JPH1028021A - Superconducting amplifier and detector utilizing the same - Google Patents

Superconducting amplifier and detector utilizing the same

Info

Publication number
JPH1028021A
JPH1028021A JP8183763A JP18376396A JPH1028021A JP H1028021 A JPH1028021 A JP H1028021A JP 8183763 A JP8183763 A JP 8183763A JP 18376396 A JP18376396 A JP 18376396A JP H1028021 A JPH1028021 A JP H1028021A
Authority
JP
Japan
Prior art keywords
squid
squids
series connection
amplifier
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8183763A
Other languages
Japanese (ja)
Other versions
JP3636831B2 (en
Inventor
Eriko Takeda
栄里子 武田
Juichi Nishino
壽一 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18376396A priority Critical patent/JP3636831B2/en
Publication of JPH1028021A publication Critical patent/JPH1028021A/en
Application granted granted Critical
Publication of JP3636831B2 publication Critical patent/JP3636831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an amplifier of high performance with the excellent characteristics of a gain and linearity, etc., by turning the sum of the output voltages of the respective SQUIDs of the serial connection body part of the SQUIDs for which the respective SQUIDs of a SQUID serial connection body are structurally and environmentally in practically the same conditions to the output voltage. SOLUTION: In the SQUID serial connection body 2, the respective SQUIDs 1 are structurally uniformly manufactured and the sum of the voltages of only the serial connection body part of the SQUIDs 1 of the same environment is turned to the output voltage of this superconducting amplifier 9. That is, in the amplifier 9, a DC bias current is made to flow to 1st-7th SQUIDs 1 by using a current source 6. Then, by spirally arranging an input coil 4 through a thin insulation film on the upper surface of a washer coil and magnetically connecting both, signals are inputted from the input coil 4 to the respective SQUIDs 1. Then, a terminal 3 is pulled out so as to measure the voltage generated in 2nd-6th SQUIDs 1 and the voltage generated at the terminal 3 is turned to the output of the amplifier 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超電導増幅器に関
し、より具体的には、アナログ出力のSQUIDを3個
以上直列に接続して構成した低雑音のアナログ超電導増
幅器に関する。
The present invention relates to a superconducting amplifier, and more particularly, to a low-noise analog superconducting amplifier constituted by connecting three or more analog output SQUIDs in series.

【0002】[0002]

【従来の技術】複数のSQUIDを直列に接続してアナ
ログ増幅器を構成することは公知であり、例えば、アイ
イ−イ−イ− トランザクションズ オン マグネティ
クス(IEEE TRANSACTIONS ON MAGNETICS) 1991年
27巻 ナンバー2、2924ペ−ジから2926ペ−
ジに記載されている。上記の従来の超電導増幅器の回路
の一例を図14に示す。この例では、SQUID直列接
続体2を構成するSQUID1に電流源6を用いてバイ
アス電流を流すとともに、信号入力用の入力コイルの直
列回路4の各コイルと直列接続体2を構成する各SQU
ID1とを磁気結合5させることによって、SQUID
直列接続体2の各SQUIDから入力信号に応じた出力
を得て、各SQUIDの出力電圧の和を端子3から超電
導増幅器9の出力としていた。
2. Description of the Related Art It is known to configure an analog amplifier by connecting a plurality of SQUIDs in series. For example, IEEE TRANSACTIONS ON MAGNETICS (1991)
Volume 27 Number 2, from page 2924 to page 2926
It is described in the page. FIG. 14 shows an example of a circuit of the above-described conventional superconducting amplifier. In this example, a bias current is applied to the SQUID 1 constituting the SQUID series-connected body 2 by using the current source 6 and each coil of the series circuit 4 of the input coil for signal input and each SQUID constituting the series-connected body 2
By magnetically coupling 5 with ID1, SQUID
The output corresponding to the input signal was obtained from each SQUID of the serial connection 2, and the sum of the output voltages of each SQUID was used as the output of the superconducting amplifier 9 from the terminal 3.

【0003】各SQUIDの入力電流と出力電圧の関係
を図15に示す。SQUIDでは、出力電圧は磁束量子
Φ0に対応する電流入力を周期とした周期関数になって
いる。ここで、例えば、磁束量子Φ0の0.25倍相当
の入力電流をバイアス電流(電流源6による)を用い
て、SQUIDの動作点として設定すると、入力電流と
出力電圧の関係の関係は、0.25Φ0の点を中心とし
て、増減するものとできる。したがって、実質的に特性
の同じSQUIDを2個直列に接続した場合の入力電流
と出力電圧の合計の関係は図16に示すように、同一入
力に対して各SQUIDの2倍の出力を持つものとでき
る。
FIG. 15 shows the relationship between the input current and the output voltage of each SQUID. In the SQUID, the output voltage is a periodic function whose period is the current input corresponding to the magnetic flux quantum Φ 0 . Here, for example, if an input current equivalent to 0.25 times the flux quantum Φ 0 is set as the operating point of the SQUID using the bias current (by the current source 6), the relationship between the input current and the output voltage is as follows: around a point 0.25Φ 0, it shall be increased or decreased. Therefore, when two SQUIDs having substantially the same characteristics are connected in series, the relationship between the input current and the total output voltage is, as shown in FIG. 16, the same input having twice the output of each SQUID. And can be.

【0004】[0004]

【発明が解決しようとする課題】しかし、実際問題とし
ては、特性をまったく同じに作ることは難しく、また、
構造上実質的に同じものとできたとしても、置かれた環
境の微妙な差による不揃いが生じるのが現実である。図
17は極端な例ではあるが、直列に接続された二つのS
QUIDが同じ入力電流を加えられながら、各SQUI
Dには磁束量子としては見かけ上倍半分の差異があるケ
ースの入力電流と出力電圧の合計の関係を示す。図16
および図17を対照して明らかなように、図17の状況
では、SQUIDの直列接続による超電導増幅器の線形
性や利得向上が十分に得られないことになる。
However, as a practical matter, it is difficult to make characteristics exactly the same,
It is a reality that even if the structures are substantially the same, irregularities may occur due to subtle differences in the environment in which they are placed. FIG. 17 is an extreme example, but shows two S connected in series.
While the QUID is applied with the same input current, each SQUID
D shows the relationship between the input current and the total output voltage in the case where the magnetic flux quantum has an apparently double difference. FIG.
As is apparent from comparison with FIG. 17, in the situation of FIG. 17, the linearity and gain of the superconducting amplifier due to the serial connection of SQUIDs cannot be sufficiently improved.

【0005】したがって、SQUID直列接続体を構成
する各SQUIDの構造が可能な限り均一であり、か
つ、各SQUIDに入力される信号の各SQUIDへの
作用の大きさが可能な限り等しくなるように構成する必
要があることがわかる。
Therefore, the structure of each SQUID constituting the SQUID series connection unit is made as uniform as possible, and the magnitude of the effect of the signal input to each SQUID on each SQUID is made as equal as possible. It turns out that it is necessary to configure.

【0006】ところが、SQUIDは非常に高感度な磁
気センサであるため、その周囲に超電導体で構成した回
路や超電導配線などがある場合、相互干渉を起こしSQ
UIDの特性が変化するという問題がある。従って、S
QUIDを同一チップ上に複数個近接して配置した場合
は、各SQUIDは相互干渉を起こし、単体で配置され
ている場合とは異なった特性を示す。例えばSQUID
を横一列に並べてSQUID直列接続体を構成した場合
は、両端のSQUIDは片側にしかSQUIDが配置さ
れないのに対して、それ以外のSQUIDは左右にSQ
UIDが配置されている。そのため、両端のSQUID
は他のSQUIDとは特性が異なる。
However, the SQUID is a magnetic sensor having a very high sensitivity. Therefore, when a circuit or a superconducting wiring composed of a superconductor is provided around the SQUID, mutual interference occurs and the SQUID is generated.
There is a problem that the characteristics of the UID change. Therefore, S
When a plurality of QUIDs are arranged close to each other on the same chip, the SQUIDs cause mutual interference and exhibit different characteristics from the case where they are arranged alone. For example, SQUID
Are arranged in a horizontal line to form a SQUID series connection body, whereas the SQUIDs at both ends are arranged on only one side, while the other SQUIDs are arranged on the left and right.
UID is arranged. Therefore, SQUID at both ends
Has different characteristics from other SQUIDs.

【0007】従来のSQUID直列接続体による超電導
増幅器は、各SQUIDの置かれた環境による特性のバ
ラツキに対する配慮にかけており、全ての出力を超電導
増幅器の出力の一部として足し合わせていたため、利得
や線形性が悪いという問題があった。
In the conventional superconducting amplifier using SQUID series-connected bodies, attention is paid to variations in characteristics due to the environment where each SQUID is placed, and all outputs are added as a part of the output of the superconducting amplifier. There was a problem of poor sex.

【0008】本発明の課題は、上記従来技術の持つ問題
点を解決し、利得や線形性などの特性が良い高性能な超
電導増幅器を提供することである。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a high-performance superconducting amplifier having good characteristics such as gain and linearity.

【0009】[0009]

【課題を解決するための手段】本発明の課題は、SQU
ID直列接続体の各SQUIDが構造的及び環境的に実
質的に同一条件にあるSQUIDの直列接続体部分の各
SQUIDの出力電圧の和を出力電圧とすることによっ
て解決することができる。
SUMMARY OF THE INVENTION The object of the present invention is to provide an SKU.
The problem can be solved by using the output voltage as the sum of the output voltages of the SQUIDs of the serially connected portions of the SQUIDs in which the SQUIDs of the ID serial connection are substantially identical structurally and environmentally.

【0010】[0010]

【発明の実施の形態】以下、図面を用いて本発明の実施
例を詳述する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】本発明の第一の実施例を示す超電導増幅器
の回路図を図1に、および回路パターンの上面模式図を
図2に示す。本実施例においては、7個のSQUID1
を超電導回路作製技術により1枚の基板上に形成してこ
れらを直列に接続することによりSQUID直列接続体
2を構成し、電流源6を用いて1番目から7番目のSQ
UIDに直流バイアス電流を流した。図2に示すよう
に、各SQUIDはケッチェン型のSQUIDであり、
ワッシャコイル8の開口部の一辺を20μm、ジョセフ
ソン接合7の臨界電流値を90μAとした。隣接して配
置したSQUID1間のスペースは30μmとした。本
実施例におけるSQUID直列接続体2を構成するSQ
UID1は、超電導体にNb、抵抗体にMoNx、ジョ
セフソン接合にNb/AlOx/Nbを用いて作製し
た。図には示されていないが、シャント抵抗は2Ω、ダ
ンピング抵抗は6Ωとした。
FIG. 1 is a circuit diagram of a superconducting amplifier showing a first embodiment of the present invention, and FIG. 2 is a schematic top view of a circuit pattern. In this embodiment, seven SQUIDs 1
Are formed on a single substrate by a superconducting circuit fabrication technique, and these are connected in series to form a SQUID series-connected body 2. The first to seventh SQs are formed using a current source 6.
A DC bias current was applied to the UID. As shown in FIG. 2, each SQUID is a Ketchen type SQUID,
One side of the opening of the washer coil 8 was 20 μm, and the critical current value of the Josephson junction 7 was 90 μA. The space between adjacent SQUIDs 1 was 30 μm. SQ constituting SQUID series connection body 2 in this embodiment
UID1 was fabricated using Nb for the superconductor, MoNx for the resistor, and Nb / AlOx / Nb for the Josephson junction. Although not shown in the figure, the shunt resistance was 2Ω and the damping resistance was 6Ω.

【0012】図2に示すように、入力コイル4をワッシ
ャコイル8の上面に薄い絶縁膜を介して渦巻状に配置
し、両者を磁気結合させることにより、入力コイル4か
ら各SQUID1へ信号を入力した。本実施例において
は、1個目から7個目のSQUIDに対して入力コイル
4を結合させた。
As shown in FIG. 2, the input coil 4 is spirally arranged on the upper surface of the washer coil 8 via a thin insulating film, and the two are magnetically coupled to input a signal from the input coil 4 to each SQUID 1. did. In the present embodiment, the input coil 4 is coupled to the first to seventh SQUIDs.

【0013】本実施例においては、2番目から6番目の
SQUID1に生じた電圧を測定するように端子3を引
きだし、端子3に生じる電圧を超電導増幅器9の出力と
した。その結果、入力信号に対して線形性の良いアナロ
グ増幅器を実現することができた。また、実施例1に述
べた超電導増幅器9の出力電圧は、SQUID直列接続
体2を構成しているSQUID1の出力電圧のほぼ5倍
であった。
In this embodiment, the terminal 3 is pulled out so as to measure the voltage generated at the second to sixth SQUIDs 1, and the voltage generated at the terminal 3 is used as the output of the superconducting amplifier 9. As a result, an analog amplifier having good linearity with respect to the input signal was realized. Further, the output voltage of the superconducting amplifier 9 described in the first embodiment was almost five times the output voltage of the SQUID 1 constituting the SQUID series connection 2.

【0014】すなわち、本実施例では、構造的には同一
といえる7つのSQUIDを直線上に配列し、それぞれ
に対して、同一の入力電流を供給して環境条件を合わせ
るとともに、両側にSQUIDが配置される部分のSQ
UID直列接続体からのみ出力を得ることとして、構造
および環境条件を実質的に同じものとした例である。
That is, in this embodiment, seven SQUIDs, which can be said to be structurally identical, are arranged on a straight line, and the same input current is supplied to each of them to adjust the environmental conditions. SQ of the part to be arranged
This is an example in which the output is obtained only from the UID series connection body and the structure and environmental conditions are substantially the same.

【0015】図3は、第一の実施例と同じ発想の他の構
造の実施例の回路パターンの上面模式図を示す。図2と
対比して明らかなように、この実施例では、バイアス電
流の配線がSQUID間を避けた構造である。バイアス
電流の配線がSQUID間を避けたことにより、バイア
ス電流の値の変動がSQUIDに与える影響を小さくす
ることができる。
FIG. 3 is a schematic top view of a circuit pattern of an embodiment having another structure having the same idea as that of the first embodiment. As is apparent from comparison with FIG. 2, this embodiment has a structure in which the wiring of the bias current is avoided between the SQUIDs. By avoiding the wiring of the bias current between the SQUIDs, it is possible to reduce the influence of the fluctuation of the bias current value on the SQUID.

【0016】図4は、図3とほぼ同様の構造である。図
3では、個々のSQUIDの構造の天地が揃えられてい
るのに対し、図4では、個々のSQUIDの構造の天地
を逆にしてバイアス電流の流れる方向がインプットコイ
ルが積層されている側からジョセフソン接合が存在する
側になるように揃えられている点において図3の実施例
と異なる。図3では、SQUID直列接続体に外部磁界
が作用したとき、個々のSQUIDが同一方向を向いて
いる為、個々のSQUIDの外部磁界による影響の対称
性が良く、図4では、バイアス電流による影響の対称性
が良いというメリットがある。
FIG. 4 shows a structure substantially similar to that of FIG. In FIG. 3, the top and bottom of each SQUID structure are aligned, whereas in FIG. 4, the top and bottom of each SQUID structure are reversed so that the direction of the bias current flows from the side where the input coil is stacked. It differs from the embodiment of FIG. 3 in that the Josephson junctions are aligned on the side where they exist. In FIG. 3, when an external magnetic field acts on the SQUID series-connected body, the individual SQUIDs are oriented in the same direction, so that the effect of the external magnetic field on each SQUID is highly symmetrical. Has the advantage of good symmetry.

【0017】図5は、第一の実施例と同じ発想の他の構
造の実施例の回路パターンの上面模式図を示す。図5に
おいては、(1)バイアス電流用の配線をSQUID間
に配置しない、(2)バイアス電流の給電の向きが同じ
でありかつバイアス電流用の配線を短くできるメリット
がある反面、図2と対比して明らかなように、この実施
例では、SQUIDの向きを90°回転させ、バイアス
電流の通路がSQUIDを介して直線的に流れる構造で
ある。そのため、入力電流の通路がSQUIDと適当に
離れた位置を通りながら渡り歩く形となる。この場合、
符合Lで示す距離を十分に取らないと入力電流がコイル
として作用した以外にも渡り線を通しても作用すること
になり特性の不安定さにかかわる。
FIG. 5 is a schematic top view of a circuit pattern of an embodiment having another structure having the same idea as that of the first embodiment. In FIG. 5, (1) the bias current wiring is not arranged between the SQUIDs, and (2) the bias current supply direction is the same and the bias current wiring can be shortened. As is apparent from comparison, this embodiment has a structure in which the direction of the SQUID is rotated by 90 ° and the path of the bias current flows linearly via the SQUID. For this reason, the path of the input current is in a form of walking while passing through a position appropriately separated from the SQUID. in this case,
If the distance indicated by the symbol L is not sufficiently set, the input current acts not only as a coil but also through a crossover, which leads to unstable characteristics.

【0018】次に、本発明の第一の実施例の応用形態を
図6を参照して述べる。本応用例においては、SQUI
D直列接続体2の構成は本発明の第一の実施例と同様で
あるが、その他にセンサとして機能するセンサSQUI
D10を設ける。
Next, an application of the first embodiment of the present invention will be described with reference to FIG. In this application example, SQUI
The configuration of the D series connection body 2 is the same as that of the first embodiment of the present invention, but additionally includes a sensor SQUI
D10 is provided.

【0019】センサSQUID10もケッチェン型のS
QUIDであり、電流源20を用いて、ジョセフソン接
合13を有するSQUIDにバイアス電流を流す。ワッ
シャコイルの開口部の一辺を20μm、ジョセフソン接
合13の臨界電流値を90μAとした。シャント抵抗1
5は4Ω、負荷抵抗11は4Ωとし、図には示されてい
ないが、ダンピング抵抗は6Ωとした。
The sensor SQUID 10 is also a Ketjen type S
A bias current is supplied to the SQUID having the Josephson junction 13 using the current source 20. One side of the opening of the washer coil was 20 μm, and the critical current value of the Josephson junction 13 was 90 μA. Shunt resistor 1
5 was 4Ω and the load resistance 11 was 4Ω. Although not shown in the figure, the damping resistance was 6Ω.

【0020】センサSQUID10からの出力電圧を負
荷抵抗11を用いて電流信号とし、SQUID直列接続
体2を構成するSQUID1と結合する入力コイル4に
流すが、入力コイル4の各部分14のインダクタンスは
約100pHとした。また、隣接して配置したSQUI
D1間のスペースは30μmとした。
The output voltage from the sensor SQUID 10 is converted into a current signal using a load resistor 11 and is supplied to the input coil 4 coupled to the SQUID 1 constituting the SQUID series connection body 2. The inductance of each part 14 of the input coil 4 is approximately The pH was adjusted to 100 pH. In addition, the SQUI
The space between D1 was 30 μm.

【0021】本実施例におけるSQUID直列接続体2
を構成するSQUID1、およびセンサSQUID10
は共通の基板上に形成された。超電導体にNb、抵抗体
にMoNx、ジョセフソン接合にNb/AlOx/Nb
を用いて作製した。
SQUID series connection body 2 in this embodiment
SQUID1 and sensor SQUID10
Were formed on a common substrate. Nb for superconductor, MoNx for resistor, Nb / AlOx / Nb for Josephson junction
It was produced using.

【0022】本応用例のように、SQUIDからの出力
を、SQUID直列接続体2により増幅する場合は、セ
ンサSQUID10と、SQUID直列接続体2を構成
する各SQUID1の特性が等しく、かつ、センサSQ
UID10に入力された磁束と同量の磁束をSQUID
直列接続体2の各SQUID1に入力できるように入力
コイル4の値を設計した。このように設計すると、セン
サSQUID10への入力信号の大きさに依存せず、S
QUID直列接続体2の増幅率を一定に保ち、かつ、ダ
イナミックレンジを最大にすることができる。また、超
電導増幅器9の利得は端子3の間に配置されているSQ
UID1の個数に比例し、また、入力コイル4のインダ
クタンスの値はSQUID直列接続体2を構成するSQ
UID1の個数に比例するため、設計が容易になるとい
う利点もある。
When the output from the SQUID is amplified by the SQUID series connection 2 as in this application example, the characteristics of the sensor SQUID 10 and each SQUID 1 constituting the SQUID series connection 2 are equal, and
The magnetic flux of the same amount as the magnetic flux input to UID10 is SQUID
The value of the input coil 4 was designed so that it could be input to each SQUID 1 of the serial connection 2. With this design, the S SUID is independent of the magnitude of the input signal to the sensor SQUID 10.
The amplification factor of the series-connected QUIDs 2 can be kept constant, and the dynamic range can be maximized. The gain of the superconducting amplifier 9 is determined by the SQ
The value of the inductance of the input coil 4 is proportional to the number of UIDs 1 and the SQ
Since it is proportional to the number of UIDs 1, there is also an advantage that the design becomes easy.

【0023】本第一の実施例の応用形態でも、SQUI
D直列接続体2を7つのSQUIDの直列構成として、
その両側を除く5つのSQUIDの直列構成から出力を
得た結果、SQUID直列接続体2はセンサSQUID
10の出力を5倍に増幅できた。また、センサSQUI
D10、および、SQUID直列接続体2を構成するS
QUID1の構造上の特性を実質的に等しくし、それぞ
れの動作点を0.25Φ0(Φ0は磁束量子)とすること
により、利得が5倍で、かつ線形性が良く、プラスマイ
ナス0.25Φ0のダイナミックレンジを有する超電導
測定装置を実現することができた。
In the application of the first embodiment, the SQUID
The D series connection 2 is a series configuration of seven SQUIDs,
As a result of obtaining the output from the series configuration of the five SQUIDs excluding the two sides, the SQUID series connection body 2 has the sensor SQUID.
10 outputs could be amplified 5 times. Also, the sensor SQUI
D10 and S constituting the SQUID series connection body 2
By making the structural characteristics of QUID 1 substantially equal and setting each operating point to 0.25Φ 00 is a magnetic flux quantum), the gain is 5 times, the linearity is good, and ± 0.2 mm. it was possible to realize a superconducting measuring device having a dynamic range of 25Φ 0.

【0024】本発明の第二の実施例を示す超電導増幅器
の回路図を図7に、回路パターンの上面模式図を図8に
示す。本実施例においては、12個のSQUID1を直
列に接続し、電流源6を用いて1番目から12番目のS
QUIDにバイアス電流を流した。本実施例においてS
QUID直列接続体2を構成するSQUID1は、第一
の実施例と同様の設計値、材料を用いて作製した。本実
施例において、図8に示すようにSQUID1は2行6
列で配置し、上下および左右のSQUIDどうしは、3
0μmの間隔をおいて配置した。
FIG. 7 is a circuit diagram of a superconducting amplifier according to a second embodiment of the present invention, and FIG. 8 is a schematic top view of a circuit pattern. In the present embodiment, twelve SQUIDs 1 are connected in series, and the first to twelfth SQUIDs 1 are
A bias current was applied to the QUID. In this embodiment, S
The SQUID 1 constituting the series-connected QUID 2 was manufactured using the same design values and materials as in the first embodiment. In the present embodiment, as shown in FIG.
The SQUIDs are arranged in rows and the top, bottom, left and right
They were arranged at intervals of 0 μm.

【0025】SQUID直列接続体2を構成するSQU
ID1を2行に分けて配置する場合、図7および図8か
らもわかるように、両端に相当する部分、すなわち1行
1列目、2行1列目、1行6列目、2行6列目に配置さ
れたSQUIDは、その他の部分のSQUIDと周辺構
造などが異なるため、構造上の特性を一致させるように
しても、使用環境での特性が異なる。従って、本実施例
においては、2行6列に配置されたSQUID1を、1
行1列目、2行1列目、2行2列目、1行2列目、1行
3列目という順に接続し、2行2列目から2行5列目ま
でのSQUIDの出力電圧の合計が超電導増幅器の出力
電圧となるように、端子3を引き出した。
SQUI Constituting SQUID Series Connected Body 2
When ID1 is arranged in two rows, as can be seen from FIGS. 7 and 8, portions corresponding to both ends, that is, the first row, the first column, the second row, the first column, the first row, the sixth column, and the second row 6 Since the SQUIDs arranged in the columns have different peripheral structures from the SQUIDs of the other parts, the characteristics in the use environment are different even if the structural characteristics are made to match. Therefore, in this embodiment, SQUID1 arranged in 2 rows and 6 columns is 1
The output voltage of the SQUID from the first row, the second row, the second column, the second row, the second column, the first row, the second column, the first row, the third column, and the second row, the second column to the second row, the fifth column Was drawn out so that the sum of the values would be the output voltage of the superconducting amplifier.

【0026】その結果、入力信号に対して線形性の良い
アナログ超電導増幅器を実現することができた。また、
本実施例では、SQUID直列接続体2を構成している
SQUID1の出力電圧のほぼ8倍を出力する超電導増
幅器を実現することができた。
As a result, an analog superconducting amplifier having a good linearity with respect to the input signal can be realized. Also,
In the present embodiment, a superconducting amplifier capable of outputting almost eight times the output voltage of the SQUID 1 constituting the SQUID series-connected body 2 could be realized.

【0027】12個のSQUIDを1行12列に配置し
てSQUID直列接続体を構成する場合は、最大で10
個のSQUIDの電圧の合計を超電導増幅器の出力とす
ることができるが、本実施例のようにSQUID直列接
続体を2行6列で配置した場合は、超電導増幅器の出力
として取り出すことができる電圧は最大で8個のSQU
IDの電圧の合計になる。しかし、SQUID直列接続
体を配置できるスペースの横幅が狭い場合は、2行に並
べて配置するのは有効な方法である。
When 12 SQUIDs are arranged in one row and 12 columns to form a series connection of SQUIDs, a maximum of 10
The sum of the voltages of the SQUIDs can be used as the output of the superconducting amplifier. However, when the SQUID series-connected bodies are arranged in two rows and six columns as in this embodiment, the voltage that can be taken out as the output of the superconducting amplifier Is a maximum of 8 SKUs
This is the sum of the ID voltages. However, when the width of the space in which the SQUID series connection bodies can be arranged is narrow, it is an effective method to arrange them in two rows.

【0028】図9は、第二の実施例と同じ発想の他の構
造の実施例の回路パターンの上面模式図を示す。図8と
対比して明らかなように、この実施例では、各行でのS
QUIDの向きが逆になった構造である。このように配
置しても、同様の効果が得られることは明白である。
FIG. 9 is a schematic top view of a circuit pattern of an embodiment having another structure having the same idea as that of the second embodiment. As is clear from comparison with FIG. 8, in this embodiment, S
This is a structure in which the direction of the QUID is reversed. It is clear that the same effect can be obtained even if the arrangement is performed in this manner.

【0029】図10は、図8と同一構造になるように各
行でのSQUIDの向きを取り、バイアス電流の流路が
各SQUID間を蛇行する形とした例である。
FIG. 10 shows an example in which the SQUID is oriented in each row so as to have the same structure as in FIG. 8, and the flow path of the bias current is meandering between the SQUIDs.

【0030】図11は、各行間のSQUIDの向きをそ
ろえた例であり、図9の実施例と本質的には同じであ
る。ただし、1行目のSQUIDでは、ジョセフソン接
合側に他のSQUIDが存在し、2行目のSQUIDで
は、インプットコイルが積層されている側に他のSQU
IDが存在する為、1行目と2行目では、環境が異な
る。したがって、互いに、他のSQUIDが無視できる
程度に1行目と2行目のスペースを取ることが必要であ
る。
FIG. 11 shows an example in which the SQUID directions between the rows are aligned, and is essentially the same as the embodiment of FIG. However, in the SQUID in the first row, another SQUID exists on the Josephson junction side, and in the SQUID in the second row, another SQUID exists on the side where the input coil is stacked.
Since the ID exists, the environment is different between the first line and the second line. Therefore, it is necessary to have a space on the first and second lines so that other SQUIDs can be ignored.

【0031】図12(a)及び(b)は、図9の実施例
と同じ発想の他の構造の実施例の回路パターンの上面模
式図及び背面模式図を示す。(b)で破線で示すのは、
SQUIDが他の面に形成されていることを示す。この
実施例では、両面にパターンを形成する必要があるか
ら、製作行程は増えるが、信号線の引き回しをバイアス
電流線の引き回しを分離できるから、相互の干渉を削減
できる点ではメリットが大きい。
FIGS. 12A and 12B are a schematic top view and a schematic rear view of a circuit pattern of an embodiment having another structure having the same idea as the embodiment of FIG. The broken line in (b) indicates
Indicates that the SQUID is formed on another surface. In this embodiment, it is necessary to form a pattern on both sides, so that the number of manufacturing steps is increased. However, since the routing of the signal lines can be separated from the routing of the bias current lines, there is a great advantage in that mutual interference can be reduced.

【0032】図13は、作成したSQUIDのすべての
出力が利用できるように工夫された第三の実施例を示す
回路パターンの上面模式図である。第一、第二の実施例
では各SQUIDの構造上の均一性は作製技術の工夫で
向上できても、直線上に配列される以上、使用環境での
均一性の向上には限界がある。すなわち、端部がどうし
ても存在するからである。図13の実施例は、この点の
改良をも意図したものであり、円周線上にSQUID1
を等間隔で配列するものである。図13に置いて他の実
施例と同じ符合で示すものはそれらと均等なものであ
る。
FIG. 13 is a schematic top view of a circuit pattern showing a third embodiment designed so that all outputs of the created SQUID can be used. In the first and second embodiments, even though the structural uniformity of each SQUID can be improved by devising a manufacturing technique, there is a limit in improving the uniformity in a use environment as long as the SQUIDs are arranged in a straight line. That is, the end part is always present. The embodiment of FIG. 13 is also intended to improve this point, and the SQUID1
Are arranged at equal intervals. Those shown in FIG. 13 with the same reference numerals as the other embodiments are equivalent to them.

【0033】図13の実施例は、図2の配列と同じ発想
での配線の引き回しを持って構成されているが、これら
が、図5のような考え方での配線の引き回しの場合で
も、同じように実現できることは明らかであろう。ま
た、図12のように両面型に構成することもできる。
The embodiment shown in FIG. 13 is configured with the wiring layout based on the same idea as the arrangement of FIG. 2. However, even if these are the wiring layouts based on the concept as shown in FIG. It will be clear that this can be achieved as follows. Further, as shown in FIG. 12, a double-sided structure can be adopted.

【0034】[0034]

【発明の効果】以上詳述したごとく、本発明に従って超
電導増幅器を構成することにより、利得や線形性が良い
高性能の超電導増幅器を実現することができた。
As described in detail above, by configuring a superconducting amplifier according to the present invention, a high-performance superconducting amplifier having good gain and linearity can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一の実施例を示す超電導増幅器の回路図。FIG. 1 is a circuit diagram of a superconducting amplifier showing a first embodiment.

【図2】第一の実施例の回路パターンを示す上面模式
図。
FIG. 2 is a schematic top view showing a circuit pattern of the first embodiment.

【図3】第一の実施例と同じ発想の他の構造の実施例の
回路パターンを示す上面模式図。
FIG. 3 is a schematic top view showing a circuit pattern of an embodiment of another structure having the same idea as the first embodiment.

【図4】第一の実施例と同じ発想の他の構造の実施例の
回路パターンを示す上面模式図。
FIG. 4 is a schematic top view showing a circuit pattern of an embodiment of another structure having the same idea as the first embodiment.

【図5】第一の実施例と同じ発想の他の構造の実施例の
回路パターンを示す上面模式図。
FIG. 5 is a schematic top view showing a circuit pattern of an embodiment having another structure having the same idea as that of the first embodiment.

【図6】第一の実施例の応用形態の例を示す回路図。FIG. 6 is a circuit diagram showing an example of an application form of the first embodiment.

【図7】第二の実施例を示す超電導増幅器の回路図。FIG. 7 is a circuit diagram of a superconducting amplifier showing a second embodiment.

【図8】第二の実施例の超電導増幅器の回路パターンを
示す上面模式図。
FIG. 8 is a schematic top view showing a circuit pattern of the superconducting amplifier according to the second embodiment.

【図9】第二の実施例と同じ発想の他の構造の実施例の
回路パターンを示す上面模式図。
FIG. 9 is a schematic top view showing a circuit pattern of an embodiment of another structure having the same idea as the second embodiment.

【図10】図8に対応する他の構造の実施例の回路パタ
ーンを示す上面模式図。
FIG. 10 is a schematic top view showing a circuit pattern of an example of another structure corresponding to FIG. 8;

【図11】図8に対応する他の構造の実施例の回路パタ
ーンを示す上面模式図。
11 is a schematic top view showing a circuit pattern of an example of another structure corresponding to FIG.

【図12】(a)及び(b)はそれぞれ図8の実施例と
同じ発想の他の構造の実施例の回路パターンを示す上面
模式図及び背面模式図。
12A and 12B are a schematic top view and a schematic rear view, respectively, showing a circuit pattern of an embodiment of another structure having the same idea as the embodiment of FIG. 8;

【図13】第三の実施例の回路パターンを示す上面模式
図。
FIG. 13 is a schematic top view showing a circuit pattern according to a third embodiment.

【図14】従来の超電導増幅器の一例を示す回路図。FIG. 14 is a circuit diagram showing an example of a conventional superconducting amplifier.

【図15】SQUIDの入力電流と出力電圧の関係を示
す図。
FIG. 15 is a diagram showing a relationship between an input current and an output voltage of the SQUID.

【図16】実質的に特性の均一なSQUIDを2個直列
に接続した場合の入力電流と出力電圧の合計の関係を示
す図。
FIG. 16 is a diagram showing the relationship between the input current and the total output voltage when two SQUIDs having substantially uniform characteristics are connected in series.

【図17】特性の大きく異なったSQUIDを2個直列
に接続した場合の入力電流と出力電圧の合計の関係を示
す図。
FIG. 17 is a diagram showing the relationship between the input current and the total output voltage when two SQUIDs having greatly different characteristics are connected in series.

【符号の説明】[Explanation of symbols]

1…SQUID、2…SQUID直列接続体、3…端
子、4…入力コイル、5…磁気結合、6および20…電
流源、7、13…ジョセフソン接合、8…ワッシャコイ
ル、9…超電導増幅器、10…センサSQUID、11
…負荷抵抗、14…入力コイルの一部分、15…シャン
ト抵抗。
DESCRIPTION OF SYMBOLS 1 ... SQUID, 2 ... SQUID series connection body, 3 ... Terminal, 4 ... Input coil, 5 ... Magnetic coupling, 6 and 20 ... Current source, 7, 13 ... Josephson junction, 8 ... Washer coil, 9 ... Superconducting amplifier, 10: Sensor SQUID, 11
... load resistance, 14 ... part of the input coil, 15 ... shunt resistance.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】m個(mは3以上の整数)のSQUIDを
直列に接続して構成したSQUID直列接続体、前記S
QUID直列接続体のバイアス電流源、および前記SQ
UID直列接続体への信号入力手段とを少なくとも含ん
で構成した超電導増幅器において、前記SQUID直列
接続体の各SQUIDが構造的及び環境的に実質的に同
一条件にあるSQUIDの直列接続体部分の各SQUI
Dの出力電圧の和を出力電圧とすることを特徴とする超
電導増幅器。
1. An SQUID serially-connected body comprising m (where m is an integer of 3 or more) SQUIDs connected in series,
QUID series connected bias current source, and SQ
And a signal input means to the UID series connection unit, wherein each SQUID of the SQUID series connection unit is structurally and environmentally substantially identical to each other of the SQUID series connection unit. SQUI
A superconducting amplifier, wherein a sum of output voltages of D is used as an output voltage.
【請求項2】前記SQUID直列接続体の各SQUID
が実質的に一つ又は複数の直線上に配列されるととも
に、前記SQUID直列接続体の両端又は両端側に配置
されたSQUIDの出力電圧を除いた残りのSQUID
の出力電圧の和を出力電圧とする請求項1記載の超電導
増幅器。
2. Each SQUID of the SQUID serially connected body
Are arranged substantially on one or a plurality of straight lines, and the remaining SQUIDs excluding the output voltages of the SQUIDs arranged at both ends or both ends of the SQUID series connection body
2. A superconducting amplifier according to claim 1, wherein the sum of the output voltages of the superconducting amplifiers is an output voltage.
【請求項3】m個(mは3以上の整数)のSQUIDを
直列に接続して構成したSQUID直列接続体、前記S
QUID直列接続体のバイアス電流源、および前記SQ
UID直列接続体への信号入力手段とを少なくとも含ん
で構成した超電導増幅器において、前記SQUID直列
接続体の各SQUIDが構造的及び環境的に実質的に同
一条件にあるSQUIDの直列接続体部分の各SQUI
Dの出力電圧の和を出力電圧とする超電導増幅器、該増
幅器を形成した基板と同一基板上に配置されたセンサS
QUIDよりなり、該センサSQUIDの出力を前記増
幅器の入力とすることを特徴とする検出器。
3. An SQUID serially connected body comprising m (where m is an integer of 3 or more) SQUIDs connected in series,
QUID series connected bias current source, and SQ
And a signal input means to the UID series connection unit, wherein each SQUID of the SQUID series connection unit is structurally and environmentally substantially identical to each other of the SQUID series connection unit. SQUI
A superconducting amplifier whose output voltage is the sum of the output voltages of D and a sensor S disposed on the same substrate as the substrate on which the amplifier is formed;
A detector comprising a QUID, wherein an output of the sensor SQUID is used as an input of the amplifier.
【請求項4】前記SQUID直列接続体が一つの円周上
に実質的に等間隔で配置され、全てのSQUIDの出力
電圧の和を出力電圧とする請求項1ないし3のいずれか
に記載した超電導増幅器。
4. The method according to claim 1, wherein the SQUID series connection bodies are arranged at substantially equal intervals on one circumference, and the sum of the output voltages of all the SQUIDs is used as the output voltage. Superconducting amplifier.
【請求項5】前記SQUID直列接続体のバイアス電流
を各SQUID間で引き回すための配線と前記SQUI
D直列接続体の各SQUIDへの入力信号を各SQUI
D間で引き回すための配線のいずれかを前記SQUID
直列接続体を形成した面と異なる面に形成した請求項1
ないし4のいずれかに記載した超電導増幅器。
5. A wiring for routing a bias current of said SQUID series connection between each SQUID and said SQUID.
The input signal to each SQUID of the D series connection
Any of the wiring for routing between D
2. The device according to claim 1, wherein the surface is formed on a surface different from the surface on which the series connection body is formed.
5. The superconducting amplifier according to any one of claims 1 to 4.
JP18376396A 1996-07-12 1996-07-12 Superconducting amplifier and detector using the same Expired - Fee Related JP3636831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18376396A JP3636831B2 (en) 1996-07-12 1996-07-12 Superconducting amplifier and detector using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18376396A JP3636831B2 (en) 1996-07-12 1996-07-12 Superconducting amplifier and detector using the same

Publications (2)

Publication Number Publication Date
JPH1028021A true JPH1028021A (en) 1998-01-27
JP3636831B2 JP3636831B2 (en) 2005-04-06

Family

ID=16141551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18376396A Expired - Fee Related JP3636831B2 (en) 1996-07-12 1996-07-12 Superconducting amplifier and detector using the same

Country Status (1)

Country Link
JP (1) JP3636831B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530870A (en) * 2008-08-05 2011-12-22 ノースロップ グルムマン コーポレイション Method and apparatus for a Josephson distributed output amplifier
JP2022514663A (en) * 2018-12-20 2022-02-14 ノースロップ グラマン システムズ コーポレーション Josephson current source system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530870A (en) * 2008-08-05 2011-12-22 ノースロップ グルムマン コーポレイション Method and apparatus for a Josephson distributed output amplifier
JP2022514663A (en) * 2018-12-20 2022-02-14 ノースロップ グラマン システムズ コーポレーション Josephson current source system

Also Published As

Publication number Publication date
JP3636831B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
US5053834A (en) High symmetry dc SQUID system
KR100467117B1 (en) All-metal, giant magnetoresistive solid-state device
US5656937A (en) Low-noise symmetric dc SQUID system having two pairs of washer coils and a pair of Josephson junctions connected in series
US5038130A (en) System for sensing changes in a magnetic field
US4371796A (en) Josephson logic gate device
JPH02292906A (en) Error amplifier for parallel operation type self-contained current or voltage regulator using transconductance type power amplifier
JPH0351118B2 (en)
US4710651A (en) Josephson-junction logic device
JP3254162B2 (en) Superconducting quantum interference device
CN111277231B (en) Gain-controllable magnetic resistance analog amplifier
JPH1028021A (en) Superconducting amplifier and detector utilizing the same
US6750751B2 (en) Integrated magnetic signal isolator with feedback
JPH0980138A (en) Squid sensor
JPH06265612A (en) Squid fluxmeter
EP1771704B1 (en) Differential amplifier for dual bridge transducer
JPS6216557B2 (en)
JP3672957B2 (en) DC-driven superconducting quantum interference device
JPS6286880A (en) Magnetoelectric transducer
JPH0318155B2 (en)
JPS6123892B2 (en)
JPH06164003A (en) Digital squid
JPH0197882A (en) Magnetic azimuth sensor
JPH048667Y2 (en)
JPH08248109A (en) Superconduction signal amplifying device
JPH01300578A (en) Magneto-resistance element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

LAPS Cancellation because of no payment of annual fees