JPH10274620A - Gas-analyzing apparatus - Google Patents

Gas-analyzing apparatus

Info

Publication number
JPH10274620A
JPH10274620A JP9526597A JP9526597A JPH10274620A JP H10274620 A JPH10274620 A JP H10274620A JP 9526597 A JP9526597 A JP 9526597A JP 9526597 A JP9526597 A JP 9526597A JP H10274620 A JPH10274620 A JP H10274620A
Authority
JP
Japan
Prior art keywords
gas
concentration
span
flow rate
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9526597A
Other languages
Japanese (ja)
Inventor
Shingo Sumi
心吾 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP9526597A priority Critical patent/JPH10274620A/en
Publication of JPH10274620A publication Critical patent/JPH10274620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a time for calibration of a span. SOLUTION: Control pattern data are stored in a coefficient memory 22, which show a correspondence of a concentration coefficient and a time lapse so as to obtain a higher concentration than a predetermined concentration at a span gas introduction initial stage. After the introduction of a span gas is indicated to be started, a CPU 21 calculates flow rates of mass flow controllers 11, 12 in accordance with a control pattern read out from the coefficient memory 22. A component gas and a dilution gas are mixed in a mixing chamber 13 and supplied as the span gas to an analyzing part 14. Even if a component to be measured is adsorbed to an inner wall of a piping and the component is reduced at the initial stage, the span gas supplied to the analyzing part 14 is close to the predetermined concentration, and therefore a detection value of a concentration of the gas at the analyzing part 14 since promptly and becomes nearly constant in a short time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種工業プロセス
のガス濃度の監視・制御や公害監視のための排ガス濃度
測定等、環境大気測定に使用されるガス分析装置に関
し、更に詳しくは、ガス分析装置において校正のための
標準ガスを調製するガス調製部に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas analyzer used for environmental air measurement such as monitoring and control of gas concentration in various industrial processes and measurement of exhaust gas concentration for monitoring pollution. The present invention relates to a gas preparation unit for preparing a standard gas for calibration in an apparatus.

【0002】[0002]

【従来の技術】各種工業プロセスのガス濃度の監視・制
御や公害監視のための排ガス濃度測定等の環境大気測定
の分野では、非分散形赤外線吸収法、紫外線蛍光法、化
学発光法等を用いたガス分析装置が広く使用されてい
る。例えば赤外線ガス分析計では、試料セルと対照セル
に赤外光を投射して両セル内のガスによる特定波長の赤
外光の吸収量(又は透過光量)を比較することにより、
試料ガスに含まれる特定成分の濃度(以下「試料ガス濃
度」という)を測定する。具体的には、まず、測定成分
を含まない窒素ガス又は標準的な大気等をゼロガスとし
て試料セルに流し、この時の検出値をゼロ点とする(ゼ
ロ校正)。次に、既知の濃度の測定成分を含むガスをス
パンガスとして試料セルに流し、この時の検出値をスパ
ン点とする(スパン校正)。その後、試料ガスを試料セ
ルに流し、このときの検出値のゼロ点とスパン点との間
又はその延長上の相対位置より、試料ガス濃度を求め
る。
2. Description of the Related Art In the field of environmental air measurement such as monitoring and control of gas concentration in various industrial processes and measurement of exhaust gas concentration for pollution monitoring, non-dispersive infrared absorption method, ultraviolet fluorescence method, chemiluminescence method and the like are used. Gas analyzers are widely used. For example, in an infrared gas analyzer, by projecting infrared light onto a sample cell and a control cell, and comparing the absorption amount (or transmitted light amount) of infrared light of a specific wavelength by the gas in both cells,
The concentration of a specific component contained in the sample gas (hereinafter referred to as “sample gas concentration”) is measured. Specifically, first, a nitrogen gas or a standard atmosphere containing no measurement component is flown as a zero gas into the sample cell, and the detected value at this time is set as a zero point (zero calibration). Next, a gas containing a measurement component of a known concentration is flowed into the sample cell as a span gas, and the detected value at this time is set as a span point (span calibration). Thereafter, the sample gas is caused to flow into the sample cell, and the sample gas concentration is determined from the relative position between the zero point and the span point of the detected value at that time or on an extension thereof.

【0003】試料ガス濃度を精度良く求めるには、でき
るだけ該試料ガス濃度に近い濃度を有するスパンガスを
用いてスパン校正を行なうことが好ましい。一般に、環
境大気中の成分を測定するガス分析装置においては、試
料ガス濃度が低いため、スパンガスも比較的低い濃度の
ものが使用される。このような濃度の低いガスをボンベ
等で保管、管理しておくことは効率等の観点から好まし
くないため、通常、測定現場にて、高い濃度の成分ガス
を希釈ガスで希釈することにより所望濃度のスパンガス
に調製して、校正に使用するのが一般的である。
In order to accurately determine the sample gas concentration, it is preferable to perform span calibration using a span gas having a concentration as close as possible to the sample gas concentration. Generally, in a gas analyzer for measuring components in the ambient air, since the sample gas concentration is low, a span gas having a relatively low concentration is used. Since it is not preferable from the viewpoint of efficiency and the like to store and manage such a low-concentration gas in a cylinder or the like, the desired concentration is usually obtained by diluting a high-concentration component gas with a diluent gas at the measurement site. Is generally prepared for use in calibration.

【0004】[0004]

【発明が解決しようとする課題】上記スパンガスの調製
部を備えたガス分析装置の概略構成を図5に示す。成分
ガス及び希釈ガスは、それぞれ第一及び第二のマスフロ
ーコントローラ(MFC)11、12を通して混合室1
3に導入され、そこで充分に混合されてガス分析部14
に送出される。第一及び第二のマスフローコントローラ
11、12は、所定濃度のスパンガスが調製されるよう
に、それぞれ所定流量の成分ガス及び希釈ガスを流すべ
くその開放量が調節される。スパン校正では、ガス分析
部14の試料セル中においてスパンガスの濃度が安定し
ないうちに校正動作を終了すると正確な校正ができない
ため、試料セルにスパンガスを導入した後にその濃度の
検出値の安定度をチェックし、略一定に落ち着いたなら
ば校正動作を終了するという方法が採られている。
FIG. 5 shows a schematic configuration of a gas analyzer provided with the span gas preparation section. The component gas and the diluent gas are supplied to the mixing chamber 1 through first and second mass flow controllers (MFCs) 11 and 12, respectively.
3 where it is mixed well and the gas analyzer 14
Sent to The opening amounts of the first and second mass flow controllers 11 and 12 are adjusted so that a predetermined flow rate of the component gas and a predetermined flow rate of the diluent gas are supplied so that a predetermined concentration of the span gas is prepared. In the span calibration, if the calibration operation is completed before the span gas concentration is stabilized in the sample cell of the gas analyzer 14, accurate calibration cannot be performed. Therefore, after introducing the span gas into the sample cell, the stability of the detected value of the concentration is reduced. A method is adopted in which the calibration operation is terminated when the state is checked and settled substantially constant.

【0005】ところが、上記混合室13からガス分析部
14にスパンガスを供給し始めた後、スパンガス中の成
分の一部がガス分析部14に至る配管の内壁等に吸着さ
れてしまう。このため、ガス分析部14での上記検出値
は、図4(a)に示すように略一定状態に達する迄の立
上りが非常に緩慢になり、校正動作に長い時間を要して
しまう。特に、測定対象が低濃度で且つ配管等への吸着
力が強いSO2等の物質である場合には、上記検出値が
略一定に達する迄に数十分程度も要してしまうことがあ
る。このように校正動作に長時間を要すると、測定でき
ない時間(欠測時間)が長くなり、環境大気を連続的に
モニタリングしたい場合に大きな問題となる。
However, after the supply of the span gas from the mixing chamber 13 to the gas analyzer 14 starts, some of the components in the span gas are adsorbed on the inner wall of the pipe leading to the gas analyzer 14. For this reason, as shown in FIG. 4A, the detected value of the gas analyzer 14 rises very slowly until reaching a substantially constant state, and a long time is required for the calibration operation. In particular, when the measurement target is a substance such as SO 2 having a low concentration and a strong adsorption power to a pipe or the like, it may take several tens of minutes before the detection value reaches a substantially constant value. . If the calibration operation requires a long time as described above, the time during which measurement cannot be performed (missing time) increases, and this becomes a serious problem when it is desired to continuously monitor the ambient air.

【0006】本発明は上記課題を解決するために成され
たものであり、その目的とするところは、スパンガス濃
度が安定する迄の時間を短縮することにより、スパン校
正の所要時間を短縮できるガス分析装置を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to reduce the time required for the span gas concentration to stabilize, thereby reducing the time required for span calibration. An object of the present invention is to provide an analyzer.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に成された本発明は、高濃度の成分ガスを希釈ガスで希
釈することにより所定濃度の標準ガスを調製し、該標準
ガスを分析部に導入して校正を行なうガス分析装置にお
いて、 a)成分ガスの流量を調節する第一流量調節手段と、 b)希釈ガスの流量を調節する第二流量調節手段と、 c)前記第一流量調節手段により流量が調節された成分ガ
スと前記第二流量調節手段により流量が調節された希釈
ガスとを混合して分析部へ送る混合手段と、 d)該混合手段から分析部への標準ガスの導入初期の所定
期間に前記所定濃度よりも高い濃度の標準ガスが導入さ
れるように、前記第一及び/又は第二流量調節手段を制
御する制御手段と、 を備えたことを特徴としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method of preparing a standard gas having a predetermined concentration by diluting a high-concentration component gas with a diluent gas and analyzing the standard gas. A) a gas analyzer that performs calibration by introducing it into the section, a) first flow rate adjusting means for adjusting the flow rate of the component gas, b) second flow rate adjusting means for adjusting the flow rate of the dilution gas, and c) the first flow rate adjusting means. Mixing means for mixing the component gas whose flow rate has been adjusted by the flow rate adjusting means and the diluent gas whose flow rate has been adjusted by the second flow rate adjusting means and sending the mixed gas to the analysis unit; d) a standard from the mixing means to the analysis unit; Control means for controlling the first and / or second flow rate adjusting means so that a standard gas having a concentration higher than the predetermined concentration is introduced during a predetermined period of the initial period of gas introduction. I have.

【0008】[0008]

【発明の実施の形態】上記本発明に係るガス分析装置で
は、制御手段は、例えば、標準ガスつまりスパンガスの
導入開始時より、一定量の希釈ガスが混合手段に流れる
ように第二流量調節手段を制御する一方、スパンガスの
導入開始時より所定時間が経過する迄は該経過後よりも
所定量だけ多くの成分ガスが流れるように第一流量調節
手段を制御する。スパンガスの導入初期には、スパンガ
ス中の成分が分析部に至る配管の内壁等に吸着される
が、所定濃度よりも高い濃度のスパンガスが混合手段よ
り送り出されるため、上記吸着により成分の一部が途中
で捕捉されたとしても、所定濃度に近い濃度のスパンガ
スが分析部に到達する。また、上記吸着がほぼ飽和して
その影響がなくなる時点の前後には、所定濃度のスパン
ガスが混合手段から送り出される。このため、分析部に
て検出されるスパンガスの濃度は、上記吸着の影響をあ
まり受けることなく、ガス導入開始時より急速に立ち上
がり短時間の間に略一定状態に落ち着く。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the gas analyzer according to the present invention, the control means includes, for example, the second flow rate adjusting means such that a certain amount of dilution gas flows to the mixing means from the start of introduction of the standard gas, that is, the span gas. On the other hand, the first flow rate adjusting means is controlled so that a larger amount of component gas flows by a predetermined amount than after the elapse of a predetermined time from the start of introduction of the span gas. In the initial stage of the introduction of the span gas, components in the span gas are adsorbed on the inner wall of the pipe to the analysis unit, etc., but since the span gas having a concentration higher than a predetermined concentration is sent out from the mixing means, a part of the components is absorbed by the adsorption. Even if the gas is captured on the way, the span gas having a concentration close to the predetermined concentration reaches the analysis unit. Also, before and after the point at which the adsorption is substantially saturated and its influence is eliminated, a span gas of a predetermined concentration is sent out from the mixing means. For this reason, the concentration of the span gas detected by the analyzer rises rapidly from the start of gas introduction and settles to a substantially constant state in a short time without being largely affected by the adsorption.

【0009】上記制御手段は、例えば、上記所定時間と
該所定時間の間のスパンガスの濃度の増加係数とを対応
付けて記憶した記憶手段と、該記憶手段の記憶内容に従
って第一及び第二流量調節手段に対する制御量(例えば
制御電圧)を算出する演算手段とから構成することがで
きる。なお、上記吸着による影響の度合は標準ガスの濃
度により相違するため、上記所定時間や増加係数等は予
め実験等によりガス濃度毎に測定して最適な値を求めて
記憶しておき、スパン校正時に所望のスパンガス濃度が
設定されると最適な値が選択されるようにしておくとよ
い。
The control means includes, for example, storage means for storing the predetermined time and an increase coefficient of the concentration of the span gas during the predetermined time in association with each other, and first and second flow rates according to the storage contents of the storage means. Calculation means for calculating a control amount (for example, control voltage) for the adjustment means. Since the degree of the influence of the above adsorption differs depending on the concentration of the standard gas, the above-mentioned predetermined time and the increase coefficient are measured in advance for each gas concentration by experiments or the like, and the optimum values are obtained and stored, and the span calibration is performed. Sometimes, when a desired span gas concentration is set, an optimum value may be selected.

【0010】[0010]

【発明の効果】本発明に係るガス分析装置によれば、分
析部へのスパンガスの導入初期に、該スパンガスの濃度
が設定された所定濃度よりも一時的に高められるので、
配管等での吸着によるスパンガス中の成分量減少の影響
が軽減され、分析部にて検出されるガス濃度は速やかに
一定状態に落ち着く。このため、スパン校正に要する時
間が短時間で済み、欠測時間を短くすることができる。
According to the gas analyzer according to the present invention, the concentration of the span gas is temporarily increased from the set predetermined concentration at the initial stage of the introduction of the span gas into the analysis section.
The effect of a decrease in the amount of components in the span gas due to adsorption in a pipe or the like is reduced, and the gas concentration detected by the analyzer quickly settles to a constant state. Therefore, the time required for span calibration is short, and the missing time can be shortened.

【0011】[0011]

【実施例】以下、本発明に係るガス分析装置の一実施例
を図1、図3、図4を参照して説明する。図1は、本実
施例のガス分析装置の要部の構成図である。ガス調製部
は、第一のマスフローコントローラ11、第二のマスフ
ローコントローラ12、混合室13、制御部20及び操
作部25から構成される。制御部20は、例えばマイク
ロコンピュータ等から成り、CPU21、係数メモリ2
2、第一のD/A変換器23、第二のD/A変換器24
を含んでいる。係数メモリ22には後述のような流量制
御に必要なデータが記憶されており、操作部25により
与えられる指示に応じてCPU21は適当なデータを係
数メモリ22から読み出し、該データに従って制御電圧
をデジタル値として出力する。この制御電圧は第一及び
第二のD/A変換器23、24にてそれぞれアナログ電
圧に変換され、第一及び第二のマスフローコントローラ
11、12に入力される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the gas analyzer according to the present invention will be described below with reference to FIGS. FIG. 1 is a configuration diagram of a main part of the gas analyzer of the present embodiment. The gas preparation unit includes a first mass flow controller 11, a second mass flow controller 12, a mixing chamber 13, a control unit 20, and an operation unit 25. The control unit 20 includes, for example, a microcomputer or the like, and includes a CPU 21 and a coefficient memory 2.
2. First D / A converter 23, Second D / A converter 24
Contains. The coefficient memory 22 stores data necessary for flow control as described later, and the CPU 21 reads out appropriate data from the coefficient memory 22 in accordance with an instruction given by the operation unit 25, and converts a control voltage into a digital signal according to the data. Output as a value. The control voltage is converted into an analog voltage by the first and second D / A converters 23 and 24, respectively, and is input to the first and second mass flow controllers 11 and 12.

【0012】図3は、本実施例において係数メモリ22
に記憶されるガス濃度の制御パターンの一例を示す図で
ある。この制御パターンは、スパンガスの所定濃度を1
としたときの濃度比を濃度係数として時間経過に従って
示したものである。
FIG. 3 shows the coefficient memory 22 in the present embodiment.
FIG. 3 is a diagram showing an example of a control pattern of gas concentration stored in the storage device. This control pattern sets the predetermined concentration of the span gas to 1
The density ratio is expressed as a density coefficient as time elapses.

【0013】以下、図3(a)に示す制御パターンに従
って流量制御が実行される場合の、上記ガス調製部の動
作を説明する。操作部25からの操作によりスパン校正
の開始が指示されると、CPU21は内部タイマの時間
経過に従って係数メモリ22から上記制御パターンの濃
度係数を順次読み出し、設定された目標スパンガス濃度
に読み出した濃度係数を乗じて制御目標濃度を算出す
る。更に、この制御目標濃度に対応して成分ガスと希釈
ガスとの必要流量がそれぞれ計算され、該必要流量を得
るための各制御電圧値が求められる。これにより、第一
及び第二のマスフローコントローラ11、12はそれぞ
れ所定流量の成分ガス及び希釈ガスを流し、混合室13
にて混じり合って調製されたスパンガスがガス分析部1
4へ送出される。
Hereinafter, the operation of the gas preparation unit when the flow rate control is performed according to the control pattern shown in FIG. 3A will be described. When the start of span calibration is instructed by an operation from the operation unit 25, the CPU 21 sequentially reads the density coefficient of the control pattern from the coefficient memory 22 according to the elapse of the internal timer, and reads the density coefficient read to the set target span gas concentration. To calculate the control target concentration. Further, the required flow rates of the component gas and the diluent gas are calculated in accordance with the control target concentrations, and control voltage values for obtaining the required flow rates are obtained. As a result, the first and second mass flow controllers 11 and 12 flow the component gas and the diluent gas at predetermined flow rates, respectively, and
The span gas prepared by mixing at the gas analyzer 1
4 is sent.

【0014】図3(a)の制御パターンによれば、スパ
ン校正開始時刻t0より時刻t1迄の期間、濃度係数は1
よりも大きなC1となっている。このため、この期間の
制御目標濃度は目標スパンガス濃度よりも(C1−1)
×100〔%〕だけ高くなる。次いで、時刻t1より時
刻t2迄の期間、濃度係数は1よりも大きく且つC1より
も小さいC2となっている。このため、この期間の制御
目標濃度は目標スパンガス濃度よりも(C2−1)×1
00〔%〕だけ高くなる。従って、第一及び第二のマス
フローコントローラ11、12では、上記濃度の増加に
見合ったように各流量が制御される。
According to the control pattern shown in FIG. 3A, the density coefficient is 1 during the span calibration start time t0 to the time t1.
Is larger than C1. Therefore, the control target concentration in this period is higher than the target span gas concentration by (C1-1).
× 100 [%]. Next, during the period from time t1 to time t2, the density coefficient is C2 which is larger than 1 and smaller than C1. For this reason, the control target concentration during this period is (C2-1) × 1 higher than the target span gas concentration.
It increases by 00 [%]. Therefore, in the first and second mass flow controllers 11 and 12, each flow rate is controlled in accordance with the increase in the concentration.

【0015】スパンガスが供給され始めると、スパンガ
ス中の測定対象成分の一部はガス分析部14に至る配管
中の内壁等に吸着されるため、ガス分析部14迄到達す
る測定対象成分は減少する。つまり、ガス分析部14に
到達したスパンガス濃度は混合室13を出た直後のガス
濃度よりも低くなる。このような配管内壁への吸着はス
パンガスの供給開始直後には多いが時間の経過に伴って
次第に減少し、或る時間が経過すると飽和して、それ以
降は殆ど吸着されなくなる。
When the supply of the span gas is started, a part of the components to be measured in the span gas is adsorbed on an inner wall or the like in a pipe extending to the gas analyzer 14, so that the components to be measured reaching the gas analyzer 14 decrease. . That is, the concentration of the span gas that has reached the gas analyzer 14 is lower than the concentration of the gas immediately after leaving the mixing chamber 13. Such adsorption to the inner wall of the pipe is large immediately after the start of the supply of the span gas, but gradually decreases with the passage of time, becomes saturated after a certain period of time, and is hardly adsorbed thereafter.

【0016】上述のようにスパンガス濃度が制御される
と、吸着が多い期間には混合室13から送出されるスパ
ンガス濃度が高められているため、途中で測定対象成分
の一部が吸着されてもガス分析部14に到達したスパン
ガスの濃度は設定された目標スパンガス濃度に近いもの
となる。これにより、ガス分析部14にて得られるガス
濃度の検出値の時間変化は、図4(b)に示すようにな
る。すなわち、スパン校正開始時刻t0より所定時間Δ
tだけ遅延してスパンガスがガス分析部14に到達した
後、検出値は急激に上昇し目標スパンガス濃度に迅速に
近付き略一定に落ち着く。このため、スパン校正を短時
間の内に終了することができる。
When the concentration of the span gas is controlled as described above, the concentration of the span gas sent from the mixing chamber 13 is increased during a period in which the amount of adsorption is large. The concentration of the span gas that has reached the gas analyzer 14 is close to the set target span gas concentration. Thus, the time change of the detected value of the gas concentration obtained by the gas analyzer 14 is as shown in FIG. That is, a predetermined time Δ from the span calibration start time t0
After the span gas arrives at the gas analyzer 14 with a delay of t, the detected value rises sharply, quickly approaches the target span gas concentration, and settles to a substantially constant value. Therefore, span calibration can be completed within a short time.

【0017】一旦、配管の内壁等に吸着された測定対象
成分は、主として、次にゼロ校正が行なわれる際、該配
管に流されたゼロガスにより運び去られる。このため、
その直後のスパン校正時の初期には再びスパンガス中の
測定対象成分の吸着が生じる。このような測定作業の繰
り返しにより、スパン校正時毎に、吸着される測定対象
成分の量はほぼ一定になる。このため、目標スパンガス
濃度が高いと、スパンガスの導入初期の短時間の間に上
記吸着が飽和してしまい、このような場合に図4(a)
に示すような制御パターンに従って流量制御を行なう
と、ガス分析部14に目標スパンガス濃度を大きく越え
た濃度のスパンガスが流入する恐れがある。このとき、
ガス分析部14での検出値の時間変化は、図4(c)に
示すように大きくオーバーシュートしたものとなり、略
一定に落ち着く迄に却って時間を要してしまう。
The component to be measured once adsorbed on the inner wall of the pipe or the like is mainly carried away by the zero gas flowing through the pipe when the next zero calibration is performed. For this reason,
Immediately after the initial stage of span calibration, adsorption of the measurement target component in the span gas occurs again. By repeating such a measurement operation, the amount of the component to be measured adsorbed becomes substantially constant every time the span calibration is performed. For this reason, if the target span gas concentration is high, the adsorption is saturated during a short period of time at the initial stage of the introduction of the span gas. In such a case, FIG.
When the flow rate is controlled in accordance with the control pattern shown in FIG. 1, there is a possibility that a span gas having a concentration greatly exceeding the target span gas concentration may flow into the gas analyzer 14. At this time,
The time change of the detection value in the gas analysis unit 14 is a large overshoot as shown in FIG. 4C, and it takes time to settle down to a substantially constant level.

【0018】そこで、本実施例のガス分析装置では、予
め実験を行なって、目標スパンガス濃度とそれに応じた
最適の制御パターンを調べておく。そして、この制御パ
ターンを目標スパンガス濃度に対応付けて係数メモリ2
2に記憶させる。スパン校正時に測定者が操作部25を
操作して目標スパンガス濃度を設定すると、CPU21
は設定された濃度に応じて最適な制御パターンを係数メ
モリ22から読み出して上述のような流量制御を実行す
る。
Therefore, in the gas analyzer of the present embodiment, an experiment is performed in advance to check the target span gas concentration and the optimum control pattern corresponding to the target span gas concentration. Then, this control pattern is associated with the target span gas concentration and the coefficient memory 2
Store it in 2. When the measurer operates the operation unit 25 to set the target span gas concentration during span calibration, the CPU 21
Reads the optimal control pattern from the coefficient memory 22 in accordance with the set density and executes the flow rate control as described above.

【0019】図3(b)は高濃度のスパンガスに対応し
た制御パターンの一例であって、時刻t0より時刻t3迄
の期間、1よりも僅かに大きい濃度係数C3とし、時刻
t3以降は濃度係数を1とするようにしている。この制
御パターンに従えば、スパンガス導入初期に混合室13
から送出されるスパンガス濃度は目標スパンガス濃度よ
りも僅かに高いだけであるので、図4(c)に示したよ
うなオーバーシュートを防止することができる。更に高
濃度のスパンガスに対しては、図3(c)に示すように
濃度係数を1に維持した制御パターンを用いることもで
きる。
FIG. 3B shows an example of a control pattern corresponding to a high-concentration span gas. In the period from time t0 to time t3, a concentration coefficient C3 slightly larger than 1 is set. Is set to 1. According to this control pattern, the mixing chamber 13 is initially set at the beginning of the span gas introduction.
Is only slightly higher than the target span gas concentration, the overshoot as shown in FIG. 4C can be prevented. For a higher-concentration span gas, a control pattern in which the concentration coefficient is maintained at 1 as shown in FIG.

【0020】これにより、幅広い濃度のスパンガス調製
において、ガス分析部14での検出値を短時間のうちに
略一定状態にすることができる。
Thus, in the preparation of span gas having a wide range of concentrations, the value detected by the gas analyzer 14 can be made substantially constant in a short time.

【0021】図2は、本発明に係るガス分析装置の他の
実施例を示す構成図である。本実施例では、CPU21
にガス分析部14でのガス濃度の検出値が入力されてい
る。すなわち、CPU21は基本的に上記実施例と同様
に係数メモリ22より読み出した制御パターンのデータ
に基づいて流量を制御するが、実際のガス濃度の検知結
果により制御を修正する。
FIG. 2 is a block diagram showing another embodiment of the gas analyzer according to the present invention. In the present embodiment, the CPU 21
, The detected value of the gas concentration in the gas analyzer 14 is input. That is, the CPU 21 basically controls the flow rate based on the control pattern data read from the coefficient memory 22 as in the above embodiment, but corrects the control based on the actual gas concentration detection result.

【0022】例えば、図3(a)に示した制御パターン
に従って制御を開始した後、時刻t1になったときに検
出値が或る一定値を越えていた場合(例えばオーバーシ
ュートした場合)には、係数を1にする時刻t2を規定
の制御パターンよりも速める。これにより、検出値が大
きくオーバーシュートして安定する迄に時間が長引くこ
とを抑制することができる。また、逆に、図3(a)に
示した制御パターンに従って制御を開始した後、時刻t
1において検出値が或る一定値より低い場合には、時刻
t2を規定の制御パターンよりも遅くする。これによ
り、立上りに時間を要し安定する迄に時間が長引くこと
を抑制することができる。更に、CPU21に学習機能
を持たせて、上記のように修正が必要であったことを記
憶しておき、次に同一の目標スパンガス濃度が設定され
たとき、係数メモリ22から読み出したデータを自動的
に修正して流量制御を行なうようにしてもよい。また、
係数メモリ22のデータ内容自体を書き換えるようにす
ることもできる。
For example, if the detected value exceeds a certain value at the time t1 after the control is started according to the control pattern shown in FIG. 3A (for example, when overshoot occurs). , The time t2 at which the coefficient is set to 1 is earlier than the prescribed control pattern. As a result, it is possible to suppress a prolonged time until the detected value largely overshoots and stabilizes. Conversely, after starting the control according to the control pattern shown in FIG.
If the detected value is lower than a certain value at 1, the time t2 is made later than the prescribed control pattern. As a result, it is possible to suppress a prolonged time from the time required for rising to the time required for stabilization. Further, the CPU 21 is provided with a learning function to store that the correction is necessary as described above, and when the same target span gas concentration is set next time, the data read from the coefficient memory 22 is automatically stored. The flow rate control may be performed by correcting the flow rate. Also,
The data content itself of the coefficient memory 22 can be rewritten.

【0023】なお、上記実施例は一例であって、本発明
の趣旨の範囲で適宜変更や修正を行なえることは明らか
である。
The above embodiment is merely an example, and it is apparent that changes and modifications can be made within the spirit of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のガス分析装置による一実施例の構成
図。
FIG. 1 is a configuration diagram of one embodiment of a gas analyzer according to the present invention.

【図2】 本発明のガス分析装置による他の実施例の構
成図。
FIG. 2 is a configuration diagram of another embodiment of the gas analyzer according to the present invention.

【図3】 本実施例におけるスパンガス濃度の制御パタ
ーンの一例を示す図。
FIG. 3 is a view showing an example of a control pattern of a span gas concentration in the embodiment.

【図4】 本実施例においてガス分析部での検出値の変
化の一例を示す図。
FIG. 4 is a diagram illustrating an example of a change in a detection value in a gas analyzer in the present embodiment.

【図5】 従来のガス分析装置の概略構成図。FIG. 5 is a schematic configuration diagram of a conventional gas analyzer.

【符号の説明】[Explanation of symbols]

11…第一のマスフローコントローラ 12…第二のマスフローコントローラ 13…混合室 14…ガス分析
部 20…制御部 21…CPU 22…係数メモリ 23、24…D
/A変換器 25…操作部
DESCRIPTION OF SYMBOLS 11 ... 1st mass flow controller 12 ... 2nd mass flow controller 13 ... Mixing chamber 14 ... Gas analysis part 20 ... Control part 21 ... CPU 22 ... Coefficient memory 23, 24 ... D
/ A converter 25: Operation unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高濃度の成分ガスを希釈ガスで希釈する
ことにより所定濃度の標準ガスを調製し、該標準ガスを
分析部に導入して校正を行なうガス分析装置において、 a)成分ガスの流量を調節する第一流量調節手段と、 b)希釈ガスの流量を調節する第二流量調節手段と、 c)前記第一流量調節手段により流量が調節された成分ガ
スと前記第二流量調節手段により流量が調節された希釈
ガスとを混合して分析部へ送る混合手段と、 d)該混合手段から分析部への標準ガスの導入初期の所定
期間に前記所定濃度よりも高い濃度の標準ガスが導入さ
れるように、前記第一及び/又は第二流量調節手段を制
御する制御手段と、 を備えたことを特徴とするガス分析装置。
1. A gas analyzer for preparing a standard gas having a predetermined concentration by diluting a high-concentration component gas with a diluent gas, introducing the standard gas into an analysis unit, and performing calibration. First flow rate adjusting means for adjusting the flow rate, b) second flow rate adjusting means for adjusting the flow rate of the dilution gas, c) component gas whose flow rate is adjusted by the first flow rate adjusting means, and the second flow rate adjusting means A mixing means for mixing the diluted gas whose flow rate has been adjusted with the mixture and sending the mixed gas to the analysis unit; d) a standard gas having a concentration higher than the predetermined concentration during a predetermined period at the initial stage of introduction of the standard gas from the mixing means to the analysis unit. And a control means for controlling the first and / or second flow rate adjusting means so as to be introduced.
JP9526597A 1997-03-28 1997-03-28 Gas-analyzing apparatus Pending JPH10274620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9526597A JPH10274620A (en) 1997-03-28 1997-03-28 Gas-analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9526597A JPH10274620A (en) 1997-03-28 1997-03-28 Gas-analyzing apparatus

Publications (1)

Publication Number Publication Date
JPH10274620A true JPH10274620A (en) 1998-10-13

Family

ID=14132944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9526597A Pending JPH10274620A (en) 1997-03-28 1997-03-28 Gas-analyzing apparatus

Country Status (1)

Country Link
JP (1) JPH10274620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627557B2 (en) 2000-03-31 2003-09-30 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
CN102539403A (en) * 2011-12-31 2012-07-04 聚光科技(杭州)股份有限公司 System and method for monitoring elements of gas in pipeline

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627557B2 (en) 2000-03-31 2003-09-30 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
CN102539403A (en) * 2011-12-31 2012-07-04 聚光科技(杭州)股份有限公司 System and method for monitoring elements of gas in pipeline

Similar Documents

Publication Publication Date Title
EP2034311B1 (en) Gasless calibration in metabolic gas analyzers
EP1333270B1 (en) Exhaust emissions analysis system
US7454945B1 (en) Mercury monitoring system and calibration
US20120298221A1 (en) Mass flow controller system
DE69204000D1 (en) Direct exhaust gas sampling for current measurements.
US20130179089A1 (en) Odor Discriminating Apparatus
JPH0692935B2 (en) Non-dispersive infrared gas analyzer
US7810376B2 (en) Mitigation of gas memory effects in gas analysis
JP2019086371A (en) Gas analyzer calibration method, gas analysis system, and pressure change device
EP1710563A2 (en) Method of measuring the concentration of nitrogen oxide and nitrogen oxide analyzer
US5190726A (en) Apparatus for measuring the flow rate of water vapor in a process gas including steam
JP2000131227A (en) Method and device for measuring quantity of impurity in analyzed gas sample
JPH10274620A (en) Gas-analyzing apparatus
US7025870B2 (en) Method for analyzing the oxygen concentration of a gas
JPH04148846A (en) Concentration correcting apparatus
JP4749823B2 (en) Fluorine gas concentration measurement method
DE102005016320A1 (en) Infrared gas sensor for humidity measurement, has concentration sensor to measure concentration of sample gas in flushing gas, where neutral point of optical concentration measurement unit is corrected based on measurement concentration
WO2023276762A1 (en) Gas analyzer calibration method, gas analyzer pressure correcting method, gas analyzer inspection method, pressure variation method, pressure variation apparatus, and gas analysis system
JPWO2020066308A1 (en) Gas analyzer and calibration method of gas analyzer
JPS6243133B2 (en)
JPH0664049B2 (en) Water quality analyzer data processing method
JP2001013045A (en) Gas preparation apparatus for calibration and gas analyzer
JPS62237341A (en) Method and instrument for automatic analysis of gas
CN111397988B (en) Generating device and quantifying method for isocyanic acid standard gas
JPH0574772B2 (en)