roughness. This is a parameter indicating the degree of spread of the skirt from the reference light source distribution function f (θ s ).

【0007】[0007]

【発明が解決しようとする課題】従来、上記の各パラメ
ータA,σ,θnは、例えば未定係数決定法を用いて算
出していたが、計算量が非常に多く、計算機の負荷が膨
大であると共に多くの時間を必要としていた。そこで本
発明は、観測点についての複数の輝度値から光源分布関
数の各パラメータを回帰分析で直接求めることにより、
計算負荷の低減及び高速化を図り、短時間での表面検査
を可能にした物体表面の欠陥検査方法を提供しようとす
るものである。
Conventionally, the above parameters A, σ, and θ n have been calculated using, for example, the undetermined coefficient determination method. However, the amount of calculation is extremely large, and the load on the computer is enormous. And at the same time needed a lot of time. Therefore, the present invention obtains each parameter of the light source distribution function directly from a plurality of luminance values for the observation point by regression analysis,
It is an object of the present invention to provide a method for inspecting a defect on the surface of an object which can reduce the calculation load and increase the speed, and enables the surface inspection in a short time.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は、物体表面の観測点に光を照
射し、その反射光を測定して得た複数の輝度値に基づい
て前記観測点の欠陥の有無を検査する物体表面の欠陥検
査方法において、前記輝度値を示す光源分布関数のパラ
メータのうち、光源分布関数のピーク値を示す第1のパ
ラメータA、光源分布関数の裾の拡がりを示す第2のパ
ラメータσ、及び、前記ピーク値のずれを示す第3のパ
ラメータθnについて、回帰モデルとしての近似関数を
それぞれ作成し、前記各パラメータを目的変数、複数の
輝度値を説明変数として回帰分析により各近似関数の回
帰係数を求め、任意の観測点につき測定した複数の輝度
値と前記回帰係数とを用いて前記近似関数により各パラ
メータを求め、これらのパラメータに基づき観測点の欠
陥の有無を検査するものである。
In order to solve the above-mentioned problems, the invention according to claim 1 irradiates light to an observation point on the surface of an object, and measures the reflected light based on a plurality of luminance values obtained by measuring the reflected light. A defect inspection method for inspecting the presence or absence of a defect at the observation point, the first parameter A indicating a peak value of the light source distribution function among the parameters of the light source distribution function indicating the luminance value; An approximate function as a regression model is created for each of the second parameter σ indicating the spread of the skirt and the third parameter θ n indicating the deviation of the peak value, and each parameter is used as an objective variable and a plurality of luminance values. The regression coefficient of each approximation function is obtained by regression analysis using as an explanatory variable, and each parameter is obtained by the approximation function using a plurality of luminance values measured for an arbitrary observation point and the regression coefficient. It is intended to inspect the presence or absence of a defect of the observation point on the basis of the parameters.

【0009】請求項2記載の発明は、請求項1記載の物
体表面の欠陥検査方法において、説明変数としての複数
の輝度値を、各パラメータごとに重み付けしたものであ
る。
According to a second aspect of the present invention, in the defect inspection method for an object surface according to the first aspect, a plurality of luminance values as explanatory variables are weighted for each parameter.

【0010】[0010]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。図1はこの実施形態の処理手順を示すフ
ローチャートであり、以下、その内容を順次説明する。
まず、図4に示したような基準となる光源分布関数f
(θs)に基づき、カメラ31〜35の撮像位置に対応
する輝度値b1〜b5を求める(S1)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing the processing procedure of this embodiment, and its contents will be sequentially described below.
First, a reference light source distribution function f as shown in FIG.
Based on (θ s ), luminance values b 1 to b 5 corresponding to the imaging positions of the cameras 31 to 35 are obtained (S1).

【0011】次に、各パラメータA,σ,θnにつき、
各輝度値b1〜b5に所定の重み付けを行う(S2)。こ
の重み付けは、本発明において必ずしも必要なものでは
ないが、各パラメータの持つ意味に応じてその変化の様
子を的確に捉えるために必要とされる処理である。な
お、図2は上記重み付けの一例を示すものであり、例え
ば光源分布関数のピーク値に関するパラメータAについ
てはb3を最も重視し、光源分布関数の裾の拡がり具合
を示すパラメータσについてはb1,b5を最も重視し、
更に、光源分布関数のピーク値のずれを示すパラメータ
θnについてはb2〜b4を均等に重視している。
Next, for each parameter A, σ, θ n ,
Performing a predetermined weighting to each luminance value b 1 ~b 5 (S2). This weighting is not always necessary in the present invention, but is a process required to accurately grasp the state of change according to the meaning of each parameter. Incidentally, FIG. 2 shows an example of the weighting, for example the light source most emphasis on b 3 for parameters A about the peak value of the distribution function, b 1 for the parameters σ indicating the divergence degree of the hem of the light source distribution function , the most emphasis on b 5,
Further, b 2 to b 4 are equally emphasized for the parameter θ n indicating the shift of the peak value of the light source distribution function.

【0012】次いで、まずパラメータAを目的変数とし
て所定の範囲(Amin≦A≦Amax)で変化させながら、
パラメータAに関する近似関数すなわち回帰モデルfA
(b1,b2,b3,b4,b5)を作成する(S3)。こ
の近似関数fA(b1,b2,b3,b4,b5)は、例えば
数式2により表される。
Next, while changing the parameter A as a target variable in a predetermined range (A min ≦ A ≦ A max ),
Approximate function for parameter A, ie, regression model f A
(B 1, b 2, b 3, b 4, b 5) to create a (S3). The approximation function f A (b 1 , b 2 , b 3 , b 4 , b 5 ) is represented by, for example, Expression 2.

【0013】[0013]

【数2】fA(b1,b2,b3,b4,b5)=a0+a11
1+a121 2+a131 3+a141 4+a151 5+a21
2+a222 2+a232 3+a242 4+a252 5+a31
3+a323 2+a333 3+a343 4+a353 5+a41
4+a424 2+a434 3+a444 4+a454 5+a51
5+a525 2+a535 3+a545 4+a555 5
F A (b 1 , b 2 , b 3 , b 4 , b 5 ) = a 0 + a 11
b 1 + a 12 b 1 2 + a 13 b 1 3 + a 14 b 1 4 + a 15 b 1 5 + a 21
b 2 + a 22 b 2 2 + a 23 b 2 3 + a 24 b 2 4 + a 25 b 2 5 + a 31
b 3 + a 32 b 3 2 + a 33 b 3 3 + a 34 b 3 4 + a 35 b 3 5 + a 41
b 4 + a 42 b 4 2 + a 43 b 4 3 + a 44 b 4 4 + a 45 b 4 5 + a 51
b 5 + a 52 b 5 2 + a 53 b 5 3 + a 54 b 5 4 + a 55 b 5 5

【0014】ここで、前記範囲内のそれぞれの目的変数
Aについて、対応する説明変数b1〜b5の値は基準にな
る光源分布関数f(θs)に基づいて算出できるため、
それぞれの目的変数Aにつき26個の回帰係数a0,a
11,a12,……,a54,a55を持つ近似関数fA(b1
2,b3,b4,b5)を多数作成することができる。次
に、これらの回帰係数a0,a11,a12,……,a54
55を回帰分析により算出する(S4)。具体的には、
それぞれの目的変数A=fA(b1,b2,b3,b4
5)とおき、最小二乗法により回帰係数a0,a11,a
12,……,a54,a55を求める。
Here, for each objective variable A within the above range, the values of the corresponding explanatory variables b 1 to b 5 can be calculated based on the reference light source distribution function f (θ s ).
26 regression coefficients a 0 , a for each objective variable A
11, a 12, ......, the approximation function f A (b 1 having a 54, a 55,
b 2 , b 3 , b 4 , b 5 ) can be created in large numbers. Next, these regression coefficients a 0 , a 11 , a 12 ,..., A 54 ,
a55 is calculated by regression analysis (S4). In particular,
Each objective variable A = f A (b 1 , b 2 , b 3 , b 4 ,
b 5 ) and regression coefficients a 0 , a 11 , a
12 ,..., A 54 and a 55 are obtained.

【0015】以下同様に、パラメータσ、パラメータθ
nを目的変数としてそれぞれ近似関数fσ(b1,b2
3,b4,b5),fθn(b1,b2,b3,b4,b5
を作成し、各々について回帰係数h0,h11,h12,…
…,h54,h55及びp0,p11,p12,……,p54,p
55を求める(S5〜S8)。(これらの係数の符号h,
pは便宜的なものである。) ここで、近似関数fσ(b1,b2,b3,b4,b5)及
びfθn(b1,b2,b 3,b4,b5)は数式1から容易
に類推可能であるため、記述を省略する。
Similarly, the parameters σ and θ
nWith the approximation function fσ (b1, BTwo,
bThree, BFour, BFive), Fθn(B1, BTwo, BThree, BFour, BFive)
And the regression coefficient h for each0, H11, H12,…
…, H54, H55And p0, P11, P12, ……, p54, P
55(S5 to S8). (The signs h,
p is for convenience. Here, the approximate function fσ (b1, BTwo, BThree, BFour, BFive)
And fθn(B1, BTwo, B Three, BFour, BFive) Is easy from Equation 1
Therefore, the description is omitted.

【0016】なお、上記実施形態では5ヶ所に配置した
カメラ31〜35による輝度値b1〜b5を説明変数とし
たが、輝度値の数(言い換えればカメラの数)は任意の
複数でよい。
In the above embodiment, the brightness values b 1 to b 5 of the cameras 31 to 35 arranged at five locations are used as explanatory variables. However, the number of brightness values (in other words, the number of cameras) may be arbitrary. .

【0017】以上のようにして回帰係数a0,a11,a
12,……,a54,a55と、h0,h11,h12,……,h
54,h55及びp0,p11,p12,……,p54,p55が算
出されれば、近似関数fA(b1,b2,b3,b4
5),fσ(b1,b2,b3,b4,b5),fθ
n(b1,b2,b3,b4,b5)に任意の観測点の輝度値
1〜b5を代入することで、その観測点におけるA,
σ,θnを求めることができる。従って、当該観測点の
傷、傾斜、ざらつき等の有無を検出することができ、検
査媒体20の表面の欠陥の有無を検査することができ
る。
As described above, the regression coefficients a 0 , a 11 , a
12 ,..., A 54 , a 55 and h 0 , h 11 , h 12 ,.
54, h 55, and p 0, p 11, p 12 , ......, if p 54, p 55 is calculated, the approximation function f A (b 1, b 2 , b 3, b 4,
b 5), fσ (b 1 , b 2, b 3, b 4, b 5), fθ
n (b 1, b 2, b 3, b 4, b 5) the by substituting the luminance values b 1 ~b 5 arbitrary observation point, A at the observation point,
σ, θ n can be obtained. Therefore, the presence or absence of a flaw, inclination, roughness, or the like at the observation point can be detected, and the presence or absence of a defect on the surface of the inspection medium 20 can be inspected.

【0018】上記実施形態では、ハードディスク等の磁
気記録媒体の表面の欠陥検査に本発明を適用した場合を
説明したが、本発明は他の物体表面の欠陥検査にも適用
可能である。
In the above embodiment, the case where the present invention is applied to the defect inspection of the surface of a magnetic recording medium such as a hard disk has been described, but the present invention is also applicable to the defect inspection of the surface of another object.

【0019】[0019]

【発明の効果】以上のように請求項1記載の発明によれ
ば、複数のパラメータに関する近似関数を作成してその
回帰係数を求めることにより、任意の観測点について測
定した複数の輝度値から前記パラメータを直接求めるこ
とができ、観測点の傷、傾斜、ざらつき等の表面状態を
高精度に検出することができる。このため、ハードディ
スク等の検査媒体の高速な欠陥検査が可能になる。ま
た、請求項2に記載したようにパラメータの性質に応じ
て重み付けした輝度値を用いることで、より的確な欠陥
検査を行うことができる。
As described above, according to the first aspect of the present invention, an approximate function relating to a plurality of parameters is created and its regression coefficient is obtained, so that the plurality of luminance values measured for an arbitrary observation point can be obtained. Parameters can be directly obtained, and surface conditions such as scratches, inclinations, and roughness of observation points can be detected with high accuracy. Therefore, high-speed defect inspection of an inspection medium such as a hard disk can be performed. Further, by using the luminance value weighted according to the property of the parameter as described in claim 2, more accurate defect inspection can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示すフローチャートであ
る。
FIG. 1 is a flowchart showing an embodiment of the present invention.

【図2】実施形態における各パラメータごとの重みの一
例を示す図である。
FIG. 2 is a diagram illustrating an example of a weight for each parameter according to the embodiment.

【図3】光源分布関数の説明図である。FIG. 3 is an explanatory diagram of a light source distribution function.

【図4】各パラメータの説明図である。FIG. 4 is an explanatory diagram of each parameter.

【符号の説明】[Explanation of symbols]

10 光源 20 検査媒体 21 観測点 31〜35 カメラ DESCRIPTION OF SYMBOLS 10 Light source 20 Inspection medium 21 Observation point 31-35 Camera

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 物体表面の観測点に光を照射し、その反
射光を測定して得た複数の輝度値に基づいて前記観測点
の欠陥の有無を検査する物体表面の欠陥検査方法におい
て、 前記輝度値を示す光源分布関数のパラメータのうち、光
源分布関数のピーク値を示す第1のパラメータ、光源分
布関数の裾の拡がりを示す第2のパラメータ、及び、前
記ピーク値のずれを示す第3のパラメータについて、回
帰モデルとしての近似関数をそれぞれ作成し、前記各パ
ラメータを目的変数、複数の輝度値を説明変数として回
帰分析により各近似関数の回帰係数を求め、任意の観測
点につき測定した複数の輝度値と前記回帰係数とを用い
て前記近似関数により各パラメータを求め、これらのパ
ラメータに基づき観測点の欠陥の有無を検査することを
特徴とする物体表面の欠陥検査方法。
An object surface defect inspection method for irradiating an observation point on an object surface with light and inspecting the observation point for a defect based on a plurality of luminance values obtained by measuring reflected light, Among the parameters of the light source distribution function indicating the luminance value, a first parameter indicating the peak value of the light source distribution function, a second parameter indicating the spread of the tail of the light source distribution function, and a second parameter indicating the deviation of the peak value. For each of the three parameters, an approximation function as a regression model was created, and the regression coefficient of each approximation function was obtained by regression analysis using each of the parameters as an objective variable and a plurality of luminance values as explanatory variables. A method of determining each parameter by the approximation function using a plurality of luminance values and the regression coefficient, and inspecting the observation point for a defect based on these parameters. Defect inspection method for the surface.
【請求項2】 請求項1記載の物体表面の欠陥検査方法
において、 説明変数としての複数の輝度値を、各パラメータごとに
重み付けしたことを特徴とする物体表面の欠陥検査方
法。
2. The defect inspection method for an object surface according to claim 1, wherein a plurality of luminance values as explanatory variables are weighted for each parameter.
JP9123397A 1997-04-10 1997-04-10 Defect inspection method for surface of object Withdrawn JPH10282011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9123397A JPH10282011A (en) 1997-04-10 1997-04-10 Defect inspection method for surface of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9123397A JPH10282011A (en) 1997-04-10 1997-04-10 Defect inspection method for surface of object

Publications (1)

Publication Number Publication Date
JPH10282011A true JPH10282011A (en) 1998-10-23

Family

ID=14020713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9123397A Withdrawn JPH10282011A (en) 1997-04-10 1997-04-10 Defect inspection method for surface of object

Country Status (1)

Country Link
JP (1) JPH10282011A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556291B2 (en) * 2000-05-31 2003-04-29 Nidek Co., Ltd. Defect inspection method and defect inspection apparatus
US7057385B2 (en) 2002-03-13 2006-06-06 Fujitsu Limited Method of inspecting magnetic recording medium based on contact duration time

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6556291B2 (en) * 2000-05-31 2003-04-29 Nidek Co., Ltd. Defect inspection method and defect inspection apparatus
US7057385B2 (en) 2002-03-13 2006-06-06 Fujitsu Limited Method of inspecting magnetic recording medium based on contact duration time

Similar Documents

Publication Publication Date Title
Sugimoto et al. Development of an automatic Vickers hardness testing system using image processing technology
JP3581149B2 (en) Method and apparatus for identifying an object using a regular sequence of boundary pixel parameters
CN109978865A (en) A kind of method, apparatus for the detection of nuclear fuel rod face of weld
TW201207380A (en) Apparatus and methods for setting up optical inspection parameters
US20140125978A1 (en) Film Thickness, Refractive Index, and Extinction Coefficient Determination for Film Curve Creation and Defect Sizing in Real Time
EP2577265B1 (en) Apparatus and method for locating the centre of a beam profile
WO2002044650A9 (en) Method and apparatus for simulating the measurement of a part without using a physical measurement system
JPH10282011A (en) Defect inspection method for surface of object
US7538750B2 (en) Method of inspecting a flat panel display
CN111751383A (en) Defect depth detection method integrating speckle interference and shearing speckle interference
JP2864993B2 (en) Surface profile measuring device
JP2006208187A (en) Shape quality decision device and method
CN111855151B (en) Detection device and detection method for polarizer transmission shaft
JPH1163958A (en) Defect inspection method of object surface
KR100416497B1 (en) Pattern Inspection System
KR100353864B1 (en) Surface inspection method and system
JP3745075B2 (en) Film thickness measuring device
JPH10282012A (en) Method of defect discrimination for surface of object
JP2005351760A (en) Distortion measuring method and system
JP3605045B2 (en) X-ray reflectivity analyzer
JP4496149B2 (en) Dimensional measuring device
JP2001349714A (en) Uniformity evaluation method of mesh-shaped pattern
JP2929096B2 (en) Surface inspection device for inspection object having curved surface
JP2000121333A (en) Appearance inspection apparatus and method
JP3311491B2 (en) X-ray reflectivity analyzer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706