JPH10280310A - Snow-thawing device by use of underground heat-accumulation system - Google Patents

Snow-thawing device by use of underground heat-accumulation system

Info

Publication number
JPH10280310A
JPH10280310A JP9097905A JP9790597A JPH10280310A JP H10280310 A JPH10280310 A JP H10280310A JP 9097905 A JP9097905 A JP 9097905A JP 9790597 A JP9790597 A JP 9790597A JP H10280310 A JPH10280310 A JP H10280310A
Authority
JP
Japan
Prior art keywords
heat
snow
heat storage
hot
water pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9097905A
Other languages
Japanese (ja)
Inventor
Etsushirou Isobe
悦四郎 磯部
Tsukuru Keino
作 慶野
Minoru Yamamoto
稔 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9097905A priority Critical patent/JPH10280310A/en
Publication of JPH10280310A publication Critical patent/JPH10280310A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Road Paving Structures (AREA)

Abstract

PROBLEM TO BE SOLVED: To thaw snow on a road and a railway bed by taking out the heat accumulated in the hot season at the snowfall season. SOLUTION: A hot fluid is conducted in a hot water pipe to thaw snow on a road surface or a railway bed as an energy conservation system in a cold district. In this case, the hot fluid inlet and outlet of the hot water pipe are connected to the feed pipe and the return pipe arranged in the heat- accumulation tank 10 embedded in the underground. The hot fluid is circulated by a circulation pump 22 and a heat-transferring and accumulating body 11 is provided at the external periphery of the heat-accumulation tank 10 to retain the heat energy collected by the hot water pipe 23 in a hot season in the hot fluid 3 in the heat-accumulation tank 10, the heat-transferring and accumulating body 11, and the peripheral soil 14 and thaw snow by circulating the hot fluid of the heat-accumulation tank 10 into the hot water pipe 23 in a snaw season. Further, the circulation pump 22 is automatically driven by the signals from a thermometer, a water content detector, or a snowfall detector installed on the ground. A substance having relatively high thermal conductivity and large heat capacity is used as the heat-transferring and accumulating body 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、寒冷地において
温水を用いた道路路面消雪あるいは、鉄道路床消雪を省
エネルギーにて行う消雪装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a snow removal apparatus for performing snow removal on a road or a railway floor by using hot water in a cold region with energy saving.

【0002】[0002]

【従来の技術】温水を用いた道路の路面消雪や、鉄道の
路床消雪には各種の方式がある。これらの消雪に使用す
る温水は、ボイラーで加熱するものが多かったが、燃料
代の節約によるランニングコスト低減、CO2 排出規制等
の環境対策面から地下水を熱源として利用する方式が提
案されている。しかし、地下水の有する熱エネルギーの
みでは消雪に用いる熱エネルギーとして不足する。最
近、夏期の高温時期に太陽熱を地下水や大地に、熱エネ
ルギーとして蓄えておき、冬期の降雪時期に熱エネルギ
ーを取り出して消雪に利用する技術が開発されてきてい
る。これらの従来技術は、夏期の太陽熱を集熱する集熱
部と、集熱した熱エネルギーを蓄える蓄熱部と、蓄熱部
から取り出した熱エネルギーによって消雪を行う放熱部
により消雪装置を構成している。例えば、(1)特開平
5−247908号に係る「太陽熱を蓄熱した地下水滞
水層を利用する消雪装置」の概略を図5に示す。この消
雪装置は、夏期に太陽熱を太陽熱捕集装置1により捕集
して、井戸2内を流通する地下滞水層温度を高める熱交
換部により蓄熟し、冬期にこの蓄熱された温度の高い地
下滞水層と熱交換して温められた循環水を消雪部3 に回
送して道路消雪を行う。また、(2)実開平5−109
51号に係る「太陽熱蓄熱型融雪システム」の概略を図
6に示す。この融雪システムは、ヒートパイプ4 を第1
区間L1、第2区間L2、第3区間L3に分け、第1区
間L1で採熱した太陽熱を土壌14に輸送して蓄え、ま
た融雪を行うときには第1区間L1を止め、土壌14に
蓄えられた熱を第2区間L2で取り出し、第3区間L3
に輸送して融雪を行うシステムである。この他、(3)
資源環境技術総合研究所と、ガイアエナジー研究会によ
り開発されたガイア融雪システム(週刊・エネルギー通
信1995.10.4)の概略図を図7に示す。この融
雪システムでは、夏期に太陽熱により加熱された路面よ
り集熱した熱を、坑井内同軸熱交換器(DCHE)6を介し
て大地中に蓄熱する。一方、冬期には大地中より坑井内
同軸熱交換器(DCHE)6により熱を抽出し、ヒートポン
プ5により高品位(高温)の熱エネルギーに変改し融雪
を行うものである。
2. Description of the Related Art There are various methods for snow removal on road surfaces using hot water and snow on a road floor of railways. Most of the hot water used for snow removal is heated by a boiler.However, a method that uses groundwater as a heat source has been proposed to reduce running costs by saving on fuel costs and environmental measures such as CO2 emission regulations. . However, the thermal energy of groundwater alone is insufficient as thermal energy for snow removal. Recently, a technology has been developed in which solar heat is stored as heat energy in groundwater or the ground during the high temperature period in summer, and the heat energy is extracted and used for snow removal in the snowfall period in winter. These prior arts constitute a snow removal device that includes a heat collection unit that collects solar heat in summer, a heat storage unit that stores the collected heat energy, and a heat radiation unit that performs snow removal by using heat energy extracted from the heat storage unit. ing. For example, FIG. 5 shows an outline of (1) “Snow removal device using groundwater aquifer storing solar heat” according to JP-A-5-247908. This snow removal device collects solar heat in the summer by the solar heat collecting device 1 and matures the heat in the heat exchange unit that raises the temperature of the underground aquifer flowing in the well 2. The circulating water heated by exchanging heat with the underground aquifer is sent to the snow removal unit 3 to perform snow removal on the road. Also, (2) Japanese Utility Model Application No. 5-109
FIG. 6 schematically shows the “solar heat storage type snow melting system” according to No. 51. This snow melting system uses heat pipe 4
It is divided into a section L1, a second section L2, and a third section L3. The solar heat collected in the first section L1 is transported to the soil 14 and stored. When snow melting is performed, the first section L1 is stopped and stored in the soil 14. Heat in the second section L2 and the third section L3
This is a system that transports snow to and melts it. In addition, (3)
Fig. 7 shows a schematic diagram of the Gaia Snow Melting System (Weekly / Energy Communication 1995.10.4) developed by the National Institute for Resources and Environment and the Gaia Energy Research Group. In this snow melting system, heat collected from a road surface heated by solar heat in summer is stored in the ground via a downhole coaxial heat exchanger (DCHE) 6. On the other hand, in winter, heat is extracted from underground by a coaxial heat exchanger (DCHE) 6 in the downhole and converted into high-grade (high-temperature) heat energy by the heat pump 5 to melt snow.

【0003】[0003]

【発明が解決しようとする課題】前述の従来技術の
(1)では、地下滞水層を利用するため、安定した地下
滞水層でないと集熱した熱エネルギーが散逸してしまい
蓄熱が十分に成されので、限られた地域にのみ適用が可
能であるといった課題があった。また、広い範囲の消雪
を行うには多大な熱エネルギーを要するため、夏期の熱
エネルギーを長期にわたり十分蓄熱しておく必要がある
が、(1)、(2)いずれの技術も太陽熱を集熱するた
めの設備を別に設けるとともに、高温時期の熱エネルギ
ーを効率良く地中に蓄熱できないため、蓄熱部を多数設
置する必要があり、広大な用地を確保しなければならな
いという課題があった。また、(3)の従来技術は、夏
期に温められた路盤の熱エネルギーを利用する本格的な
ものであるが、坑井内同軸熱交換器(DCHE)という特殊
な装置やと−トポンプといった人工熱源を用いる必要が
ある。本発明は、上記課題を解決するもので、単純な構
成で適用場所の制約がなく、高温時期に地中に埋設され
た蓄熱槽内の熱流体と伝熱蓄熱体、また周囲の土壌中に
必要な熱エネルギーを効率良く蓄熱し、降雪時期に効率
良く取り出すことを可能とした消雪装置を得ることを目
的とする。
In the above-mentioned prior art (1), since the underground aquifer is utilized, the heat energy collected is dissipated unless the underground aquifer is stable, and the heat storage is sufficient. Therefore, there was a problem that it could be applied only to a limited area. In addition, since a large amount of heat energy is required to perform snow removal over a wide range, it is necessary to store heat energy in summer for a long period of time, but both technologies (1) and (2) collect solar heat. In addition to separately providing heating equipment, it is not possible to efficiently store heat energy in the ground during high-temperature periods. Therefore, it is necessary to install a large number of heat storage units, and there is a problem that a vast site must be secured. The prior art of (3) is a full-scale one that utilizes the heat energy of the roadbed warmed in the summer, but it uses a special device called a downhole coaxial heat exchanger (DCHE) and an artificial heat source such as a water pump. Must be used. The present invention solves the above-described problems, has a simple configuration, there is no restriction on an application place, and a heat fluid and a heat transfer storage body in a heat storage tank buried underground at a high temperature period, and also in a surrounding soil. It is an object of the present invention to obtain a snow removal device that can efficiently store necessary heat energy and efficiently extract the heat energy during a snowfall period.

【0004】[0004]

【課題を解決するための手段】本発明は、寒冷地におい
て温水パイプの内部に熱流体を通し道路路面消雪あるい
は、鉄道路床消雪を省エネルギーにて行う消雪装置にお
いて、前記温水パイプの熱流体入口と出口を、地中に埋
設された蓄熱槽内に配設する送り管と戻り管に接続し、
熱流体を循環ポンプで循環可能とし、前記蓄熱槽の外周
に伝熱蓄熱体を周設して、高温時期に前記温水パイプで
集熱した熱エネルギーを熱流体の循環により蓄熱槽内の
熱流体、伝熱蓄熱体および周囲の土壌に蓄えておき、降
雪時期に蓄熱槽の熱流体を温水パイプに循環させて消雪
するものである。さらに、前記循環ポンプは地上に設け
た温度計、水分検知器、あるいは積雪検知器、降雪検知
器からの信号により運転を自動的に行うようにする。ま
た、伝熱蓄熱体としては、熱伝導率が比較的高く、熱容
量が大きな物質を用いる。
SUMMARY OF THE INVENTION The present invention relates to a snow removal apparatus for performing snow removal on a road or snow on a railway road by saving heat by passing a hot fluid into a hot water pipe in a cold region. Connect the thermal fluid inlet and outlet to the feed pipe and return pipe arranged in the heat storage tank buried underground,
The heat fluid can be circulated by a circulation pump, and a heat transfer heat storage body is provided around the outer periphery of the heat storage tank, and heat energy collected by the hot water pipe at a high temperature period is circulated through the heat fluid in the heat storage tank by circulation of the heat fluid. The heat is stored in the heat transfer heat storage material and the surrounding soil, and during the snowfall period, the heat fluid in the heat storage tank is circulated through the hot water pipe to eliminate snow. Further, the circulating pump is automatically operated by a signal from a thermometer, a moisture detector, a snow detector, or a snow detector provided on the ground. Further, as the heat transfer storage element, a substance having a relatively high heat conductivity and a large heat capacity is used.

【0005】[0005]

【発明の実施の形態】本発明の消雪装置は、蓄熱槽の外
周に熱伝導率の比較的高く熱容量の大きな伝熱蓄熱体を
周設することにより、蓄熱槽内の熱流体と周囲の土壌と
の間の熱抵抗を低減し、高温時期の蓄熱あるいは、降雪
時期の消雪の際に熱交換を効率的に行うことが可能で、
さらに伝熱蓄熱体自体へも熱エネルギーを有効に蓄熱す
ることができる。また、本消雪装置は、太陽熱の集熱に
降雪時期の消雪に利用する路盤の表層部に設置される温
水パイプ、あるいは鉄道軌条の側面に配置されたパネル
内に設置される温水パイプを用いることにより、太陽熱
捕集装置を別に設ける必要がないので適用スペースが小
さくて良い。
BEST MODE FOR CARRYING OUT THE INVENTION The snow-removal device of the present invention has a heat transfer heat storage body having a relatively high heat conductivity and a large heat capacity provided around the outer periphery of a heat storage tank, so that a heat fluid in the heat storage tank and surrounding heat transfer heat storage bodies are provided. It can reduce the thermal resistance between the soil and the heat exchange in high temperature season, or efficiently exchange heat when clearing snow in snowfall season,
Further, heat energy can be effectively stored in the heat transfer storage body itself. In addition, this snow removal device uses a hot water pipe installed in the surface layer of the roadbed used for snow removal during the snowfall season for solar heat collection, or a hot water pipe installed in a panel arranged on the side of the railway rail. By using, there is no need to separately provide a solar heat collecting device, so that the application space can be small.

【0006】図3は、本発明の消雪装置における長期蓄
熱の性能を把握するために実行した非定常熱伝導数値解
析の解析モデルを模式的に示したものである。解析モデ
ルは縦80m、横19mの2次元軸対称モデルであり、
境界条件としては、上面のみ大気との熱交換条件42、
他面は断熱条件41である。蓄熱槽10については、半
径R=2m、探さH=50m・100m・150m、厚
さt=0.03mの銅製とした。伝熱蓄熱体11として
はレンガを用い、厚さB=0.5mでそれぞれの探さの
蓄熱槽の底部まで周設されるものとした。蓄熱槽10、
伝熱蓄熱体11、および土壌14の一部の上面には断熱
材12を設けた。上記解析モデルを用い、1年間の長期
間数値解析を実行した。1年において高温時期は5月か
ら10月、また降雪時期は12月から3月とした。解析
では、道路消雪を例に、路面下に埋設された温水パイプ
内に熱流体を循環させることにより生じる熱流体の温度
変化を考慮し、蓄熱槽内の温度を変化させることで高温
時期の蓄熱、あるいは降雪時期の消雪を模擬して解析を
実行した。消雪対象面積は770m2 である。
FIG. 3 schematically shows an analysis model of a non-stationary heat conduction numerical analysis executed to grasp the performance of long-term heat storage in the snow removal apparatus of the present invention. The analysis model is a two-dimensional axisymmetric model with a length of 80 m and a width of 19 m.
As the boundary conditions, only the upper surface has a heat exchange condition 42 with the atmosphere,
The other surface is under adiabatic condition 41. The heat storage tank 10 was made of copper having a radius R = 2 m, a search H = 50 m / 100 m / 150 m, and a thickness t = 0.03 m. A brick was used as the heat transfer heat storage body 11 and had a thickness B = 0.5 m and was provided around the bottom of the heat storage tank for each search. Thermal storage tank 10,
A heat insulating material 12 was provided on the upper surface of the heat transfer heat storage body 11 and a part of the soil 14. Using the above analysis model, a one-year long-term numerical analysis was performed. In the year, the high temperature period is from May to October, and the snowfall period is from December to March. In the analysis, taking the snow melting on the road as an example, taking into account the temperature change of the thermal fluid caused by circulating the thermal fluid in the hot water pipe buried under the road surface, changing the temperature in the heat storage tank during the high temperature period The analysis was performed by simulating heat storage or snow removal during the snowfall season. The area covered by snow removal is 770 m 2 .

【0007】図4に、前記モデルを用いて解析を実行し
た結果を示す。グラフは、蓄熱槽10の外周に伝熱蓄熱
体(レンガ)11が有る場合と、無い場合の降雪時期に
おける総路面熱量と水槽探さとの関係を示したものであ
る。この解析結果によれば、伝熱蓄熱体を設けた場合
は、無い場合に比べ水槽深さ100mの場合、約30%高
い総路面熱量を得ることが可能である。
FIG. 4 shows a result of executing an analysis using the model. The graph shows the relationship between the total amount of heat on the road surface and the water tank search in the snowfall season when there is a heat transfer heat storage body (brick) 11 on the outer periphery of the heat storage tank 10 and when there is no heat transfer heat storage body (brick). According to this analysis result, it is possible to obtain about 30% higher total road surface heat when the water storage heat storage element is provided and the water tank depth is 100 m than when there is no heat transfer storage element.

【0008】[0008]

【実施例】図1は、本発明の概要を示す実施例であり、
道路の路面消雪に適用した場合の地中蓄熱システムを利
用した消雪装置を表している。路盤24の表層部に設置さ
れ、内部に熱流体13を通す温水パイプ23と、熱流体
13で内部を満たし、地中に埋設された蓄熱槽10と、こ
の蓄熱槽10の外周に周設した伝熱蓄熱体11と、この
伝熱蓄熱体11と温水ポンプ23に熱流体13を循環さ
せる循環ポンプ22、蓄熱過程送り管(消雪過程戻り
管)20、蓄熱過程戻り管(消雪過程送り管)21より
構成される。
FIG. 1 is an embodiment showing the outline of the present invention.
1 shows a snow removal device using an underground heat storage system when applied to road surface snow removal. A hot water pipe 23 installed on the surface of the roadbed 24 and passing the hot fluid 13 therein;
A heat storage tank 10 that fills the interior and is buried in the ground, a heat transfer heat storage body 11 provided around the outer periphery of the heat storage tank 10, and a heat fluid 13 is circulated through the heat transfer heat storage body 11 and the hot water pump 23. The heat pump includes a circulation pump 22, a heat storage process feed pipe (snow-removing process return pipe) 20, and a heat storage process return pipe (snow-removing process feed pipe) 21.

【0009】蓄熱槽10は、ケーシング工法あるいはR
CD工法等により掘削された立坑に所定の大きさで設置
する。通常、立坑掘削を行う際には各種工法の掘削精度
を考慮し、設置する蓄熱槽より大きな径で掘削を行う。
しかしながら、本消雪装置では伝熱蓄熱体11は立坑と
蓄熱槽10の隙間の埋め戻し材を兼ねるので、立坑掘削に
おいて高い掘削精度を必要としないため、掘削コストを
低減できるメリットがある。伝熱蓄熱体11には、屑鉄や
レンガ等の熱容量ができるだけ大きく、また熱伝導率の
比較的高い(例えばレンガ:30Kcal/m・hr) 程度)物
質を埋め戻しに適する程度のブロック状にして用いる。
伝熱蓄熱体11間の空隙は、接触熱抵抗が生じないよう
セメントミルク等で埋め戻すようにする。蓄熱槽10、
伝熱蓄熱体11、および土壌14の一部の上面には断熱
材12a,12bを設置し熱が散逸しないようにする。
熱流体13は、冬期における凍結を防止するために不凍液
を用いることが望ましい。
The heat storage tank 10 is formed by a casing method or R
It is installed in a shaft excavated by the CD method or the like with a predetermined size. Normally, when excavating a shaft, excavation is performed with a diameter larger than the heat storage tank to be installed in consideration of the excavation accuracy of various construction methods.
However, in the present snow removal apparatus, since the heat transfer heat storage body 11 also serves as a backfill material for the gap between the shaft and the heat storage tank 10, high excavation accuracy is not required in shaft excavation, so that there is an advantage that the excavation cost can be reduced. The heat transfer storage body 11 is made of a block having a heat capacity as large as possible, such as scrap iron or brick, and a material having relatively high thermal conductivity (for example, brick: about 30 Kcal / m · hr) suitable for backfilling. Used.
The gaps between the heat transfer storage elements 11 are backfilled with cement milk or the like so as not to generate contact heat resistance. Thermal storage tank 10,
Insulating materials 12a and 12b are provided on the heat transfer storage body 11 and a part of the upper surface of the soil 14 so that heat is not dissipated.
It is desirable to use antifreeze as the thermal fluid 13 in order to prevent freezing in winter.

【0010】蓄熱槽10には、熱流体13を循環させる
ための2本の配管を配設する。すなわち、蓄熱槽10の
底部付近まで伸びた蓄熱過程送り管(消雪過程戻り管)
20と、蓄熱槽10の上部に設置された蓄熱過程戻り管
(消雪過程送り管)21である。また、前記配管には、
熱流体13を循環させるための循環ポンプ22設置する。
循環ポンプ22は、蓄熱槽の水位より低い位置に設置す
ることにより吸水を押し込みで行うことが可能なため、
特殊なポンプを用いる必要がなく汎用ポンプを使用する
ことができる。この循環ポンプ22は、路面温度計30
と、路面水分検知器31からの信号により自動的に運転
を行う。蓄熱過程送り管(消雪過程戻り管)20と、蓄
熱過程戻り管(消雪過程送り管)21は、路盤24に埋
設された温水パイプ23に接続され、温水パイプ23と、
循環ポンプ22と、蓄熱槽10によりクローズ配管を形成
する。
The heat storage tank 10 is provided with two pipes for circulating the heat fluid 13. That is, the heat storage process feed pipe (snow-removal process return pipe) extending to near the bottom of the heat storage tank 10.
20, a heat storage process return pipe (snow-removal process feed pipe) 21 installed above the heat storage tank 10. Also, in the pipe,
A circulation pump 22 for circulating the thermal fluid 13 is provided.
Since the circulating pump 22 is installed at a position lower than the water level of the heat storage tank, it is possible to perform water absorption by pushing.
It is not necessary to use a special pump, and a general-purpose pump can be used. The circulation pump 22 is provided with a road surface thermometer 30.
The operation is automatically performed based on the signal from the road surface moisture detector 31. A heat storage process feed pipe (snow-removal process return pipe) 20 and a heat storage process return pipe (snow-removal process feed pipe) 21 are connected to a hot water pipe 23 embedded in a roadbed 24, and a hot water pipe 23.
A closed pipe is formed by the circulation pump 22 and the heat storage tank 10.

【0011】つぎに、本消雪装置の運転方法について説
明する。高温時期の蓄熱過程においては、路盤24が太
陽熱により昇温され、それに伴い温水パイプ23および
パイプ内の水温の温度も上昇する。この時、路面温度計
30の設定温度を、例えば20℃に設定しておき、路面
温度が設定温度以上となった場合に、循環ポンプ22が
自動的に運転するよう制御システムを設定する。熱流体
13は、循環ポンプ22により、蓄熱過程送り管20から
蓄熱槽10の底部より取水され、温水パイプ23で昇温さ
れた後に蓄熱過程戻り管21より槽上部に排水される
(図1 の白矢印)。熱エネルギーは、昇温された蓄熱槽
10内の熱流体13から伝熱蓄熱体11を通り、土壌1
4へと熱伝導により伝えられる。熱エネルギーは熱流体
13、伝熱蓄熱体11、および土壌14に長期にわたり
蓄熱される。
Next, an operation method of the present snow removal apparatus will be described. In the heat storage process during the high temperature period, the temperature of the roadbed 24 is increased by the solar heat, and accordingly, the temperature of the hot water pipe 23 and the temperature of the water in the pipe also increase. At this time, the set temperature of the road surface thermometer 30 is set to, for example, 20 ° C., and the control system is set so that the circulating pump 22 automatically operates when the road surface temperature becomes equal to or higher than the set temperature. Thermal fluid
The water 13 is taken in from the bottom of the heat storage tank 10 from the heat storage process feed pipe 20 by the circulation pump 22, is heated by the hot water pipe 23, and is then drained to the upper part of the tank from the heat storage process return pipe 21 (white arrow in FIG. 1). ). The thermal energy is transferred from the heated fluid 13 in the heated storage tank 10 through the heat transfer storage 11 to the soil 1.
4 to be transmitted by heat conduction. Thermal energy is stored in the thermal fluid 13, the heat transfer storage 11 and the soil 14 for a long time.

【0012】一方、降雪時期の消雪過程においては、路
面温度計30、路面水分検知器31により路盤24の路
面状態を検知し、その信号で循環ポンプ22が自動的に
運転するよう制御システムを設定する。この時、バルブ
25の開閉により高温時期の蓄熱過程とは逆方向に熱流
体13が流れるよう設定する(図1の黒矢印)。循環ポ
ンプ22により熱流体13が、クローズ配管内を循環し
温水パイプ23において熱エネルギーを放出し路盤24
上の消雪を行う。熱エネルギーを放出した熱流体13
は、消雪過程戻り管20より蓄熱槽10の底部に排水され
る。蓄熱槽10内の熱流体13は、伝熱蓄熱体11と土壌
14より熱エネルギーを吸収し再び昇温され、比較的温
かい上部の熱流体13が消雪過程送り管21より取水され
温水パイプ23へと再び導かれる。また、循環ポンプ2
2が停止している場合にも蓄熱槽10の周囲の温度に比
べ槽内部の温度が低い場合には、熱エネルギーが熱流体
13へと移動するため、熱流体13は昇温される。な
お、本消雪装置は、路面温度計30と、路面水分検知器
31を有することにより、路面上の消雪だけでなく路面
上の凍結防止を行うことが可能である。
On the other hand, during the snow removal process during the snowfall season, the control system is designed to detect the road surface condition of the roadbed 24 by the road surface thermometer 30 and the road surface moisture detector 31 and to automatically operate the circulation pump 22 based on the signal. Set. At this time, the opening and closing of the valve 25 is set so that the heat fluid 13 flows in the direction opposite to the heat storage process at the high temperature period (black arrow in FIG. 1). The hot fluid 13 is circulated in the closed pipe by the circulating pump 22 to release heat energy in the hot water pipe 23 and
Do the snow removal on. Thermal fluid 13 that has released thermal energy
Is drained to the bottom of the heat storage tank 10 from the return pipe 20 in the snow removal process. The heat fluid 13 in the heat storage tank 10 absorbs heat energy from the heat transfer heat storage medium 11 and the soil 14 and is heated again, and the relatively warm upper heat fluid 13 is taken from the snow removal process feed pipe 21 to be heated and the hot water pipe 23 is heated. Again led to. In addition, circulation pump 2
Even when 2 is stopped, when the temperature inside the heat storage tank 10 is lower than the temperature around the heat storage tank 10, the heat energy moves to the heat fluid 13, and the temperature of the heat fluid 13 rises. In addition, since this snow removal device has the road surface thermometer 30 and the road surface moisture detector 31, not only snow removal on the road surface but also prevention of freezing on the road surface can be performed.

【0013】[0013]

【発明の効果】本発明の地中蓄熱システムを利用した消
雪装置は、蓄熱槽の外周に熱伝導率が比較的高く、また
熱容量の大きな伝熱蓄熱体を周設することにより、高温
時期の蓄熱あるいは降雪時期の消雪の際に蓄熱槽内の熱
流体と周囲の土壌との問の熱抵抗を低減し、熱交換を効
率的に行うことが可能で、さらに伝熱蓄熱体自体へも熱
エネルギーを有効に蓄熱することができる。そのため、
高温時期に集熱された熱エネルギーを効率良く蓄熱し降
雪時期の消雪に用いることができるので消雪ランニング
コストの低減が図れる。また、高温時期の熱エネルギー
の集熱には降雪時期に消雪に用いる、路盤の表層部に設
置された温水パイプ、または鉄道軌条の側面に配置され
るパネル内に設置された温水パイプを利用するので特殊
な集熱装置を用いる必要がなく、設備コストを抑制でき
るとともにこのため設備スペースを要しない。さらに、
地上に設けた温度計、水分検知器、あるいは消雪検知
器、降雪検知器からの信号により循環ポンプの自動運転
を可能としたものでは、設定された条件でのみ熱エネル
ギーの集熱や消雪運転を行うためより熱エネルギーを無
駄なく有効に利用でき、かつ降雪時期の的確な消雪が可
能である。
As described above, the snow removal apparatus using the underground heat storage system of the present invention has a relatively high heat conductivity around the outer periphery of the heat storage tank. The heat transfer between the heat fluid in the heat storage tank and the surrounding soil can be reduced during heat storage or snow removal during the snowfall period, and heat exchange can be performed efficiently. Can also effectively store heat energy. for that reason,
Since the heat energy collected during the high temperature period can be efficiently stored and used for snow removal during the snowfall period, the running cost of snow removal can be reduced. In addition, to collect heat energy during the high temperature season, use a hot water pipe installed on the surface of the roadbed or a hot water pipe installed in the panel arranged on the side of the railroad track, which is used for snow removal during the snowfall season Therefore, it is not necessary to use a special heat collecting device, the cost of equipment can be reduced, and no equipment space is required. further,
The automatic operation of the circulating pump is enabled by a signal from a thermometer, moisture detector, snow detector, or snow detector installed on the ground. Since the operation is performed, heat energy can be more effectively used without waste, and accurate snow removal at the time of snowfall is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1 】本発明の消雪装置の実施例を示す囲である。FIG. 1 is an enclosure showing an embodiment of a snow removal device of the present invention.

【図2 】(A)は図1のA−A断面図、(B)は図1の
BーB断面図である。
2A is a cross-sectional view taken along line AA of FIG. 1, and FIG. 2B is a cross-sectional view taken along line BB of FIG.

【図3】本消雪装置の長期蓄熱部の数値解析モデルを示
す図である。
FIG. 3 is a diagram illustrating a numerical analysis model of a long-term heat storage unit of the snow removal device.

【図4 】本消雪装置の長期蓄熱部の数値解析結果を示す
図である。
FIG. 4 is a diagram showing a result of numerical analysis of a long-term heat storage unit of the present snow removal device.

【図5 】従来のシステムを示す図である。FIG. 5 is a diagram showing a conventional system.

【図6 】従来のシステムを示す図である。FIG. 6 is a diagram showing a conventional system.

【図7 】従来のシステムを示す図である。FIG. 7 is a diagram showing a conventional system.

【符号の説明】[Explanation of symbols]

1 太陽熱捕集装置 2 井戸 3 消雪部 4 ヒートパイプ 5 ヒートポンプ 6 坑井内同軸熱交換器(DCHE) 10 蓄熱槽 11 伝熱蓄熱体 12a 断熱材 12b 断熱材 13 熱流体 14 土壌 20 蓄熱過程送り管(消雪過程戻り管) 21 蓄熱過程戻り管(消雪過程送り管) 22 循環ポンプ 23 温水パイプ 24 路盤 25 バルブ 30 路面温度計 31 路面水分検知器 40 熱供給条件 41 断熱条件 42 熱交換条件 L1 第1 区間 L2 第2 区間 L3 第3区間 B 伝熱蓄熱体幅 H 蓄熱槽深さ R 蓄熱槽半径 t 伝熱蓄熱体厚さ DESCRIPTION OF SYMBOLS 1 Solar heat collection apparatus 2 Well 3 Snow removal part 4 Heat pipe 5 Heat pump 6 Downhole coaxial heat exchanger (DCHE) 10 Heat storage tank 11 Heat transfer heat storage material 12a Heat insulating material 12b Heat insulating material 13 Heat fluid 14 Soil 20 Heat transfer process feed pipe (Snow-removing process return pipe) 21 Heat storage process return pipe (snow-removing process feed pipe) 22 Circulation pump 23 Hot water pipe 24 Roadbed 25 Valve 30 Road surface thermometer 31 Road surface moisture detector 40 Heat supply condition 41 Insulation condition 42 Heat exchange condition L1 1st section L2 2nd section L3 3rd section B Heat transfer heat storage material width H Heat storage tank depth R Heat storage tank radius t Heat transfer heat storage material thickness

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年5月12日[Submission date] May 12, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Correction target item name] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0002】[0002]

【従来の技術】温水を用いた道路の路面消雪や、鉄道の
路床消雪には各種の方式がある。これらの消雪に使用す
る温水は、ボイラーで加熱するものが多かったが、燃料
代の節約によるランニングコスト低減、CO2排出規制
等の環境対策面から地下水を熱源として利用する方式が
提案されている。しかし、地下水の有する熱エネルギー
のみでは消雪に用いる熱エネルギーとして不足する。最
近、夏期の高温時期に太陽熱を地下水や大地に、熱エネ
ルギーとして蓄えておき、冬期の降雪時期に熱エネルギ
ーを取り出して消雪に利用する技術が開発されてきてい
る。これらの従来技術は、夏期の太陽熱を集熱する集熱
部と、集熱した熱エネルギーを蓄える蓄熱部と、蓄熱部
から取り出した熱エネルギーによって消雪を行う放熱部
により消雪装置を構成している。例えば、(1)特開平
5−247908号に係る「太陽熱を蓄熱した地下水滞
水層を利用する消雪装置」の概略を図5に示す。この消
雪装置は、夏期に太陽熱を太陽熱捕集装置1により捕集
して、井戸2内を流通する地下滞水層温度を高める熱交
換部により蓄熱し、冬期にこの蓄熱された温度の高い地
下滞水層と熱交換して温められた循環水を消雪部3に回
送して道路消雪を行う。また、(2)実開平5−109
51号に係る「太陽熱蓄熱型融雪システム」の概略を図
6に示す。この融雪システムは、ヒートパイプ4を第1
区間L1、第2区間L2、第3区間L3に分け、第1区
間L1で採熱した太陽熱を土壌14に輸送して蓄え、ま
た融雪を行うときには第1区間L1を止め、土壌14に
蓄えられた熱を第2区間L2で取り出し、第3区間L3
に輸送して融雪を行うシステムである。この他、(3)
資源環境技術総合研究所と、ガイアエナジー研究会によ
り開発されたガイア融雪システム(週刊・エネルギー通
信1995.10.4)の概略図を図7に示す。この融
雪システムでは、夏期に太陽熱により加熱された路面よ
り集熱した熱を、坑井内同軸熱交換器(DCHE)6を
介して大地中に蓄熱する。一方、冬期には大地中より坑
井内同軸熱交換器(DCHE)6により熱を抽出し、ヒ
ートポンプ5により高品位(高温)の熱エネルギーに変
改し融雪を行うものである。
2. Description of the Related Art There are various methods for snow removal on road surfaces using hot water and snow on a road floor of railways. Most of the hot water used for snow removal is heated by a boiler. However, a method that uses groundwater as a heat source has been proposed from the viewpoint of reducing running costs by saving fuel costs and environmental measures such as CO2 emission regulations. . However, the thermal energy of groundwater alone is insufficient as thermal energy for snow removal. Recently, a technology has been developed in which solar heat is stored as heat energy in groundwater or the ground during the high temperature period in summer, and the heat energy is extracted and used for snow removal in the snowfall period in winter. These prior arts constitute a snow removal device that includes a heat collection unit that collects solar heat in summer, a heat storage unit that stores the collected heat energy, and a heat radiation unit that performs snow removal by using heat energy extracted from the heat storage unit. ing. For example, FIG. 5 shows an outline of (1) “Snow removal device using groundwater aquifer storing solar heat” according to JP-A-5-247908. This snow removal device collects solar heat by a solar heat collecting device 1 in summer and stores heat in a heat exchange unit that raises the temperature of an underground aquifer flowing in the well 2, and has a high temperature stored in winter. The circulating water heated by exchanging heat with the underground aquifer is sent to the snow removal unit 3 to perform snow removal on the road. Also, (2) Japanese Utility Model Application No. 5-109
FIG. 6 schematically shows the “solar heat storage type snow melting system” according to No. 51. In this snow melting system, the heat pipe 4 is
It is divided into a section L1, a second section L2, and a third section L3. The solar heat collected in the first section L1 is transported to the soil 14 and stored. When snow melting is performed, the first section L1 is stopped and stored in the soil 14. Heat in the second section L2 and the third section L3
This is a system that transports snow to and melts it. In addition, (3)
Fig. 7 shows a schematic diagram of the Gaia Snow Melting System (Weekly / Energy Communication 1995.10.4) developed by the National Institute for Resources and Environment and the Gaia Energy Research Group. In this snow melting system, heat collected from a road surface heated by solar heat in summer is stored in the ground via a downhole coaxial heat exchanger (DCHE) 6. On the other hand, in winter, heat is extracted from underground by a coaxial heat exchanger (DCHE) 6 in the downhole, converted into high-grade (high-temperature) heat energy by the heat pump 5, and snow melting is performed.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Correction target item name] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0003】[0003]

【発明が解決しようとする課題】前述の従来技術の
(1)では、地下滞水層を利用するため、安定した地下
滞水層でないと集熱した熱エネルギーが散逸してしまい
蓄熱が十分に成されので、限られた地域にのみ適用が可
能であるといった課題があった。また、広い範囲の消雪
を行うには多大な熱エネルギーを要するため、夏期の熱
エネルギーを長期にわたり十分蓄熱しておく必要がある
が、(1)、(2)いずれの技術も太陽熱を集熱するた
めの設備を別に設けるとともに、高温時期の熱エネルギ
ーを効率良く地中に蓄熱できないため、蓄熱部を多数設
置する必要があり、広大な用地を確保しなければならな
いという課題があった。また、(3)の従来技術は、夏
期に温められた路盤の熱エネルギーを利用する本格的な
ものであるが、坑井内同軸熱交換器(DCHE)という
特殊な装置やヒートポンプといった人工熱源を用いる必
要がある。本発明は、上記課題を解決するもので、単純
な構成で適用場所の制約がなく、高温時期に地中に埋設
された蓄熱槽内の熱流体と伝熱蓄熱体、また周囲の土壌
中に必要な熱エネルギーを効率良く蓄熱し、降雪時期に
効率良く取り出すことを可能とした消雪装置を得ること
を目的とする。
In the above-mentioned prior art (1), since the underground aquifer is utilized, the heat energy collected is dissipated unless the underground aquifer is stable, and the heat storage is sufficient. Therefore, there was a problem that it could be applied only to a limited area. In addition, since a large amount of heat energy is required to perform snow removal over a wide range, it is necessary to store heat energy in summer for a long period of time, but both technologies (1) and (2) collect solar heat. In addition to separately providing heating equipment, it is not possible to efficiently store heat energy in the ground during high-temperature periods. Therefore, it is necessary to install a large number of heat storage units, and there is a problem that a vast site must be secured. Further, the prior art of (3) is a full-scale one utilizing heat energy of a roadbed warmed in summer, but uses a special device such as a coaxial heat exchanger (DCHE) in the downhole or an artificial heat source such as a heat pump. There is a need. The present invention solves the above-described problems, has a simple configuration, there is no restriction on an application place, and a heat fluid and a heat transfer storage body in a heat storage tank buried underground at a high temperature period, and also in a surrounding soil. It is an object of the present invention to obtain a snow removal device that can efficiently store necessary heat energy and efficiently extract the heat energy during a snowfall period.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】図3は、本発明の消雪装置における長期蓄
熱の性能を把握するために実行した非定常熱伝導数値解
析の解析モデルを模式的に示したものである。解析モデ
ルは縦80m、横19mの2次元軸対称モデルであり、
境界条件としては、上面のみ大気との熱交換条件42、
他面は断熱条件41である。蓄熱槽10については、半
径R=2m、探さH=50m・100m・150m、厚
さt=0.03mの鋼製とした。伝熱蓄熱体11として
はレンガを用い、厚さB=0.5mでそれぞれの探さの
蓄熱槽の底部まで周設されるものとした。蓄熱槽10、
伝熱蓄熱体11、および土壌14の一部の上面には断熱
材12を設けた。上記解析モデルを用い、1年間の長期
間数値解析を実行した。1年において高温時期は5月か
ら10月、また降雪時期は12月から3月とした。解析
では、道路消雪を例に、路面下に埋設された温水パイプ
内に熱流体を循環させることにより生じる熱流体の温度
変化を考慮し、蓄熱槽内の温度を変化させることで高温
時期の蓄熱、あるいは降雪時期の消雪を模擬して解析を
実行した。消雪対象面積は770mである。
FIG. 3 schematically shows an analysis model of a non-stationary heat conduction numerical analysis executed to grasp the performance of long-term heat storage in the snow removal apparatus of the present invention. The analysis model is a two-dimensional axisymmetric model with a length of 80 m and a width of 19 m.
As the boundary conditions, only the upper surface has a heat exchange condition 42 with the atmosphere,
The other surface is under adiabatic condition 41. The heat storage tank 10 was made of steel having a radius R = 2 m, a search H = 50 m / 100 m / 150 m, and a thickness t = 0.03 m. A brick was used as the heat transfer heat storage body 11 and had a thickness B = 0.5 m and was provided around the bottom of the heat storage tank for each search. Thermal storage tank 10,
A heat insulating material 12 was provided on the upper surface of the heat transfer heat storage body 11 and a part of the soil 14. Using the above analysis model, a one-year long-term numerical analysis was performed. In the year, the high temperature period is from May to October, and the snowfall period is from December to March. In the analysis, taking the snow melting on the road as an example, taking into account the temperature change of the thermal fluid caused by circulating the thermal fluid in the hot water pipe buried under the road surface, changing the temperature in the heat storage tank during the high temperature period The analysis was performed by simulating heat storage or snow removal during the snowfall season. The snow removal target area is 770 m 2 .

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】[0008]

【実施例】図1は、本発明の概要を示す実施例であり、
道路の路面消雪に適用した場合の地中蓄熱システムを利
用した消雪装置を表している。路盤24の表層部に設置
され、内部に熱流体13を通す温水パイプ23と、熱流
体13で内部を満たし、地中に埋設された蓄熱槽10
と、この蓄熱槽10の外周に周設した伝熱蓄熱体11
と、この伝熱蓄熱体11と温水パイプ23に熱流体13
を循環させる循環ポンプ22、蓄熱過程送り管(消雪過
程戻り管)20、蓄熱過程戻り管(消雪過程送り管)2
1より構成される。
FIG. 1 is an embodiment showing the outline of the present invention.
1 shows a snow removal device using an underground heat storage system when applied to road surface snow removal. A hot water pipe 23 installed on the surface of the roadbed 24 and passing the hot fluid 13 therein, and a heat storage tank 10 filled with the hot fluid 13 and buried underground
And a heat transfer storage element 11 provided around the outer circumference of the heat storage tank 10.
The heat fluid 13 is supplied to the heat transfer storage 11 and the hot water pipe 23.
Pump 22 for circulating water, heat storage process feed pipe (snow-removal process return pipe) 20, heat storage process return pipe (snow-removal process feed pipe) 2
1

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】蓄熱槽10には、熱流体13を循環させる
ための2本の配管を配設する。すなわち、蓄熱槽10の
底部付近まで伸びた蓄熱過程送り管(消雪過程戻り管)
20と、蓄熱槽10の上部に設置された蓄熱過程戻り管
(消雪過程送り管)21である。また、前記配管には、
熱流体13を循環させるための循環ポンプ22を設置す
る。循環ポンプ22は、蓄熱槽の水位より低い位置に設
置することにより吸水を押し込みで行うことが可能なた
め、特殊なポンプを用いる必要がなく汎用ポンプを使用
することができる。この循環ポンプ22は、路面温度計
30と、路面水分検知器31からの信号により自動的に
運転を行う。蓄熱過程送り管(消雪過程戻り管)20
と、蓄熱過程戻り管(消雪過程送り管)21は、路盤2
4に埋設された温水パイプ23に接続され、温水パイプ
23と、循環ポンプ22と、蓄熱槽10によりクローズ
配管を形成する。
The heat storage tank 10 is provided with two pipes for circulating the heat fluid 13. That is, the heat storage process feed pipe (snow-removal process return pipe) extending to near the bottom of the heat storage tank 10.
20, a heat storage process return pipe (snow-removal process feed pipe) 21 installed above the heat storage tank 10. Also, in the pipe,
A circulation pump 22 for circulating the thermal fluid 13 is provided. By installing the circulation pump 22 at a position lower than the water level of the heat storage tank, it is possible to push water into the circulation pump 22, so that a general-purpose pump can be used without using a special pump. The circulating pump 22 automatically operates based on signals from a road surface thermometer 30 and a road surface moisture detector 31. Feed pipe for heat storage process (return pipe for snow removal process) 20
And the heat storage process return pipe (snow elimination process feed pipe) 21
A closed pipe is formed by the hot water pipe 23, the circulation pump 22, and the heat storage tank 10, which is connected to the hot water pipe 23 buried in 4.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】つぎに、本消雪装置の運転方法について説
明する。高温時期の蓄熱過程においては、路盤24が太
陽熱により昇温され、それに伴い温水パイプ23および
パイプ内の水の温度も上昇する。この時、路面温度計3
0の設定温度を、例えば20℃に設定しておき、路面温
度が設定温度以上となった場合に、循環ポンプ22が自
動的に運転するよう制御システムを設定する。熱流体1
3は、循環ポンプ22により、蓄熱過程送り管20から
蓄熱槽10の底部より取水され、温水パイプ23で昇温
された後に蓄熱過程戻り管21より槽上部に排水される
(図1の白矢印)。熱エネルギーは、昇温された蓄熱槽
10内の熱流体13から伝熱蓄熱体11を通り、土壌1
4へと熱伝導により伝えられる。熱エネルギーは熱流体
13、伝熱蓄熱体11、および土壌14に長期にわたり
蓄熱される。
Next, an operation method of the present snow removal apparatus will be described. In the heat storage process during the high temperature period, the temperature of the roadbed 24 is increased by the solar heat, and accordingly, the temperatures of the hot water pipe 23 and the water in the pipe also increase. At this time, the road surface thermometer 3
The set temperature of 0 is set to, for example, 20 ° C., and the control system is set so that the circulation pump 22 automatically operates when the road surface temperature becomes equal to or higher than the set temperature. Thermal fluid 1
Numeral 3 is taken from the bottom of the heat storage tank 10 from the heat storage process feed pipe 20 by the circulation pump 22, is heated by the hot water pipe 23, and is then drained to the upper part of the tank from the heat storage process return pipe 21 (white arrow in FIG. 1). ). The thermal energy is transferred from the heated fluid 13 in the heated storage tank 10 through the heat transfer storage 11 to the soil 1.
4 to be transmitted by heat conduction. Thermal energy is stored in the thermal fluid 13, the heat transfer storage 11 and the soil 14 for a long time.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 温水パイプの内部に熱流体を通して消雪
する温水パイプ消雪装置において、前記温水パイプの熱
流体入口と出口を、地中に埋設した蓄熱槽内に配設した
送り管と戻り管に接続し、熱流体を循環ポンプで循環可
能とし、前記蓄熱槽の外周に伝熱蓄熱体を周設して、高
温時期に前記温水パイプで集熱した熱エネルギーを熱流
体の循環により蓄熱槽内の熱流体、伝熱蓄熱体および周
囲の土壌に蓄えておき、降雪時期に蓄熱槽の熱流体を温
水パイプに循環させて消雪することを特徴とする地中蓄
熱システムを利用した消雪装置。
1. A hot-water pipe snow-removing apparatus for removing snow by passing a hot fluid into a hot-water pipe, wherein a hot-fluid inlet and an outlet of the hot-water pipe are connected to a feed pipe disposed in a heat storage tank buried underground. Connected to a pipe, heat fluid can be circulated by a circulation pump, a heat transfer heat storage element is provided around the outer circumference of the heat storage tank, and heat energy collected by the hot water pipe at high temperature is stored by circulation of the heat fluid. Heat storage using an underground heat storage system characterized by storing heat fluid in the tank, heat transfer heat storage material and surrounding soil, and circulating the heat fluid in the heat storage tank through a hot water pipe during snowfall to eliminate snow. Snow equipment.
【請求項2】 地上に設けた温度計、水分検知器、ある
いは積雪検知器、降雪検知器からの信号により循環ポン
プの運転を自動的に行うようにしたことを特徴とする請
求項1記載の地中蓄熱システムを利用した消雪装置。
2. The circulating pump according to claim 1, wherein the circulating pump is automatically operated by a signal from a thermometer, a moisture detector, a snow detector, or a snow detector provided on the ground. Snow removal equipment using an underground heat storage system.
【請求項3】 温水パイプは、路盤の表層部に設置され
た道路路面の消雪を行うものであることを特徴とする請
求項1および請求項2記載の地中蓄熱システムを利用し
た消雪装置。
3. The snow removal using an underground heat storage system according to claim 1, wherein the hot water pipe is for removing snow on a road surface provided on a surface layer of a roadbed. apparatus.
【請求項4】 温水パイプは、鉄道軌条の側面に配置さ
れたパネル内に設置され、鉄道路床の消雪を行うもので
あることを特徴とする請求項1 および請求項2 記載の地
中蓄熱システムを利用した消雪装置。
4. The underground ground according to claim 1, wherein the hot water pipe is installed in a panel arranged on a side surface of a railroad rail to eliminate snow on a railway road floor. Snow removal equipment using a heat storage system.
【請求項5】 伝熱蓄熱体は熱伝導率が比較的高く、熱
容量が大きな物質を蓄熱槽に密接して周設したことを特
徴とする請求項1ないし4のいずれかに記載の地中蓄熱
システムを利用した消雪装置。
5. The underground underground heat as claimed in claim 1, wherein the heat transfer heat storage body has a relatively high thermal conductivity and a substance having a large heat capacity is provided closely around the heat storage tank. Snow removal equipment using a heat storage system.
JP9097905A 1997-04-02 1997-04-02 Snow-thawing device by use of underground heat-accumulation system Pending JPH10280310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9097905A JPH10280310A (en) 1997-04-02 1997-04-02 Snow-thawing device by use of underground heat-accumulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9097905A JPH10280310A (en) 1997-04-02 1997-04-02 Snow-thawing device by use of underground heat-accumulation system

Publications (1)

Publication Number Publication Date
JPH10280310A true JPH10280310A (en) 1998-10-20

Family

ID=14204747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9097905A Pending JPH10280310A (en) 1997-04-02 1997-04-02 Snow-thawing device by use of underground heat-accumulation system

Country Status (1)

Country Link
JP (1) JPH10280310A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156867A (en) * 2006-12-22 2008-07-10 Univ Of Fukui Circulation-type heat absorption and radiation equipment utilizing geothermal heat
JP2011007434A (en) * 2009-06-26 2011-01-13 Homei Kyo Solar heat water heater use system
CN102322012A (en) * 2011-07-01 2012-01-18 李永清 Automatic snow-melting and deicing road
GB2505505A (en) * 2012-09-03 2014-03-05 Loopmaster Europ Ltd Ground source energy system for an outdoor traffic-bearing surface
CN107870179A (en) * 2017-12-15 2018-04-03 扬州大学 Method for measuring bituminous concrete thermal contact resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156867A (en) * 2006-12-22 2008-07-10 Univ Of Fukui Circulation-type heat absorption and radiation equipment utilizing geothermal heat
JP2011007434A (en) * 2009-06-26 2011-01-13 Homei Kyo Solar heat water heater use system
CN102322012A (en) * 2011-07-01 2012-01-18 李永清 Automatic snow-melting and deicing road
GB2505505A (en) * 2012-09-03 2014-03-05 Loopmaster Europ Ltd Ground source energy system for an outdoor traffic-bearing surface
CN107870179A (en) * 2017-12-15 2018-04-03 扬州大学 Method for measuring bituminous concrete thermal contact resistance

Similar Documents

Publication Publication Date Title
Zhou et al. Effectiveness of pavement-solar energy system–An experimental study
CN101672189B (en) Ground source heat pump type heating system used for heat insulating ditch in tunnel
US4173304A (en) Building structure with heat storage and recovery
CN101672188A (en) Lining heat system used at tunnel portal
Liu et al. Study on heat transfer model of capillary exchanger in subway source heat pump system
CN109162166A (en) Comprehensively utilize the cement concrete pavement ice melting system and construction method of geothermal electric heating
CN100425770C (en) Installation of cooling and melting ice and snow for road surface and bridge road by using underground natural energy resource
CN103088741A (en) Highway bridge pavement deicing and snow melting system based on energy pile and running mode
CN108224804A (en) Towards the solar energy heat collector and implementation of seasonal frozen soil region subgrade engineering
JP2007333295A (en) Heat storage system
JPH10280310A (en) Snow-thawing device by use of underground heat-accumulation system
CN208124654U (en) Solar energy heat collector towards seasonal frozen soil region subgrade engineering
CN110373970A (en) A kind of overhead road surface underground heat ice-melting structure and its construction method
Den Braven et al. Performance prediction of a sub-slab heat exchanger for geothermal heat pumps
JP2689400B2 (en) Solar heat storage type road surface snow melting device
CN104197585B (en) Utilize combined heat pump heat source system and the method for electric power plant cooling system heat exchange
CN202671996U (en) Snow melting device for melting snow on road surface or bridge floor with natural thermal spring water on mountain
CN110410131A (en) A kind of underground thermal pollution to administer and utilization system
CN113339873B (en) Novel cold-proof and anti-freezing system and method for cold-region high-ground-temperature tunnel
Smith et al. Thermal analysis of forced-air and thermosyphon cooling systems for the Inuvik airport expansion
JP2004052385A (en) Hybrid geotheremal snow melter
Hytiris et al. A heat energy recovery system from tunnel waste water
CN106087608A (en) A kind of melting snow at railroad switches system based on earth source heat pump
JP2003306918A (en) Method for controlling underground-heat utilizing snow- melting device
JPH07119442B2 (en) Taiyo heat storage type road surface snow melting device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511