JPH1027605A - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPH1027605A
JPH1027605A JP8181075A JP18107596A JPH1027605A JP H1027605 A JPH1027605 A JP H1027605A JP 8181075 A JP8181075 A JP 8181075A JP 18107596 A JP18107596 A JP 18107596A JP H1027605 A JPH1027605 A JP H1027605A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
electrode
rare earth
storage electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8181075A
Other languages
Japanese (ja)
Other versions
JP3678281B2 (en
Inventor
Minoru Kurokuzuhara
実 黒葛原
Yuichi Matsumura
勇一 松村
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP18107596A priority Critical patent/JP3678281B2/en
Publication of JPH1027605A publication Critical patent/JPH1027605A/en
Application granted granted Critical
Publication of JP3678281B2 publication Critical patent/JP3678281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy electrode with excellent charge and discharge cycle characteristics. SOLUTION: A hydrogen storage alloy is made by solidification from a molten state at a cooling speed of 10<3> deg.C/s or faster, followed by heat treatment within a temperature range of 600-900 deg.C in vacuum or inert gas atmosphere. Furthermore, a single element or compound of rare earth elements is contained in the hydrogen storage alloy as additive to form a hydrogen storage alloy electrode. This restricts the surface area of the alloy from increasing, prevents the alloy from corrosion, and provides excellent characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素吸蔵合金を用い
た水素吸蔵電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage electrode using a hydrogen storage alloy.

【0002】[0002]

【従来の技術】水素吸蔵合金を負極材料として用いるニ
ッケル−水素化物二次電池は低公害性で高エネルギー密
度であることから、ニッケル−カドミウム電池に代わる
電源としてポータブル機器や電気自動車などに用いら
れ、研究開発が盛んに行われている。
2. Description of the Related Art Nickel-hydride secondary batteries using a hydrogen storage alloy as a negative electrode material have low pollution properties and a high energy density. Therefore, they are used in portable devices and electric vehicles as a power source in place of nickel-cadmium batteries. R & D is actively conducted.

【0003】[0003]

【発明が解決しようとする課題】このニッケル−水素化
物二次電池は密閉式電池として使用されており、その場
合、負極容量は正極容量よりも大きく設計されているた
め、過充電時に正極から発生する酸素ガスは負極で吸収
・消費される。しかし、充電・放電サイクルの繰り返し
による水素吸蔵合金の酸化等が原因となって負極でのガ
ス吸収性能や充電効率が低下する。このため電池の内部
圧力の上昇を引き起し、電解液の損失から内部抵抗が上
昇し、電池性能が低下するという問題があった。
This nickel-hydride secondary battery is used as a sealed battery. In this case, since the negative electrode capacity is designed to be larger than the positive electrode capacity, it is generated from the positive electrode during overcharge. The generated oxygen gas is absorbed and consumed by the negative electrode. However, gas absorption performance and charging efficiency at the negative electrode are reduced due to oxidation of the hydrogen storage alloy due to repeated charge / discharge cycles. For this reason, there has been a problem that the internal pressure of the battery increases, the internal resistance increases due to the loss of the electrolyte, and the battery performance decreases.

【0004】これら劣化した電池の負極に用いた水素吸
蔵合金を調べてみると、電極作製時に用いた粒子よりも
小さく微粉化しており、その合金表面は多量の針状生成
物で覆われており、それらは希土類元素の水酸化物等で
あることが判明した。この合金粒子の微粉化と針状生成
物は充放電サイクルに伴い増加する傾向があり、合金粒
子間の導電性の低下を引き起して負極容量の利用率低下
につながると考えられる。
[0004] Examination of the hydrogen storage alloy used for the negative electrode of these deteriorated batteries reveals that the particles are smaller and finer than the particles used in the fabrication of the electrode, and that the surface of the alloy is covered with a large amount of acicular products. , They were found to be rare earth element hydroxides and the like. The pulverization of the alloy particles and the acicular products tend to increase with the charge-discharge cycle, which is considered to cause a decrease in the conductivity between the alloy particles, leading to a reduction in the utilization of the negative electrode capacity.

【0005】一方、水素吸蔵合金を慣用の高周波溶解炉
を用いて、100℃/sec以下の冷却速度で凝固させ
て作製すると、Mn,Al等の置換元素の偏析が起こ
る。この偏析防止手段として、作製した合金を真空中ま
たは不活性ガス雰囲気中で900〜1050℃の高温で
熱処理して均質化することが提案されている。しかし、
その効果は不十分であり、水素吸蔵放出時の結晶格子の
膨張収縮の繰り返しにより歪みが生じ、クラック発生に
よる微粉化が起こりやすい。このため、微粉化により合
金表面積が増加し、酸化しやすくなる。本発明は上記問
題点に鑑みてなされたものであり、充放電サイクル特性
に優れた水素吸蔵合金電極を提供することを目的とす
る。
On the other hand, when a hydrogen storage alloy is produced by solidification using a conventional high-frequency melting furnace at a cooling rate of 100 ° C./sec or less, segregation of substitution elements such as Mn and Al occurs. As a means for preventing this segregation, it has been proposed to heat-treat the produced alloy at a high temperature of 900 to 1050 ° C. in a vacuum or an inert gas atmosphere to homogenize the alloy. But,
The effect is insufficient, and distortion is caused by repetition of expansion and contraction of the crystal lattice at the time of hydrogen storage and release, and fine powder is easily generated due to crack generation. Therefore, the pulverization increases the surface area of the alloy and facilitates oxidation. The present invention has been made in view of the above problems, and has as its object to provide a hydrogen storage alloy electrode having excellent charge / discharge cycle characteristics.

【0006】[0006]

【課題を解決するための手段】本発明の第1は、水素吸
蔵合金が溶融状態から103 ℃/sec以上の冷却速度
で凝固させた後、真空中または不活性ガス雰囲気中で6
00〜900℃の温度範囲において熱処理して得られた
ものであり、且つ該水素吸蔵合金に希土類元素の単体ま
たは化合物を添加剤として含有させてなることを特徴と
する水素吸蔵電極である。
The first aspect of the present invention is that after a hydrogen storage alloy is solidified from a molten state at a cooling rate of 10 3 ° C / sec or more, the hydrogen storage alloy is cooled in a vacuum or in an inert gas atmosphere.
A hydrogen storage electrode obtained by heat treatment in a temperature range of 00 to 900 ° C., wherein the hydrogen storage alloy contains a rare earth element simple substance or a compound as an additive.

【0007】冷却速度が103 ℃/sec以上であるの
は、偏析の少ない均質な合金を得るためである。103
℃/sec以上で凝固させると、温度が瞬間的に変化す
るため、特定の組成や元素が凝固することがなく、偏析
の少ない均質な合金が得られる。しかし、この様にして
作製した水素吸蔵合金は、偏析に起因する微粉化の問題
点は解決したものの、歪みが大きく微粉化抑制に対する
効果は不十分である。従って、真空中または不活性ガス
雰囲気中で600〜900℃の温度範囲において熱処理
することで急冷凝固歪みを取り除いた。この温度範囲以
外では、合金の歪みの除去が不十分となる。
[0007] The reason why the cooling rate is 10 3 ° C / sec or more is to obtain a homogeneous alloy with less segregation. 10 3
When the solidification is performed at a temperature of ° C./sec or more, the temperature changes instantaneously, so that a specific alloy having no specific composition or element is solidified and a homogeneous alloy with less segregation can be obtained. However, although the hydrogen storage alloy produced in this way solves the problem of pulverization due to segregation, it has a large strain, and the effect of suppressing pulverization is insufficient. Therefore, rapid solidification distortion was removed by heat treatment in a temperature range of 600 to 900 ° C. in a vacuum or an inert gas atmosphere. Outside this temperature range, the strain of the alloy is not sufficiently removed.

【0008】本発明の第2は、前記希土類元素が、L
a,Ce,Pr,Nd,Sm,Eu,Gd,Tb,D
y,Ho,Y,Er,Tu,Yb,Lu,Scの中から
選択される少なくとも1種類である水素吸蔵電極であ
る。
A second aspect of the present invention is that the rare earth element is L
a, Ce, Pr, Nd, Sm, Eu, Gd, Tb, D
The hydrogen storage electrode is at least one type selected from the group consisting of y, Ho, Y, Er, Tu, Yb, Lu, and Sc.

【0009】本発明の第3は、前記希土類元素の化合物
が、酸化物、水酸化物、ハロゲン化物の中から選択され
る少なくとも1種類である水素吸蔵電極である。
A third aspect of the present invention is a hydrogen storage electrode in which the compound of the rare earth element is at least one selected from oxides, hydroxides, and halides.

【0010】[0010]

【発明の実施の形態】密閉式ニッケル−水素化物蓄電池
において、負極に用いられた水素吸蔵合金は、充放電サ
イクル数に伴い負極表面に希土類水酸化物等の針状生成
物を生ずる。これは合金内部からの希土類元素の溶出が
起こり、負極表面に析出することによるものである。水
素吸蔵放出時の結晶格子の膨張収縮の繰り返しにより歪
みが生じると、水素吸蔵合金にクラックが発生し、微粉
化が起こる。充放電サイクルに伴う微粉化により合金表
面積が増加するため、針状生成物も増加し、負極の容量
低下を引き起こす。そこで、微粉化の少ない冷却速度が
103 ℃/sec以上の合金が提案されているが、この
様な水素吸蔵合金は、偏析に起因する微粉化の問題点は
解決したものの、歪みが大きく微粉化抑制に対する効果
は不十分である。このため、真空中または不活性ガス雰
囲気中で600〜900℃の温度範囲において、熱処理
することで急冷凝固歪みを取り除き、従来よりも微粉化
を抑制した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a sealed nickel-hydride battery, the hydrogen storage alloy used for the negative electrode produces needle-like products such as rare earth hydroxides on the surface of the negative electrode with the number of charge / discharge cycles. This is because rare earth elements are eluted from the inside of the alloy and are deposited on the surface of the negative electrode. When distortion occurs due to repeated expansion and contraction of the crystal lattice during hydrogen storage and release, cracks are generated in the hydrogen storage alloy and pulverization occurs. Since the alloy surface area increases due to pulverization accompanying the charge and discharge cycle, the number of needle-like products also increases, causing a decrease in the capacity of the negative electrode. In view of this, alloys having a low cooling rate of less than 10 3 ° C / sec have been proposed. Such a hydrogen storage alloy solves the problem of pulverization caused by segregation, but has a large strain. The effect on the formation suppression is insufficient. Therefore, in a temperature range of 600 to 900 ° C. in a vacuum or an inert gas atmosphere, rapid solidification distortion is removed by heat treatment, and pulverization is suppressed as compared with the related art.

【0011】更に、合金表面に安定な希土類元素の不動
態皮膜を形成させることにより、希土類元素の溶出を防
止する。即ち、上記水素吸蔵合金とLa,Ce,Pr,
Nd,Sm,Eu,Gd,Tb,Dy,Ho,Y,E
r,Tu,Yb,Lu,Sc等の中から選択される少な
くとも1種類の希土類元素の単体または化合物を添加剤
として作製した水素吸蔵電極は、微粉化による合金表面
積の増加が少なく、微粉化して現れる新し合金表面にも
安定な希土類元素の不動態皮膜を形成させるため、水素
吸蔵電極の容量低下に起因する希土類水酸化物等の針状
生成物の増加が抑えられた優れた水素吸蔵電極を得るこ
とができる。
Further, by forming a stable rare earth element passive film on the alloy surface, elution of the rare earth element is prevented. That is, the above hydrogen storage alloy and La, Ce, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, E
A hydrogen storage electrode manufactured using at least one kind of a rare earth element alone or a compound selected from r, Tu, Yb, Lu, Sc and the like as an additive has a small increase in the alloy surface area due to the pulverization. An excellent hydrogen storage electrode that suppresses the increase of needle-like products such as rare earth hydroxides due to a decrease in the capacity of the hydrogen storage electrode in order to form a stable rare earth element passive film on the new alloy surface that appears. Can be obtained.

【0012】[0012]

【実施例】以下、本発明を実施例により詳細に説明す
る。まず、市販のLa、Ce、Pr、Ndなどの希土類
元素の複合体であるミッシュメタル(Mm)、Ni、A
l、Co、Mnを所定量秤量し、不活性雰囲気下で高周
波溶解炉を用いて溶解後、放置冷却してMmNi3.8
0.3 Co0.7 Mn0.2 の組成の合金を作製し、アルゴ
ン雰囲気中で1000℃、3時間熱処理した。この合金
をAとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. First, a commercially available complex of rare earth elements such as La, Ce, Pr, and Nd, which is a misch metal (Mm), Ni, A
l, Co, and Mn are weighed in predetermined amounts, melted in a high-frequency melting furnace under an inert atmosphere, and then left to cool to obtain MmNi 3.8 A
An alloy having a composition of l 0.3 Co 0.7 Mn 0.2 was prepared and heat-treated at 1000 ° C. for 3 hours in an argon atmosphere. This alloy is designated as A.

【0013】次に、上記合金Aを高周波溶解炉で加熱溶
解させた後、融液をセラミック単孔ノズルに注ぎ入れ、
アルゴンガス加圧によりノズル下方に設けられた銅性の
回転ロール周面に溶液を噴出させて、冷却速度103
/secで急冷凝固させて、フレーク状の急冷合金を得
た。この合金をBとする。さらにこの急冷合金を900
℃5時間の熱処理した。この合金をCとする。上記合金
作製は、全てアルゴン雰囲気内で行った。
Next, after the alloy A is heated and melted in a high-frequency melting furnace, the melt is poured into a ceramic single-hole nozzle.
The solution was jetted onto the peripheral surface of a copper-made rotating roll provided below the nozzle by argon gas pressurization, and the cooling rate was 10 3 ° C.
/ Sec for rapid solidification to obtain a flaky quenched alloy. This alloy is designated as B. In addition, this quenched alloy was added to 900
C. for 5 hours. This alloy is designated as C. All the above alloy preparations were performed in an argon atmosphere.

【0014】これらの合金をそれぞれ機械粉砕し、得ら
れた合金粉末と増粘剤を加えてペースト状にし、ニッケ
ル繊維基板に充填し、乾燥後プレスして水素吸蔵電極を
得た。これら3種類の合金を用いた電極をそれぞれ比較
電極1、比較電極2、比較電極3とする。合金Cを機械
粉砕して得られた合金粉末とYb2O3 粉末0.5%とを乳
鉢でよく混合してから、増粘剤を加えてペースト状に
し、ニッケル繊維基板に充填し、乾燥後プレスして水素
吸蔵電極を得た。これを本発明電極Aとする。
Each of these alloys was mechanically pulverized, and the resulting alloy powder and a thickener were added to form a paste, filled in a nickel fiber substrate, dried and pressed to obtain a hydrogen storage electrode. The electrodes using these three alloys are referred to as Comparative electrode 1, Comparative electrode 2, and Comparative electrode 3, respectively. The alloy powder obtained by mechanically pulverizing Alloy C and Yb 2 O 3 powder 0.5% are mixed well in a mortar, then a thickener is added to form a paste, which is filled in a nickel fiber substrate and dried. Thereafter, pressing was performed to obtain a hydrogen storage electrode. This is designated as electrode A of the present invention.

【0015】これら4種類の電極を負極とし、高密度粉
末水酸化ニッケル活物質を用いたペースト式ニッケル極
を正極とし、電解液として比重1.28の水酸化カリウ
ム溶液を用いて、公称容量1100mAhのAAサイズ
の密閉電池を作製し、充放電サイクルを行った。充電は
0.5CmAで3時間、放電は0.5CmAで1.0V
oltまで行い、充電と放電の間の休止時間を1時間と
して行った。
These four types of electrodes are used as negative electrodes, a paste-type nickel electrode using a high-density powdered nickel hydroxide active material is used as a positive electrode, and a potassium hydroxide solution having a specific gravity of 1.28 is used as an electrolytic solution, with a nominal capacity of 1100 mAh. AA size sealed battery was manufactured and subjected to a charge / discharge cycle. Charge at 0.5 CmA for 3 hours, Discharge at 0.5 CmA at 1.0 V
lt, and the rest time between charging and discharging was set to 1 hour.

【0016】充放電試験におけるサイクル数と放電容量
の関係を図1に示す。図1から明らかなように、本発明
電極Aは、比較電極1、比較電極2および比較電極3に
較べ充放電サイクル特性が優れていることが分かる。
FIG. 1 shows the relationship between the number of cycles and the discharge capacity in the charge / discharge test. As is clear from FIG. 1, the electrode A of the present invention has better charge / discharge cycle characteristics than the comparative electrode 1, the comparative electrode 2, and the comparative electrode 3.

【0017】上記電池を解体して、充放電サイクル後の
電極から水素吸蔵合金を取り出し、合金平均粒子径を測
定すると、合金平均粒子の大きい順に本発明電極A=比
較電極3>比較電極2>比較電極1であった。この結果
より合金Cの微粉化が抑制されていることが分かる。更
に、取り出した水素吸蔵合金のX線回折を行った。希土
類水酸化物のピークを比較すると、本発明電極Aは、比
較電極1、2、3に比べて、その生成量は少なく、合金
腐食を抑制していることが分かった。
After disassembling the battery and taking out the hydrogen storage alloy from the electrode after the charge / discharge cycle and measuring the average particle diameter of the alloy, the electrode A of the present invention = comparative electrode 3> comparative electrode 2> Comparative electrode 1 was obtained. From this result, it can be seen that pulverization of the alloy C is suppressed. Further, the extracted hydrogen storage alloy was subjected to X-ray diffraction. Comparing the peaks of the rare earth hydroxides, it was found that the electrode A of the present invention produced a smaller amount than the comparative electrodes 1, 2, and 3 and suppressed alloy corrosion.

【0018】[0018]

【発明の効果】上記のように、本発明の水素吸蔵電極で
は、微粉化による合金表面積増加の抑制と合金腐食を抑
制し、充放電サイクル特性に優れた効果が得られるた
め、その工業的価値は大きい。
As described above, in the hydrogen storage electrode of the present invention, the effect of suppressing the increase in the alloy surface area due to the pulverization and the alloy corrosion can be obtained, and the effect excellent in the charge / discharge cycle characteristics can be obtained. Is big.

【図面の簡単な説明】[Brief description of the drawings]

【図1】放電容量とサイクル数との関係図である。FIG. 1 is a relationship diagram between a discharge capacity and the number of cycles.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金が、溶融状態から103
/sec以上の冷却速度で凝固させた後、真空中または
不活性ガス雰囲気中で600〜900℃の温度範囲にお
いて熱処理して得られたものであり、且つ該水素吸蔵合
金に希土類元素の単体または化合物を添加剤として含有
させてなることを特徴とする水素吸蔵電極。
1. The hydrogen storage alloy is heated to a temperature of 10 3 ° C. from a molten state.
/ Sec and then heat-treated in a vacuum or an inert gas atmosphere at a temperature in the range of 600 to 900 ° C., and the hydrogen-absorbing alloy is made of a single element of rare earth element or A hydrogen storage electrode comprising a compound as an additive.
【請求項2】 前記希土類元素が、La,Ce,Pr,
Nd,Sm,Eu,Gd,Tb,Dy,Ho,Y,E
r,Tu,Yb,Lu,Scの中から選択される少なく
とも1種類である請求項1記載の水素吸蔵電極。
2. The method according to claim 1, wherein the rare earth element is La, Ce, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, E
The hydrogen storage electrode according to claim 1, wherein the hydrogen storage electrode is at least one selected from the group consisting of r, Tu, Yb, Lu, and Sc.
【請求項3】 前記希土類元素の化合物が、酸化物、水
酸化物、ハロゲン化物の中から選択される少なくとも1
種類である請求項1記載の水素吸蔵電極。
3. The method according to claim 1, wherein the rare earth compound is at least one selected from oxides, hydroxides, and halides.
The hydrogen storage electrode according to claim 1, wherein the hydrogen storage electrode is of a kind.
JP18107596A 1996-07-11 1996-07-11 Hydrogen storage electrode Expired - Fee Related JP3678281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18107596A JP3678281B2 (en) 1996-07-11 1996-07-11 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18107596A JP3678281B2 (en) 1996-07-11 1996-07-11 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH1027605A true JPH1027605A (en) 1998-01-27
JP3678281B2 JP3678281B2 (en) 2005-08-03

Family

ID=16094376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18107596A Expired - Fee Related JP3678281B2 (en) 1996-07-11 1996-07-11 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP3678281B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307721A (en) * 2000-04-24 2001-11-02 Toshiba Corp Hydrogen-storage alloy electrode, alkaline secondary battery, hybrid car and electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307721A (en) * 2000-04-24 2001-11-02 Toshiba Corp Hydrogen-storage alloy electrode, alkaline secondary battery, hybrid car and electric vehicle

Also Published As

Publication number Publication date
JP3678281B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP3277845B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP3262019B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP2001338646A (en) Lithium secondary battery negative electrode
JP2004185991A (en) Negative electrode material for lithium secondary battery, lithium secondary battery using the same, and negative electrode material manufcturing method
WO2012073418A1 (en) Hydrogen-storage alloy particles, alloy powder for electrode, and alkaline storage battery
CN101212047B (en) Hydrogen storage alloy and its preparation method
JP2003346793A (en) Negative electrode material for lithium ion secondary battery and its manufacturing method, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2020115953A1 (en) Hydrogen storage material, negative electrode, and nickel-metal hydride rechargeable battery
JP3697996B2 (en) Hydrogen storage alloy for battery negative electrode that enables high discharge capacity with a small number of charge / discharge cycles and improvement of low-temperature, high-rate discharge capacity with high-rate initial activation treatment
JP3678281B2 (en) Hydrogen storage electrode
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JP3432870B2 (en) Method for producing metal hydride electrode
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP2004335271A (en) Manufacturing method of negative electrode activator for nonaqueous electrolyte secondary battery
JP4441936B2 (en) Hydrogen storage electrode
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
CN113631302B (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery using same as negative electrode, and vehicle
JP3981423B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JP3432989B2 (en) Method for manufacturing metal hydride storage battery
JPH0693358B2 (en) Manufacturing method of hydrogen storage electrode
JP2000144278A (en) Hydrogen occlusion alloy and its production
JP2004218017A (en) Hydrogen storage alloy
JP3301792B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050504

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees