JPH10274665A - Current detector - Google Patents

Current detector

Info

Publication number
JPH10274665A
JPH10274665A JP9094594A JP9459497A JPH10274665A JP H10274665 A JPH10274665 A JP H10274665A JP 9094594 A JP9094594 A JP 9094594A JP 9459497 A JP9459497 A JP 9459497A JP H10274665 A JPH10274665 A JP H10274665A
Authority
JP
Japan
Prior art keywords
current
output
input
amplifier
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9094594A
Other languages
Japanese (ja)
Other versions
JP3999303B2 (en
Inventor
Toshiaki Tosaka
坂 俊 昭 遠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N F KAIRO SEKKEI BLOCK KK
Original Assignee
N F KAIRO SEKKEI BLOCK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N F KAIRO SEKKEI BLOCK KK filed Critical N F KAIRO SEKKEI BLOCK KK
Priority to JP09459497A priority Critical patent/JP3999303B2/en
Publication of JPH10274665A publication Critical patent/JPH10274665A/en
Application granted granted Critical
Publication of JP3999303B2 publication Critical patent/JP3999303B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transformers For Measuring Instruments (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate an in-phase noise component and suppress an output drift by using a current input type differential amplifier and drawing the output of a current transformer (current sensor). SOLUTION: In the output terminals 11 and 12 of a secondary winding of a current transformer(CT) type current sensor 1, an in-phase mode noise voltage Vn mixed in the secondary winding via floating capacities Cs1 and Cs2 between input and output is overlapped to the primary side penetration current which is the current proportional to a detection current (is), which flows and is respectively input in the non-reversal input of an operational amplifiers 3 and 4. The output voltages Vs1 and Vs2 of the operational amplifiers 3 and 4 are respectively input in the reversal input and non-reversal input, where noise Vn is eliminated and voltage output Vo is drawn. This voltage output Vo is input in the reversal input of an amplifier 5 constituting an integrating circuit together with a resistor R5 and a capacitor C1. Its output is connected to the non-reversal input of the operational amplifier 4 via a resistor R8 and the direct current drift emerging in the voltage output Vo is canceled by negative feedback.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変流器、即ち電流
トランス(CT)を用いた電流検出装置に関し、特に、
外来雑音の影響を軽減した電流検出装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current detector using a current transformer, that is, a current transformer (CT).
The present invention relates to a current detection device that reduces the influence of external noise.

【0002】[0002]

【従来の技術】電流トランス(CT)とはカレント・ト
ランスを略したもので、変流器とも呼ばれ、電力関係で
は、大電流を測定するための電流変成器(計器用変成
器)として広く使用されている。図3には、かかる電流
トランスの簡略図が示されている。図3において、環状
の閉磁路に数100ターンから2000ターン程度の2
次巻線を巻回し、同閉磁路内を貫通させた1次線に被測
定電流isを貫通電流として流す。磁路の形状としては
トロイダル巻線を施したものが漏洩磁束の低減や小型化
を図るのに有効である。そして、2次巻線に流れる電流
を検出して被測定電流を検出する。
2. Description of the Related Art A current transformer (CT) is an abbreviation of a current transformer, and is also called a current transformer. In terms of power, it is widely used as a current transformer (meter transformer) for measuring a large current. It is used. FIG. 3 shows a simplified diagram of such a current transformer. In FIG. 3, the circular closed magnetic path has two hundreds to 2,000 turns.
A current to be measured is is passed as a through current to a primary wire wound around the secondary winding and penetrating through the closed magnetic path. The shape of the magnetic path provided with a toroidal winding is effective for reducing the leakage magnetic flux and reducing the size. Then, a current to be measured is detected by detecting a current flowing through the secondary winding.

【0003】図4には、図3に示すような電流トランス
を電流センサとして用いた従来型の電流検出装置の回路
構成が示されている。電流トランス(CT)1の1次線
に検出電流isを流すと、2次巻線に電流が誘起され、
この電流はオペアンプ2の反転入力に供給される。オペ
アンプ2の反転入力と出力間には帰還抵抗Rfが接続さ
れ、その非反転入力は接地される。この抵抗Rfには電
流トランス1の2次巻線に流れる電流と同じ大きさの電
流が流れる。
FIG. 4 shows a circuit configuration of a conventional current detecting device using a current transformer as shown in FIG. 3 as a current sensor. When the detection current is flows through the primary line of the current transformer (CT) 1, a current is induced in the secondary winding,
This current is supplied to the inverting input of the operational amplifier 2. A feedback resistor Rf is connected between the inverting input and the output of the operational amplifier 2, and the non-inverting input is grounded. A current having the same magnitude as the current flowing through the secondary winding of the current transformer 1 flows through the resistor Rf.

【0004】今、検出電流をis、電流トランス1の変
流比をkとすると、2次巻線には電流(k・is)が流
れるので、オペアンプ2の信号出力電圧にはvos=(k
・is)Rfなる電圧が現われる。
Now, assuming that the detected current is is and the current transformer 1 has a current transformation ratio of k, a current (k · is) flows through the secondary winding, so that the signal output voltage of the operational amplifier 2 has vos = (k
・ Is) A voltage Rf appears.

【0005】[0005]

【発明が解決しようとする課題】上述のような従来の回
路構成により、大電流の測定が可能であるが、図4に示
す従来の回路は次のような欠点をもつ。即ち、電流トラ
ンス1の入力側と接地間の浮遊容量Csを介して同相モ
ードの雑音電圧vnが電流トランス1の2次側に混入す
るため、微小電流検出が困難となるという問題である。
例えば、図4において、同相モード雑音電圧vnにより
オペアンプ2の出力に現われる雑音出力電圧は、von=
vn・ωCs・Rfとなる。
Although a large current can be measured by the above-described conventional circuit configuration, the conventional circuit shown in FIG. 4 has the following disadvantages. That is, since the noise voltage vn in the common mode is mixed into the secondary side of the current transformer 1 via the stray capacitance Cs between the input side of the current transformer 1 and the ground, it is difficult to detect a minute current.
For example, in FIG. 4, the noise output voltage appearing at the output of the operational amplifier 2 due to the common mode noise voltage vn is von =
vn · ωCs · Rf.

【0006】そこで、本発明の目的は、電流トランスを
用いた電流検出の際の同相雑音成分の重畳の影響を除去
できる電流検出装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a current detection device capable of removing the influence of superimposition of a common-mode noise component at the time of current detection using a current transformer.

【0007】本発明の他の目的は、上記目的に追加して
更に直流ドリフトの問題を解決できる電流検出装置を提
供することにある。
Another object of the present invention is to provide a current detection device which can solve the problem of DC drift in addition to the above objects.

【0008】[0008]

【課題を解決するための手段】上述の問題点を解決する
ため、本発明による電流検出装置は、変流器の入力側に
流れる検出電流に対応して出力側に流れる電流を検出す
ることにより前記検出電流を検出する電流検出装置にお
いて、前記変流器の出力を電流入力型の差動増幅手段を
用いて取り出す。
In order to solve the above-mentioned problems, a current detecting device according to the present invention detects a current flowing to an output side corresponding to a detected current flowing to an input side of a current transformer. In the current detection device for detecting the detection current, the output of the current transformer is extracted by using a current input type differential amplifier.

【0009】本発明の他の態様による電流検出装置は、
変流器の入力側に流れる検出電流に対応して出力側に流
れる電流を検出することにより前記検出電流を検出する
電流検出装置において、前記変流器の出力に接続され、
入力端子に流れる電流に比例した出力を生じる差動増幅
器からなる電流入力型差動増幅手段と、該電流入力型差
動増幅手段の出力段から前記電流入力型差動増幅手段の
入力段に直流帰還を施す直流帰還手段とを備えて成る。
According to another aspect of the present invention, there is provided a current detecting device comprising:
In a current detection device that detects the detection current by detecting a current flowing to an output side corresponding to a detection current flowing to an input side of the current transformer, the current detection device is connected to an output of the current transformer,
Current input type differential amplifying means comprising a differential amplifier which produces an output proportional to the current flowing through the input terminal; and a direct current from an output stage of the current input type differential amplifying means to an input stage of the current input type differential amplifying means. DC feedback means for performing feedback.

【0010】本発明の更に、他の態様による電流検出装
置は、変流器の入力側に流れる検出電流に対応して出力
側に流れる電流を検出することにより前記検出電流を検
出する電流検出装置において、前記変流器出力の一方の
端子に接続された第1の電流入力増幅器と、前記変流器
出力の他方の端子に接続された第2の電流入力増幅器と
を備え、前記一方の端子と前記第1の電流入力増幅器と
の接続点に前記第2の電流入力増幅器の出力を注入する
ことにより、浮遊容量を介して前記変流器に誘起した雑
音成分を打ち消している。
A current detecting device according to still another aspect of the present invention is a current detecting device for detecting the detected current by detecting a current flowing to an output side corresponding to a detected current flowing to an input side of a current transformer. , A first current input amplifier connected to one terminal of the current transformer output, and a second current input amplifier connected to the other terminal of the current transformer output, wherein the one terminal By injecting the output of the second current input amplifier into a connection point between the current input amplifier and the first current input amplifier, a noise component induced in the current transformer via a stray capacitance is canceled.

【0011】ここで、前記第1の電流入力増幅器の出力
から前記第1の電流入力増幅器の入力へ直流帰還を施す
直流帰還手段を有する。
Here, there is provided DC feedback means for performing DC feedback from the output of the first current input amplifier to the input of the first current input amplifier.

【0012】[0012]

【発明の実施の形態】以下、図面を参照しながら本発明
による電流検出装置の実施形態を説明する。図1は本発
明による電流検出装置の一実施形態を示す回路図であ
る。本実施形態では、検出電流isを電流トランス(電
流センサ)の1次側に流して2次側に流れる電流を電流
入力型の差動アンプで受けて雑音成分をキャンセルする
とともに、オペアンプ5等で構成される積分器を用いて
出力から入力に直流帰還を施すことによりドリフト特性
を改善している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the current detecting device according to the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of a current detection device according to the present invention. In the present embodiment, the detection current is flows to the primary side of the current transformer (current sensor), and the current flowing to the secondary side is received by a current input type differential amplifier to cancel noise components. The drift characteristic is improved by applying DC feedback from the output to the input using the integrator configured.

【0013】図1において、同相モード雑音vnは、図
中の浮遊容量Cs1、Cs2を介して電流センサ1の2次巻
線に重畳し悪影響を及ぼす。同相モード雑音vnは、説
明の都合上、等価的にこのような雑音電圧が存在するこ
とを示したものであり、実際の電流検出装置においては
vnなる雑音電圧源を用意する必要はない。電流トラン
ス(カレントトランス=CT)型の電流センサ1の2次
巻線の出力端子11、12には1次側の貫通電流、即ち
検出電流(is)に比例した電流が流れる。電流センサ
1の一方の端子11は、オペアンプ3の反転入力(−)
に接続されている。他方の端子12はオペアンプ4の反
転入力(−)に接続されている。
In FIG. 1, common-mode noise vn is superimposed on the secondary winding of the current sensor 1 via stray capacitances Cs1 and Cs2 in the figure, and has an adverse effect. The common-mode noise vn indicates that such a noise voltage is equivalently present for convenience of explanation, and it is not necessary to prepare a noise voltage source vn in an actual current detection device. A primary-side through current, that is, a current proportional to the detection current (is) flows through the output terminals 11 and 12 of the secondary winding of the current sensor 1 of a current transformer (current transformer = CT) type. One terminal 11 of the current sensor 1 is connected to the inverting input (−) of the operational amplifier 3.
It is connected to the. The other terminal 12 is connected to the inverting input (−) of the operational amplifier 4.

【0014】オペアンプ3と4の反転入力(−)と出力
との間には帰還抵抗Rf1、Rf2がそれぞれ接続されてい
る。オペアンプ3と4の非反転入力(+)にはオフセッ
ト電流を補償する抵抗R6とR7がそれぞれ接続され、
接地されている。
Feedback resistors Rf1 and Rf2 are connected between the inverted inputs (-) and the outputs of the operational amplifiers 3 and 4, respectively. Non-inverting inputs (+) of the operational amplifiers 3 and 4 are connected to resistors R6 and R7 for compensating offset current, respectively.
Grounded.

【0015】オペアンプ3と4の出力は、抵抗R1〜R
4及びオペアンプ2から成る差動アンプの反転入力と非
反転入力にそれぞれ入力され、オペアンプ2の出力から
電圧出力vOが取り出される。オペアンプ2の出力には
抵抗R5が接続され、この抵抗R5の他端はオペアンプ
5の反転入力(−)に接続されている。オペアンプ5の
反転入力(−)と出力間にはキャパシタC1が接続さ
れ、非反転入力(+)は接地されている。
The outputs of the operational amplifiers 3 and 4 are connected to resistors R1 to R
4 and a non-inverting input of a differential amplifier composed of the operational amplifier 2, and a voltage output vO is extracted from the output of the operational amplifier 2. A resistor R5 is connected to the output of the operational amplifier 2, and the other end of the resistor R5 is connected to the inverting input (-) of the operational amplifier 5. The capacitor C1 is connected between the inverting input (-) and the output of the operational amplifier 5, and the non-inverting input (+) is grounded.

【0016】オペアンプ5の出力は、抵抗R8を経由し
てオペアンプ4の非反転入力(+)に接続され、オペア
ンプ2の出力に現われる直流ドリフトを負帰還によりキ
ャンセルしている。
The output of the operational amplifier 5 is connected to the non-inverting input (+) of the operational amplifier 4 via the resistor R8, and cancels the DC drift appearing at the output of the operational amplifier 2 by negative feedback.

【0017】こうして、オペアンプ2の出力には、電流
センサ1の端子11−12に流れる電流に比例した電圧
が現われる。今、電流センサ1の貫通電流をis、電流
センサ1の変流比をkとすると、2次巻線に流れる電流
はis・kとなり、オペアンプ3の帰還抵抗の抵抗値を
Rf1、オペアンプ4の帰還抵抗値Rf2とすると、オペア
ンプ2の反転入力と非反転入力に供給される電圧vs1、
vs2はそれぞれ次のようになる。 vs1= (is・k)Rf1 (1) vs2=−(is・k)Rf2 (2)
Thus, a voltage proportional to the current flowing through the terminals 11-12 of the current sensor 1 appears at the output of the operational amplifier 2. Now, assuming that the through current of the current sensor 1 is is and the current conversion ratio of the current sensor 1 is k, the current flowing through the secondary winding is is · k, the resistance value of the feedback resistor of the operational amplifier 3 is Rf1, and the current value of the operational amplifier 4 is Assuming that the feedback resistance value is Rf2, the voltage vs1 supplied to the inverting input and the non-inverting input of the operational amplifier 2,
vs2 is as follows. vs1 = (is · k) Rf1 (1) vs2 = − (is · k) Rf2 (2)

【0018】このvs1、vs2がオペアンプ2で構成され
る差動アンプに入力される。抵抗R1〜R4の抵抗値を
等しくすれば、この段の利得は1となり、Rf1=Rf2=
Rfとすると、出力出圧voは次式のようになる。 vo=(vs1−vs2)=2(is・k)Rf (3)
The signals vs1 and vs2 are input to a differential amplifier composed of an operational amplifier 2. If the resistance values of the resistors R1 to R4 are made equal, the gain of this stage becomes 1, and Rf1 = Rf2 =
Assuming Rf, the output pressure vo is given by the following equation. vo = (vs1−vs2) = 2 (is · k) Rf (3)

【0019】今、貫通電流is=1〔A〕、2次巻数n
=719、帰還抵抗Rf=3.595kΩとすると、k
=1/nであるから、voは10〔V/A〕となる。
Now, the through current is = 1 [A], the number of secondary turns n
= 719 and feedback resistance Rf = 3.595 kΩ, k
Since = 1 / n, vo becomes 10 [V / A].

【0020】一方、同相モードの雑音電圧vnについて
は上記vn1、vn2はそれぞれ次のようになる。 vn1=−vn・jωCs1・Rf1 (4) vn2=−vn・jωCs2・Rf2 (5) このvn1、vn2は、次段の差動アンプに入力されるの
で、vn1=vn2であれば、出力に同相モードの雑音電圧
は現われない。その条件は次の通りである。 Rf1・Cs1=Rf2・Cs2 (6)
On the other hand, with respect to the noise voltage vn in the common mode, vn1 and vn2 are as follows. vn1 = −vn · jωCs1 · Rf1 (4) vn2 = −vn · jωCs2 · Rf2 (5) Since vn1 and vn2 are input to the differential amplifier at the next stage, if vn1 = vn2, the output is in phase. No mode noise voltage appears. The conditions are as follows. Rf1 · Cs1 = Rf2 · Cs2 (6)

【0021】通常、浮遊容量Cs1、Cs2の値は等しくな
いため、式(6)の条件を満足するようにRf1あるいは
Rf2に可変抵抗器を直列に接続してこれを調整し、Cs
1、Cs2のバラつきを補償する。
Normally, since the values of the stray capacitances Cs1 and Cs2 are not equal, a variable resistor is connected in series to Rf1 or Rf2 so as to satisfy the condition of the equation (6), and this is adjusted.
1. Compensate for variations in Cs2.

【0022】以上のような構成により、電流トランスの
入出力間の浮遊容量に起因して生ずる雑音成分vnの影
響は除去できる。一方、電流入力型の差動増幅器の導入
に伴い、この増幅器の直流利得が極端に増加するため直
流ドリフトが新たな問題となる。
With the above configuration, the effect of the noise component vn caused by the stray capacitance between the input and output of the current transformer can be eliminated. On the other hand, with the introduction of a current input type differential amplifier, the DC gain of this amplifier increases extremely, so that DC drift becomes a new problem.

【0023】より具体的には、本実施形態では、上述の
ように、オペアンプ5、抵抗R5及びキャパシタC1か
ら成る回路は積分器を構成しており、オペアンプ2の出
力の交流成分を除去し直流成分を取り出している。かか
るオペアンプ5による直流帰還効果は次のとおりであ
る。
More specifically, in the present embodiment, as described above, the circuit including the operational amplifier 5, the resistor R5, and the capacitor C1 forms an integrator, and removes the AC component of the output of the operational amplifier 2 and removes the DC component. The components are taken out. The DC feedback effect of the operational amplifier 5 is as follows.

【0024】電流センサ1の2次巻線の直流抵抗は種類
にもよるが普通は数10Ω以下である。一方、オペアン
プ3による電流−電圧変換回路の帰還抵抗Rf1は通常数
kΩである。そしてこの段の直流利得はG=Rf1/Ri
で表わされ、入力抵抗Riは前述の2次巻線の直流抵抗
であるから、結局この段の直流利得は100倍のオーダ
となる。
The DC resistance of the secondary winding of the current sensor 1 depends on the type, but is usually several tens of ohms or less. On the other hand, the feedback resistance Rf1 of the current-to-voltage conversion circuit by the operational amplifier 3 is usually several kΩ. And the DC gain of this stage is G = Rf1 / Ri
Since the input resistance Ri is the DC resistance of the secondary winding described above, the DC gain of this stage is eventually on the order of 100 times.

【0025】このため、この電流−電圧変換回路のオペ
アンプに安価な汎用オペアンプを使用すると温度ドリフ
トが大きくなり使いものにならない。また温度ドリフト
の小さいオペアンプを使用すると、そのようなオペアン
プは非常に高価であるためコストがアップするという問
題が発生する。
For this reason, if an inexpensive general-purpose operational amplifier is used as the operational amplifier of the current-voltage conversion circuit, the temperature drift becomes large and the operational amplifier cannot be used. Further, when an operational amplifier having a small temperature drift is used, such an operational amplifier is very expensive, so that there is a problem that the cost is increased.

【0026】本実施形態では、かかる問題を解決するた
め、出力から初段にオペアンプ5による直流帰還を施し
温度ドリフトを軽減している。その結果、オペアンプ
3、4に安価なオペアンプを使用しても十分満足できる
温度ドリフト特性が得られる。
In the present embodiment, in order to solve such a problem, a direct current feedback by the operational amplifier 5 is performed from the output to the first stage to reduce the temperature drift. As a result, sufficiently satisfactory temperature drift characteristics can be obtained even if inexpensive operational amplifiers are used for the operational amplifiers 3 and 4.

【0027】図2は本発明による電流検出装置の他の実
施形態を示す要部回路図であり、説明の都合上、浮遊容
量Cs1、Cs2及び同相モード雑音電圧VNが記入されて
いる。本実施形態は、図1に示す実施形態と同様に、電
流トランス(CT)型の電流センサ1に流れる電流を出
力電圧voに変換して出力するもので、等価的に同様な
機能を果たすが、使用オペアンプを4個から3個に、使
用抵抗を10個から7個に低減できる。
FIG. 2 is a main part circuit diagram showing another embodiment of the current detecting device according to the present invention. For convenience of explanation, stray capacitances Cs1, Cs2 and a common mode noise voltage VN are shown. The present embodiment converts the current flowing through the current transformer (CT) type current sensor 1 into an output voltage vo and outputs the same, similarly to the embodiment shown in FIG. 1. The number of operational amplifiers used can be reduced from four to three, and the number of used resistors can be reduced from ten to seven.

【0028】電流トランス型の電流センサ1、閉磁路に
2次巻線(出力端子11、12)を巻回し、1次線は閉
磁路内を貫通させて使用される。貫通電流に比例した電
流が2次巻線に誘起される。オペアンプ6の反転入力
は、電流センサ1の一方の出力端子11に接続され、オ
ペアンプ6の出力と反転入力(−)との間には抵抗R1
01と浮遊容量C101の並列回路が接続されている。
抵抗R101は帰還抵抗(Rf1)であり、電流センサ1
の2次側に流れる電流はオペアンプ6により電圧に変換
され、出力電圧voが出力される。
A current transformer type current sensor 1 is used in which a secondary winding (output terminals 11 and 12) is wound around a closed magnetic path, and a primary wire is passed through the closed magnetic path. A current proportional to the through current is induced in the secondary winding. The inverting input of the operational amplifier 6 is connected to one output terminal 11 of the current sensor 1, and a resistor R1 is connected between the output of the operational amplifier 6 and the inverting input (-).
01 and a stray capacitance C101 are connected in parallel.
The resistor R101 is a feedback resistor (Rf1), and the current sensor 1
Is converted into a voltage by the operational amplifier 6, and an output voltage vo is output.

【0029】電流センサ11の他方の端子12は、オペ
アンプ7の反転入力(−)に接続されている。オペアン
プ7の出力と反転入力(−)との間には抵抗R102
(抵抗Rf2)とキャパシタC102の並列回路が接続さ
れている。オペアンプ7の非反転入力(+)はR106
を経て接地されている。オペアンプ7の出力は、抵抗R
103とキャパシタC103の並列回路を介してオペア
ンプ6の反転入力(−)に接続されている。
The other terminal 12 of the current sensor 11 is connected to the inverting input (-) of the operational amplifier 7. A resistor R102 is provided between the output of the operational amplifier 7 and the inverted input (−).
A parallel circuit of (resistor Rf2) and capacitor C102 is connected. The non-inverting input (+) of the operational amplifier 7 is R106
Through the ground. The output of the operational amplifier 7 is a resistor R
It is connected to the inverting input (-) of the operational amplifier 6 through a parallel circuit of the capacitor 103 and the capacitor C103.

【0030】オペアンプ6の出力は、抵抗R105を介
してオペアンプ8の反転入力(−)に接続されている。
オペアンプ8の出力と反転入力(−)との間にはキャパシ
タC105が接続されている。オペアンプ8、抵抗R1
05、キャパシタC105から成る回路は積分回路を構
成し、抵抗R105とキャパシタC105の値の積で計
算される時定数を秒のオーダとすることにより出力vo
中の直流成分を抽出している。そして、これをオペアン
プ6の非反転入力(+)に負帰還することにより、出力
voに現われるドリフトをキャンセルしている。こうす
ることにより、上述実施形態の説明で述べたのと同じ理
由によりオペアンプ6と7の直流利得が非常に大きくな
り、結果として出力に多大のドリフトが発生するという
問題点が除去される。
The output of the operational amplifier 6 is connected to the inverting input (-) of the operational amplifier 8 via the resistor R105.
A capacitor C105 is connected between the output of the operational amplifier 8 and the inverted input (-). Operational amplifier 8, resistor R1
05, the circuit comprising the capacitor C105 forms an integrating circuit, and the output vo is obtained by setting the time constant calculated by the product of the value of the resistor R105 and the value of the capacitor C105 to the order of seconds.
The DC component inside is extracted. This is negatively fed back to the non-inverting input (+) of the operational amplifier 6 to cancel the drift appearing at the output vo. This eliminates the problem that the DC gains of the operational amplifiers 6 and 7 become extremely large for the same reason as described in the description of the above embodiment, and as a result, a large drift occurs in the output.

【0031】電流センサ1の2次巻線に流れる信号電流
issについて考えると、出力端子12から流出する電
流は、オペアンプ7で極性反転され、R103を経由し
てオペアンプ6の反転入力(仮想接地点)に注入され
る。ここでR103に流れる電流はissと極性が同じで
あるため、信号電流を増大するように作用する。
Considering the signal current iss flowing in the secondary winding of the current sensor 1, the current flowing out of the output terminal 12 is inverted in polarity by the operational amplifier 7, and is input to the inverted input (virtual ground point) of the operational amplifier 6 via R103. ) Is injected. Here, since the current flowing through R103 has the same polarity as iss, it acts to increase the signal current.

【0032】次に雑音である同相モード雑音電圧VNの
影響を考える。まず電流センサ1の出力端子11には浮
遊容量Cs1を介して同相雑音成分が現われる。一方、前
記VNのうちCS2を経由して電流センサ1の出力端子1
2に現われる同相雑音成分はオペアンプ7で反転され、
逆位相となりオペアンプ6の反転入力に注入される。こ
のため信号路である出力端子11に現われるCS1経由の
VN成分はキャンセルされる。
Next, the influence of the common mode noise voltage VN, which is noise, will be considered. First, a common-mode noise component appears at the output terminal 11 of the current sensor 1 via the stray capacitance Cs1. On the other hand, the output terminal 1 of the current sensor 1 via CS2 of the VN
2 is inverted by the operational amplifier 7,
The phase is reversed and injected into the inverting input of the operational amplifier 6. Therefore, the VN component via the CS1 appearing at the output terminal 11, which is a signal path, is canceled.

【0033】以下では、上記で定性的に説明した浮遊容
量Cs1、Cs2を介して、信号に重畳する同相モード雑音
電圧について定量的な観点で説明する。
In the following, the common-mode noise voltage superimposed on a signal via the stray capacitances Cs1 and Cs2 qualitatively described above will be described from a quantitative viewpoint.

【0034】図2に示すように、電流センサ1の1次側
(貫通電流)には同相モード雑音電圧VNが重畳してい
るものとすると、次の基本式が成立する。 is1=jωCs1・VN (7)
As shown in FIG. 2, assuming that the common mode noise voltage VN is superimposed on the primary side (through current) of the current sensor 1, the following basic formula is established. is1 = jωCs1 · VN (7)

【0035】回路が正常に動作している場合には、オペ
アンプ6と7の非反転入力(+)は交流的にはゼロ電位
である。また、オペアンプの性質より反転入力(−)も
交流的にゼロ電位である。すると、出力端子11、12
はともに同電位なのでCstには交流電流は流れず、i
st=0となりCstの影響は考えなくてよい。このため次
の関係式が成立する。 is2=jωCs2・VN (8) v2 = −Z2(iss+is2) (9) vo=Z1(iss−is1−(v2/Z3)) (10) ここでZ1=R101//C101、Z2=R102//C102、Z3=
R103//C103である。(a//bは、aとbの並列接続を
表わす)
When the circuit is operating normally, the non-inverting inputs (+) of the operational amplifiers 6 and 7 are zero potential in terms of AC. The inverting input (-) also has an AC zero potential due to the nature of the operational amplifier. Then, the output terminals 11 and 12
Are the same potential, no AC current flows through Cst and i
Since st = 0, there is no need to consider the influence of Cst. Therefore, the following relational expression holds. is2 = jωCs2 · VN (8) v2 = −Z2 (iss + is2) (9) vo = Z1 (iss−is1− (v2 / Z3)) (10) where Z1 = R101 // C101 and Z2 = R102 // C102 , Z3 =
R103 // C103. (A // b represents a parallel connection of a and b)

【0036】基本式(7)〜(10)から、is1、is
2、v2を消去してvoを求めると、次のようになる。
From the basic formulas (7) to (10), is1, is
2. When vo is obtained by deleting v2, the following is obtained.

【数1】 (Equation 1)

【0037】ここで信号と雑音との関係のみに着目する
ため、(11)式の右辺からVNを含む項のみを取り出
すと次のようになる
Here, in order to focus only on the relationship between the signal and the noise, if only the term including VN is extracted from the right side of the equation (11), the following is obtained.

【数2】 (Equation 2)

【0038】ここで、τ1=C101・R101、τ2=C102・R102、
τs02=(C102・Cs1-C103・Cs2)・R102・R103、τs1=(Cs1・R10
3-Cs2・R102)、τs2=τs02/τs1である。(13)、(1
4)式より、vo/VN=0とするにはτs1及びτs02
ゼロとすれば良い事ががわかる。即ち、次の関係式が導
かれる。
Here, τ1 = C101 · R101, τ2 = C102 · R102,
τs0 2 = (C102 ・ Cs1-C103 ・ Cs2) ・ R102 ・ R103, τs1 = (Cs1 ・ R10
3-Cs2 · R102), is a τs2 = τs0 2 / τs1. (13), (1
4) from the equation, to the vo / VN = 0 is seen be may be set to zero τs1 and τs0 2. That is, the following relational expression is derived.

【数3】 (Equation 3)

【0039】実際の調整にあたっては、例えば、雑音電
圧VNとして矩形波信号を印加し、最初に抵抗R102、R
103の比を調整して浮遊容量CS1、CS2の影響をキャン
セルして(15)式を満足させる。次にC102、C103を
調整して(16)式を満足させる。このように調整を行
えば、浮遊容量Cs1、Cs2を介しての同相モード雑音電
圧の侵入を阻止できる。
In the actual adjustment, for example, a rectangular wave signal is applied as the noise voltage VN, and the resistors R102 and R102 are first applied.
By adjusting the ratio of 103, the influence of the stray capacitances CS1 and CS2 is canceled to satisfy the expression (15). Next, C102 and C103 are adjusted to satisfy the expression (16). By performing such adjustment, the intrusion of the common-mode noise voltage through the stray capacitances Cs1 and Cs2 can be prevented.

【0040】また、この回路はオペアンプ8による直流
帰還の効果により、オペアンプ6と7の非反転入力
(+)は直流的にはゼロ電位であるため、電流センサ1
の2次巻線に直流が流れない。
Further, in this circuit, the non-inverting inputs (+) of the operational amplifiers 6 and 7 are zero potential in terms of direct current due to the effect of DC feedback by the operational amplifier 8, so that the current sensor 1
DC does not flow through the secondary winding.

【0041】[0041]

【発明の効果】以上説明したように、本発明による電流
検出装置では、電流トランス(CT)タイプの電流セン
サの出力を電流入力型の差動増幅手段で検出しているた
め、同相モードの雑音電圧が浮遊容量を介して電流セン
サの2次側に注入されたとしても、この雑音電圧は同相
成分であるため差動増幅器によりキャンセルされ出力に
は現われない。更に、直流利得の増大に伴う出力ドリフ
トを直流帰還回路を付加して抑圧しているので、検出電
流のダイナミックレンジを飛躍的に増大させることがで
きる。
As described above, in the current detecting device according to the present invention, the output of the current transformer (CT) type current sensor is detected by the current input type differential amplifying means. Even if a voltage is injected into the secondary side of the current sensor via the stray capacitance, the noise voltage is a common-mode component and is canceled by the differential amplifier and does not appear at the output. Further, the output drift accompanying the increase in the DC gain is suppressed by adding a DC feedback circuit, so that the dynamic range of the detection current can be dramatically increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による電流検出装置の実施形態を示す回
路図である。
FIG. 1 is a circuit diagram showing an embodiment of a current detection device according to the present invention.

【図2】本発明による電流検出装置の他の実施形態を示
す回路図である。
FIG. 2 is a circuit diagram showing another embodiment of the current detection device according to the present invention.

【図3】電流トランスの簡略図である。FIG. 3 is a simplified diagram of a current transformer.

【図4】図3に示す電流トランスを電流センサとして用
いた従来型の電流検出装置の回路構成である。
4 is a circuit configuration of a conventional current detection device using the current transformer shown in FIG. 3 as a current sensor.

【符号の説明】[Explanation of symbols]

1 電流センサ 2〜8 オペアンプ 1 Current sensor 2-8 Operational amplifier

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】変流器の入力側に流れる検出電流に対応し
て出力側に流れる電流を検出することにより前記検出電
流を検出する電流検出装置において、 前記変流器の出力を電流入力型の差動増幅手段を用いて
取り出すことを特徴とする電流検出装置。
1. A current detecting device for detecting a detected current by detecting a current flowing on an output side corresponding to a detected current flowing on an input side of a current transformer, wherein an output of the current transformer is a current input type. A current detecting device for extracting the current using the differential amplifying means.
【請求項2】変流器の入力側に流れる検出電流に対応し
て出力側に流れる電流を検出することにより前記検出電
流を検出する電流検出装置において、 前記変流器の出力に接続され、入力端子に流れる電流に
比例した出力を生じる差動増幅器からなる電流入力型差
動増幅手段と、該電流入力型差動増幅手段の出力段から
前記電流入力型差動増幅手段の入力段に直流帰還を施す
直流帰還手段とを備えて成ることを特徴とする電流検出
装置。
2. A current detecting device for detecting a detected current by detecting a current flowing on an output side corresponding to a detected current flowing on an input side of a current transformer, wherein the current detecting device is connected to an output of the current transformer. Current input type differential amplifying means comprising a differential amplifier which produces an output proportional to the current flowing through the input terminal; and a direct current from an output stage of the current input type differential amplifying means to an input stage of the current input type differential amplifying means. A current detection device comprising: DC feedback means for performing feedback.
【請求項3】変流器の入力側に流れる検出電流に対応し
て出力側に流れる電流を検出することにより前記検出電
流を検出する電流検出装置において、 前記変流器出力の一方の端子に接続された第1の電流入
力増幅器と、前記変流器出力の他方の端子に接続された
第2の電流入力増幅器とを備え、前記一方の端子と前記
第1の電流入力増幅器との接続点に前記第2の電流入力
増幅器の出力を注入することにより、浮遊容量を介して
前記変流器に誘起した雑音成分を打ち消すことを特徴と
する電流検出装置。
3. A current detecting device for detecting a detected current by detecting a current flowing on an output side corresponding to a detected current flowing on an input side of a current transformer, wherein one terminal of an output of the current transformer is provided. A first current input amplifier connected thereto, and a second current input amplifier connected to the other terminal of the current transformer output, and a connection point between the one terminal and the first current input amplifier. A current detection device for injecting an output of the second current input amplifier to cancel a noise component induced in the current transformer via a stray capacitance.
【請求項4】前記第1の電流入力増幅器の出力から前記
第1の電流入力増幅器の入力へ直流帰還を施す直流帰還
手段を有する請求項3に記載の電流検出装置。
4. The current detecting device according to claim 3, further comprising DC feedback means for performing DC feedback from an output of said first current input amplifier to an input of said first current input amplifier.
JP09459497A 1997-03-28 1997-03-28 Current detector Expired - Lifetime JP3999303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09459497A JP3999303B2 (en) 1997-03-28 1997-03-28 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09459497A JP3999303B2 (en) 1997-03-28 1997-03-28 Current detector

Publications (2)

Publication Number Publication Date
JPH10274665A true JPH10274665A (en) 1998-10-13
JP3999303B2 JP3999303B2 (en) 2007-10-31

Family

ID=14114611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09459497A Expired - Lifetime JP3999303B2 (en) 1997-03-28 1997-03-28 Current detector

Country Status (1)

Country Link
JP (1) JP3999303B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049955A (en) * 2010-08-30 2012-03-08 Hioki Ee Corp Current/voltage conversion circuit and current detector
CN103605311A (en) * 2013-12-06 2014-02-26 国电南京自动化股份有限公司 Circuit for acquiring switching value by virtue of transformer flyback pulse shaping
RU2617858C1 (en) * 2015-12-11 2017-04-28 Евгений Иванович Рожнов Electronic current transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049955A (en) * 2010-08-30 2012-03-08 Hioki Ee Corp Current/voltage conversion circuit and current detector
CN103605311A (en) * 2013-12-06 2014-02-26 国电南京自动化股份有限公司 Circuit for acquiring switching value by virtue of transformer flyback pulse shaping
RU2617858C1 (en) * 2015-12-11 2017-04-28 Евгений Иванович Рожнов Electronic current transformer

Also Published As

Publication number Publication date
JP3999303B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US20020171454A1 (en) Impedance detection circuit, impedance detector and method of impedance detection
US4626678A (en) Light detecting circuit
JP3999303B2 (en) Current detector
JP3501401B2 (en) Impedance detection circuit, impedance detection device, and impedance detection method
JP2002022785A (en) Impedance detecting circuit and impedance detecting method
JPH0575362A (en) Balanced amplifier
KR850000359B1 (en) In-phase voltage elimination circuit for hall element
JPS6042419B2 (en) Insulation resistance measuring device
WO2024090239A1 (en) Differential input/differential output inverting amplifier circuit and measuring device
US4529936A (en) Supply circuit including a pair of amplifying channels for an eddy current probe with two windings
JPS59141058A (en) Magnetic detector
JPH0640107B2 (en) Current measuring transmitter
JPH0569631U (en) Capacity type electromagnetic flow meter
JP3190429B2 (en) Balanced voltage measuring device and balanced voltage measuring method
JPS61129582A (en) Measuring method of mutual inductance
KR910009926B1 (en) Means power detecting circuit using hall cell
JPH06167516A (en) Current sensor
JPH05231890A (en) Capacity type electromagnetic flowmeter
JPS6154815A (en) Method of removing phase error of zero phase current transformer
SU1721524A1 (en) Zero sequence current-to-voltage converter
JPH1056356A (en) Signal transmission device
JPS6128406Y2 (en)
JPH056670B2 (en)
JPH0225121A (en) Unbalanced current detector
JPH0545932Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term