WO2023276762A1 - Gas analyzer calibration method, gas analyzer pressure correcting method, gas analyzer inspection method, pressure variation method, pressure variation apparatus, and gas analysis system - Google Patents

Gas analyzer calibration method, gas analyzer pressure correcting method, gas analyzer inspection method, pressure variation method, pressure variation apparatus, and gas analysis system Download PDF

Info

Publication number
WO2023276762A1
WO2023276762A1 PCT/JP2022/024578 JP2022024578W WO2023276762A1 WO 2023276762 A1 WO2023276762 A1 WO 2023276762A1 JP 2022024578 W JP2022024578 W JP 2022024578W WO 2023276762 A1 WO2023276762 A1 WO 2023276762A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pressure
introduction port
analyzer
calibration
Prior art date
Application number
PCT/JP2022/024578
Other languages
French (fr)
Japanese (ja)
Inventor
治久 茂原
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2023531825A priority Critical patent/JPWO2023276762A1/ja
Priority to CN202280031541.3A priority patent/CN117242327A/en
Priority to DE112022003279.0T priority patent/DE112022003279T5/en
Publication of WO2023276762A1 publication Critical patent/WO2023276762A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2252Sampling from a flowing stream of gas in a vehicle exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/002Calibrating, i.e. establishing true relation between transducer output value and value to be measured, zeroing, linearising or span error determination
    • G01L27/005Apparatus for calibrating pressure sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0016Sample conditioning by regulating a physical variable, e.g. pressure or temperature

Definitions

  • the present invention relates to a gas analyzer calibration method, a gas analyzer pressure correction method, a gas analyzer inspection method, a pressure fluctuation method, a pressure fluctuation device, and a gas analysis system.
  • the exhaust gas analyzer uses a pressure correction coefficient for correcting the pressure influence to perform pressure correction on the measured value of each analyzer and convert it to a reference pressure (for example, the pressure when creating a calibration curve).
  • a reference pressure for example, the pressure when creating a calibration curve.
  • the measurement results at altitudes lower than the calibration point are considered to have the same pressure effect even at altitudes lower than the calibration point. Since the correction is extrapolated based on assumptions, there is a risk that there will be discrepancies between the actual measurement results and those at low altitudes.
  • the present invention has been made to solve the above-mentioned problems, and the pressure correction coefficient can be calculated while reproducing the state of pressurization for the gas analyzer without preparing an environmental facility such as a pressurization test chamber.
  • the main task is to find it with high accuracy.
  • a pressure fluctuation device having a pressurization mechanism and a gas discharge mechanism is connected to a sample gas introduction port and a gas discharge port of the gas analyzer,
  • a pressure mechanism applies pressure to the sample gas introduction port and the gas discharge port to vary the pressures of the sample gas introduction port and the gas discharge port, and the state in which the pressure is changed (specifically, the pressure In a state where pressure is applied compared to before the pressure mechanism is operated), calibration gas is introduced from the calibration gas introduction port of the gas analyzer and flows out from the sample gas introduction port or the gas discharge port. Gas is discharged by the gas discharge mechanism of the pressure fluctuation device, and the pressure correction coefficient of the gas analysis device is calculated using the measurement result of the calibration gas in the gas analysis device.
  • the pressure fluctuation device is connected to the sample gas introduction port and the gas discharge port of the gas analyzer, the pressurized state of the gas analyzer can be reproduced without using a pressurization test chamber. can do. Therefore, at altitudes lower than the calibration point, the pressure correction coefficient can be obtained with high accuracy without extrapolative correction of the pressure correction coefficient.
  • the pressure variation device is used to vary a plurality of pressures, and the measurement results of the calibration gas at each of the plurality of pressures match the measurement results of the calibration gas at the reference pressure. It is desirable to calculate the pressure correction factor of the gas analyzer as follows. As the reference pressure, the pressure at the time of preparing the calibration curve of the gas analyzer or the pressure at the time of calibration such as zero calibration or span calibration can be considered.
  • the calibration gas can be introduced into the analyzer of the gas analyzer without being diluted.
  • Some conventional gas analyzers are further equipped with an atmosphere introduction port.
  • the air introduced from the air introduction port is used to dilute the gas or generate ozone.
  • Ozone generated from the atmosphere is used for the measurement of the analyzer.
  • the analyzer in this case is considered to be a nitrogen oxide analyzer of the chemiluminescence (CLD) method using an oxidation reaction by ozone gas.
  • CLD chemiluminescence
  • the pump is connected to the atmosphere introduction port, pressure is applied to the sample gas introduction port, the gas discharge port and the atmosphere introduction port, and the sample gas is introduced. It is desirable to vary the pressure of the port, the gas exhaust port and the atmospheric inlet port. At this time, since the calibration gas is discharged by the gas discharge mechanism of the pressure fluctuation device, backflow of the calibration gas at the atmosphere introduction port can be suppressed.
  • the gas analyzer is of a vehicle-mounted type, the effects of the present invention can be made remarkable because air pressure fluctuations are likely to occur depending on the travel route in the actual road test.
  • the pressure correction method for a gas analyzer uses the pressure correction coefficient obtained by the above calibration method to convert the measurement result of the actual measurement of the gas analyzer based on the pressure at the time of the actual measurement. and correcting the measurement result at the reference pressure of the gas analyzer.
  • a method for inspecting a gas analyzer is a gas analyzer having a pressure correction function using a pressure correction coefficient.
  • the device is connected, and the pressurizing mechanism of the pressure variation device applies pressure to the sample gas introduction port and the gas discharge port to vary the pressures of the sample gas introduction port and the gas discharge port, and the pressure changes.
  • a changed state specifically, a state in which pressure is applied compared to before the pressurization mechanism operates
  • a calibration gas from a calibration gas introduction port of the gas analyzer
  • the calibration gas flowing out from the gas introduction port or the gas discharge port is discharged by the gas discharge mechanism of the pressure fluctuation device, and the measured value after correction using the pressure correction coefficient in the gas analysis device and the calibration gas is compared with a known concentration at a reference pressure of
  • a pressure fluctuation device having a pressurization mechanism and a gas discharge mechanism is connected to a sample gas introduction port and a gas discharge port of a gas analyzer, and the pressure fluctuation device of the pressure fluctuation device is connected to the gas discharge port.
  • the gas flowing out from the gas discharge port is discharged by the gas discharge mechanism of the pressure fluctuation device.
  • a pressure fluctuation device for fluctuating the pressure of a gas analyzer, comprising: a first channel connected to a sample gas introduction port of the gas analyzer; A second flow path connected to a gas discharge port, and applying pressure to the sample gas introduction port and the gas discharge port through the first flow path and the second flow path to remove the sample gas introduction port and the gas discharge port. connected to a pressure mechanism for varying the pressure of the gas discharge port, a flow path between the pressure mechanism and the sample gas introduction port, and a flow path between the pressure mechanism and the gas discharge port; and a gas discharge mechanism for discharging gas flowing out from the sample gas introduction port or the gas discharge port.
  • the pressurization mechanism In order to reproduce the state of pressurization of the gas analyzer through the first flow path and the second flow path by a common pressurization source, the pressurization mechanism should include the first flow path and the second flow path. It is desirable to have a confluence channel to which the flow paths are connected, and a pressurization source that pressurizes the first flow path and the second flow path via the confluence flow path.
  • the pressurizing mechanism In order to easily adjust the pressure of each channel, it is desirable that the pressurizing mechanism has a pressure adjusting section that adjusts the pressure of the merged channel.
  • the confluence flow path has a buffer tank
  • the pressurization source is a pump
  • the first flow path and the second flow path are buffer tanks. It is desirable to be connected to the pump through a tank.
  • the first channel and the second channel are connected to the pump through the buffer tank, it is possible to reproduce the pressurized state of the gas analyzer while reducing the pulsation of the pump. .
  • the pressure fluctuation device is configured such that the sample gas is introduced through the first flow path and the second flow path. It is desirable to further include a decompression mechanism for decompressing the port and the gas discharge port, and a switching mechanism for switching between a pressurized state by the pressurization mechanism and a decompressed state by the decompression mechanism.
  • the pressure fluctuation device of the present invention further include a control section that controls the switching mechanism to automatically switch between the pressurized state and the depressurized state.
  • the gas discharge mechanism has a suction pump, and the decompression mechanism is configured using the suction pump. It is desirable to be
  • the pressure fluctuation device further includes a third flow path connected to the atmosphere introduction port of the gas analyzer, and the pressurizing mechanism supplies pressure to the atmosphere introduction port via the third flow path. is added to change the pressure of the atmosphere introduction port.
  • a gas analysis system is characterized by comprising a gas analysis device for analyzing a component to be measured in a sample gas, and the pressure fluctuation device described above.
  • FIG. 1 is an overall schematic diagram of an exhaust gas analysis system according to an embodiment of the present invention
  • FIG. FIG. 4 is a schematic diagram showing the flow of air from the air introduction port of the exhaust gas analysis system according to the same embodiment.
  • FIG. 4 is a schematic diagram showing the flow of air from the air introduction port of the exhaust gas analysis system according to the same embodiment. It is a figure which shows the flowchart of the calibration method of the same embodiment.
  • FIG. 4 is a schematic diagram showing the configuration of a pressure variation device according to a modified embodiment
  • FIG. 4 is a schematic diagram showing the configuration of a pressure variation device according to a modified embodiment
  • FIG. 4 is a schematic diagram showing the configuration of a pressure variation device according to a modified embodiment
  • FIG. 3 is an overall schematic diagram of an exhaust gas analysis system of a modified embodiment;
  • the exhaust gas analysis system 100 of the present embodiment includes a vehicle-mounted exhaust gas analyzer 2 mounted on a vehicle, and a pressure correction coefficient of the exhaust gas analyzer 2 connected to the exhaust gas analyzer 2. and a pressure fluctuation device 3 used when obtaining the pressure.
  • the exhaust gas analysis system 100 includes an exhaust gas sampling mechanism such as a sampling pipe for sampling all or part of exhaust gas discharged from an exhaust pipe connected to an internal combustion engine (engine) of a vehicle, and the exhaust gas sampling mechanism. It is equipped with a heating tube for introducing the exhaust gas collected by the mechanism into the exhaust gas analyzer 2 while heating or maintaining it at a predetermined temperature, and a power supply for supplying power to the exhaust gas analyzer 2 and the heating tube.
  • an exhaust gas sampling mechanism such as a sampling pipe for sampling all or part of exhaust gas discharged from an exhaust pipe connected to an internal combustion engine (engine) of a vehicle
  • the exhaust gas sampling mechanism is equipped with a heating tube for introducing the exhaust gas collected by the mechanism into the exhaust gas analyzer 2 while heating or maintaining it at a predetermined temperature, and a power supply for supplying power to the exhaust gas analyzer 2 and the heating tube.
  • the exhaust gas analyzer 2 detects components to be measured, such as carbon monoxide (CO), carbon dioxide (CO 2 ), nitrogen oxides (NO x ), methane (CH 4 ), total hydrocarbons (THC), etc., in the exhaust gas.
  • a CO/CO 2 analyzer 21 , an NO X analyzer 22 and an NO analyzer 23 are provided.
  • the CO/CO 2 analyzer 21 continuously measures the concentration of carbon monoxide or carbon dioxide contained in the exhaust gas by a non-dispersive infrared absorption (NDIR) method.
  • the NO X analyzer 22 continuously measures the concentration of NO X in the exhaust gas by a chemiluminescence (CLD) method (chemiluminescence method).
  • the exhaust gas analyzer 2 can be equipped with various analyzers depending on the component to be measured. For example, when measuring methane (CH 4 ) and total hydrocarbons (THC), an analyzer using a flame ionization (FID) method is provided.
  • CH 4 methane
  • THC total hydrocarbons
  • FID flame ionization
  • a condensation particle counter (CPC) is also provided for measuring the number of solid particles (PN) in the exhaust gas.
  • the analysis data obtained by these analyzers 21 to 23 are output to the information processing section 4, and the analysis data are processed, recorded, or displayed by the information processing section 4.
  • FIG. Also, the plurality of analyzers may be provided separately.
  • the information processing unit 4 is a dedicated or general-purpose computer having a CPU, an internal memory, an AD converter, an input/output inverter, etc., and not only analyzes data from the analyzers 21 to 23, but also receives data from other sensors. Acquire and process, record or display data.
  • the sensor group includes an air-fuel ratio sensor that measures the air-fuel ratio (A/F) of the vehicle, a flow meter that measures the flow rate of the exhaust gas discharged from the exhaust pipe, a GPS sensor that detects the position of the vehicle, and a sensor outside the vehicle. They include a temperature sensor that measures temperature, a humidity sensor that measures humidity outside the vehicle, and a pressure sensor that measures pressure (atmospheric pressure) outside the vehicle.
  • a sample gas introduction port P1 for introducing the exhaust gas to the CO/CO 2 analyzer 21, the NO X analyzer 22 and the NO analyzer 23, and the analyzers 21 to 23.
  • a gas discharge port P2 for discharging exhaust gas and the like is provided.
  • the exhaust gas analyzer 2 also includes an ozone generator 24 that generates ozone gas used in the NO X analyzer 22 and the NO analyzer 23, and an air introduction port P3 for introducing air into the ozone generator 24. is provided. That is, in the present embodiment, the ports exposed to the atmosphere and affected by atmospheric pressure fluctuations are the sample gas introduction port P1, the gas discharge port P2, and the atmosphere introduction port P3.
  • the sample gas introduction port P1 is connected to the upstream end of the main flow path L1 through which the exhaust gas flows, and the main flow path L1 is provided with a CO/CO 2 analyzer 21, an NO X analyzer 22 and an NO analyzer 23. ing.
  • a gas discharge port P2 is connected to the downstream end of the main flow path L1.
  • a suction pump 25 is provided downstream of the CO/CO 2 analyzer 21, the NO X analyzer 22, and the NO analyzer 23 in the main flow path L1.
  • the exhaust gas is sampled by the exhaust gas sampling mechanism by the suction pump 25, introduced into the main flow path L1 from the sample gas introduction port P1, and measured by the analyzers 21-23.
  • the suction pump 25 allows the CO/CO 2 analyzer 21, NO X analyzer 22 and NO analyzer 23 to perform analysis under reduced pressure conditions.
  • the main flow path L1 of the present embodiment branches into flow paths L11 to L13 corresponding to the analyzers 21 to 23, and the analyzers 21 to 23 are connected in parallel. merges upstream of Constant flow rate devices CP1-CP3 such as capillaries are provided in the branch paths L11-L13 to keep the flow rate of the exhaust gas flowing into the analyzers 21-23 constant.
  • Constant flow rate devices CP1-CP3 such as capillaries are provided in the branch paths L11-L13 to keep the flow rate of the exhaust gas flowing into the analyzers 21-23 constant.
  • the flow path from the sample gas introduction port P1 to the CO/CO 2 analyzer 21 and the CO/CO 2 analyzer 21 are heated to a predetermined temperature by the heating block 26 so that moisture in the exhaust gas does not condense. (eg 95° C.).
  • a converter catalyst 27 that converts NO X to NO is provided upstream of the NO X analyzer 22 in the branch L12 where the NO X analyzer 22 is provided. is heated to
  • a calibration gas flow path L2 having a calibration gas introduction port P0 for introducing a calibration gas having a known concentration is connected to the upstream side of each analyzer 21 to 23 in the main flow path L1 (upstream side of the branch point). there is The calibration gas flow path L2 is connected to a calibration gas cylinder (not shown). Further, the calibration gas flow path L2 is provided with an electromagnetic on-off valve V1 for switching supply/stop of the calibration gas to the main flow path L1. The electromagnetic on-off valve V1 is controlled by the valve control section of the information processing section 4. As shown in FIG.
  • the air introduction port P3 is connected to the upstream end of the air introduction flow path L3, and the downstream end of the air introduction flow path L3 is connected to the ozone generator 24.
  • the ozone gas generated by the ozone generator 24 is introduced into the NO X analyzer 22 and the NO analyzer 23 through the ozone gas flow path L4 connecting the ozone generator 24 and the NO X analyzer 22 and the NO analyzer 23, respectively. be done.
  • the ozone gas flow path L4 is provided with a constant flow device CP4 such as a capillary for making the flow rate of the ozone gas constant.
  • a constant flow device CP4 such as a capillary for making the flow rate of the ozone gas constant.
  • the atmosphere introduction passage L3 there is a branch flow that introduces the atmosphere to the downstream side of the heating block 26 and the upstream side of the NO X analyzer 22 and the NO analyzer 23 in the main passage L1 to dilute the exhaust gas.
  • path L5 is connected.
  • a constant flow device CP5 such as a capillary is provided in the branch flow path L5 to keep the air flow constant.
  • the pressure of the ozone generator 24 is adjusted by the pressure regulating valve V2 to a predetermined pressure so as to be the first pressure (eg -20 kPa) with respect to the pressure of the atmosphere introduction port P3, and the pressures of the analyzers 22 and 23 are controlled by electromagnetic proportionality.
  • a second pressure eg, -40 kPa
  • the pressure on the downstream side (analyzers 22, 23) of the constant flow device CP2 is set to a second pressure (for example, -40 kPa) with respect to the pressure of the atmosphere introduction port P3 by the electromagnetic proportional valve V3 and the constant flow device CP5. is adjusted to a predetermined pressure.
  • a constant flow rate of ozone gas is supplied to the analyzers 22 and 23, and a constant flow rate of dilution air is supplied to the main flow path L1.
  • the atmosphere introduction passage L3 also has a constant flow rate function for causing a constant flow rate of the exhaust gas to flow to the NO X analyzer 22 and the NO analyzer 23 .
  • a connection flow path L6 connected to the downstream side of the NO X analyzer 22 and the NO analyzer 23 and the upstream side of the suction pump 25 in the main flow path L1 is connected to the atmosphere introduction flow path L3.
  • the connection channel L6 of the present embodiment is a common channel with a part of the branch channel L13.
  • a pressure regulating valve V2 is provided on the upstream side of the connection point of the connection flow path L6 in the atmosphere introduction flow path L3 (upstream of the constant flow device CP1).
  • a solenoid proportional valve V3 is provided in a bypass flow path L7 connecting the .
  • the pressure regulating valve V2 refers to the input pressure on the upstream side of the constant flow device CP2 in the main flow path L1, and adjusts the input pressure to a first pressure (eg, -20 kPa) to a predetermined pressure. is.
  • the proportional solenoid valve V3 refers to the input pressure on the upstream side of the constant flow device CP2 in the main flow path L1 and the output pressure on the downstream side of the proportional solenoid valve V3 in the connection path L6, side output pressure (buffer tank BT pressure) is adjusted to a predetermined pressure so as to be a second pressure (for example, -40 kPa) with respect to the input pressure. That is, the pressure in the buffer tank BT is reduced to a predetermined pressure by the pressure regulating valve V2 and the constant flow device CP1 so as to become a second pressure (eg, -40 kPa) with respect to the pressure in the atmosphere introduction port P3.
  • a second pressure for example, -40 kPa
  • the differential pressure between the upstream pressure and the downstream pressure of the constant flow devices CP1 to CP3 provided in each of the branch paths L11 to L13 is kept constant (-20 kPa) by the pressure regulating valve V2 and the electromagnetic proportional valve V3.
  • the CO/CO 2 analyzer 21 , the NO X analyzer 21 and the NO analyzer 22 at a constant flow rate.
  • Any one of the pressure regulating valve V2 and the electromagnetic proportional valve V3 may be provided.
  • the pressure control valve V2 may be replaced with an electromagnetic proportional valve.
  • the pressure fluctuation device 3 is used when calibrating the exhaust gas analyzer 2 described above, specifically when determining the pressure correction coefficient of the exhaust gas analyzer 2 .
  • the pressure correction coefficients of the present embodiment are the CO concentration obtained by the CO/CO 2 analyzer 21, a coefficient for correcting pressure fluctuations in the CO 2 concentration, and pressure fluctuations in the NO X concentration obtained by the NO X analyzer 22.
  • a correction coefficient is a coefficient for correcting pressure fluctuations of the NO concentration obtained by the NO analyzer 23 .
  • the pressure correction coefficients are coefficients for converting these concentrations into reference pressures (in this embodiment, the pressure at the time of preparing the calibration curve).
  • This pressure fluctuation device 3 pressurizes a plurality of ports P1 to P3 of the exhaust gas analyzer 2 that are open to the atmosphere.
  • the pressure fluctuation device 3 has a first flow path 3L1, one end of which is connected to the sample gas introduction port P1, and one end of which is connected to the gas discharge port P2 of the exhaust gas analyzer 2. a second flow path 3L2 connected at one end to the atmosphere introduction port P3 of the exhaust gas analyzer 2, and a sample gas introduction port P1 and a gas discharge port P2 via the flow paths 3L1 to 3L3 and the atmosphere introduction port P3 to change the pressure of the sample gas introduction port P1, the gas discharge port P2 and the atmosphere introduction port P3, and the sample gas introduction port P1 or the gas discharge port P2. and a gas discharge mechanism 32 for discharging gas.
  • the pressurizing mechanism 31 includes a confluence flow path 311 to which the first to third flow paths 3L1 to 3L3 are connected, and a pressure source that pressurizes the first to third flow paths 3L1 to 3L3 via the confluence flow path 311. 312 and a pressure adjustment unit 313 that adjusts the pressure of the confluence channel 311 .
  • the confluence flow path 311 has a buffer tank 311a to which the other ends of the first flow path 3L1 and the second flow path 3L2 are connected, and a connection flow path 311b that connects the buffer tank 311a and the pressure source 312. there is The other end of the third flow path 3L3 is connected to the connection flow path 311b.
  • the pressurization source 312 is a pressurization pump, and the pressurization pump 312 pressurizes the buffer tank 311a via the connection flow path 311b, and the first flow path 3L1 and the second flow path 3L1 connected to the buffer tank 311a. While the channel 3L2 is pressurized, the third channel 3L3 connected to the connection channel 311b is pressurized.
  • the pressure adjustment unit 313 is connected to the connection channel 311b, and is configured using, for example, a pressure adjustment valve or a needle valve.
  • the pressure adjusting section 313 adjusts the pressure by exhausting part of the air flowing through the connection channel 311b.
  • the pressurizing mechanism 31 also has a pressure sensor (for example, a gauge pressure sensor 314) that detects the pressure in the flow path of the exhaust gas analyzer 2 or the pressure in the buffer tank 311a.
  • the gas discharge mechanism 32 includes a flow path between the pressure mechanism 31 and the sample gas introduction port P1, a flow path between the pressure mechanism 31 and the gas discharge port P2, and a flow path between the pressure mechanism 31 and the atmosphere introduction port P3. and discharges the gas flowing out from the sample gas introduction port P1 or the gas discharge port P2.
  • the gas discharge mechanism 32 has an exhaust flow path 321 connected to the confluence flow path 311 and a suction pump 322 provided in the exhaust flow path 321 .
  • the exhaust flow path 321 of this embodiment is connected to the buffer tank 311a. Further, the exhaust flow path 321 is provided with a flow rate adjusting section 323 such as a needle valve. The exhaust flow rate by the suction pump 322 is adjusted by the flow rate adjusting section 323 .
  • the pressure fluctuation device 3 of the present embodiment includes a decompression mechanism 33 for decompressing the sample gas introduction port P1, the gas discharge port P2 and the atmosphere introduction port P3 via the first to third flow paths 3L1 to 3L3, A switching mechanism 34 for switching between a pressurized state by the mechanism 31 and a depressurized state by the depressurizing mechanism 33 is provided.
  • the decompression mechanism 33 is configured using a part of the configurations of the pressurization mechanism 31 and the gas discharge mechanism 32 described above. Specifically, the decompression mechanism 33 is configured using the suction pump 322 of the gas discharge mechanism 32 . Further, the decompression mechanism 33 is connected to the connection flow path 311b and has an atmosphere introduction path 331 for introducing the atmosphere. A pressure regulating portion 332 such as a pressure regulating valve is provided in the atmosphere introduction passage 331 . The pressure adjustment unit 332 adjusts the pressures of the first flow path L31, the second flow path 3L2, and the third flow path 3L3 to be constant during pressure reduction.
  • the switching mechanism 34 connects the pressurizing pump 312 to the buffer tank 311a when the pressurizing mechanism 31 operates, and connects the atmosphere introduction passage 331 to the buffer tank 311a when the depressurizing mechanism 33 operates.
  • the switching mechanism 34 of the present embodiment is composed of a three-way valve provided at the connection point between the connection channel 311b and the atmosphere introduction channel 331 .
  • the switching mechanism 34 is provided with an opening/closing valve on the pressurizing pump 312 side of the connection point of the atmosphere introduction passage 331 at 311b in the connection flow path, and the opening/closing valve is provided in the atmosphere introduction passage 331. It may be configured by controlling opening and closing.
  • fluid devices including the pressurizing mechanism 31, the gas exhausting mechanism 32, the depressurizing mechanism 33, and the switching mechanism 34 are housed in the housing 35.
  • the connection ports P4 to P6 provided in the housing 35 are connected to connection pipes that form part of the first flow path 3L1, the second flow path 3L2, and the third flow path 3L3.
  • the switching mechanism 34 connects the pressurizing pump 312 to the buffer tank 311a.
  • the suction pump 25 of the exhaust gas analyzer 2 and the pressure pump 312 and suction pump 322 of the pressure fluctuation device 3 are operated to supply the calibration gas from the calibration gas flow path L2, the gas flow is as follows. Become.
  • the suction pump 25 of the exhaust gas analyzer 2 supplies the calibration gas from the calibration gas flow path L2 to each of the analyzers 21-23.
  • a part of the calibration gas flows out from the sample gas introduction port P1, and the calibration gas that has passed through the analyzers 21 to 23 flows out from the gas discharge port P2.
  • the sample gas introduction port P1 and the gas discharge port P2 are in a state of being pressurized by the pressurizing mechanism 31 (a state in which pressure is applied compared to before the pressurizing mechanism 31 operates). Further, air is introduced into the air introduction port P3 of the exhaust gas analyzer 2 from the third flow path 3L3 via the pressurizing pump 312 .
  • each analyzer 21 .about.23 are supplied with calibration gas.
  • the switching mechanism 34 connects the atmosphere introduction passage 331 to the buffer tank 311a. In this state, when the suction pump 25 of the exhaust gas analyzer 2 and the suction pump 322 of the pressure fluctuation device 3 are operated to supply the calibration gas from the calibration gas flow path L2, the gas flows as follows.
  • the suction pump 25 of the exhaust gas analyzer 2 supplies the calibration gas from the calibration gas flow path L2 to each of the analyzers 21-23.
  • the calibration gas is sucked from the sample gas introduction port P1 through the first flow path 3L1.
  • air is introduced into the air introduction port P3 of the exhaust gas analyzer 2 from the third flow path 3L3 via the suction pump 322 .
  • the third flow path 3L3 is connected to the atmosphere introduction path 331, the calibration gas flowing into the buffer tank 311a through the first flow path 3L1 and the second flow path 3L2 flows into the third flow path 3L3. Don't worry about it leaking.
  • the calibration gas is supplied to each of the analyzers 21 to 23 while the sample gas introduction port P1, the gas discharge port P2 and the air introduction port P3 are decompressed.
  • the calibration method of the present embodiment includes reproducing the pressurized state of the exhaust gas analyzer 2, and calculating the pressure correction coefficient of the exhaust gas analyzer 2 in addition to the zero-span calibration of the exhaust gas analyzer 2. .
  • the calibration method may include preparation of a calibration curve.
  • step S1 the exhaust gas analyzer 2 is warmed up (step S1). At this time, the suction pump 25 of the exhaust gas analyzer 2 is activated. If the exhaust gas analyzer 2 has a pressure correction function, the pressure correction function is turned off.
  • the zero calibration is performed by flowing the calibration gas for zero calibration to the exhaust gas analyzer 2 under the atmospheric pressure environment.
  • span calibration is performed by flowing a calibration gas for span calibration into the exhaust gas analyzer 2 (step S2). These calibration gases are supplied from the calibration gas flow path L2. At this time, the pressure fluctuation device 3 is in a stopped state.
  • the channels 3L1 to 3L3 of the pressure fluctuation device 3 are connected to the ports P1 to P3 of the exhaust gas analyzer 2, respectively.
  • the pressurization mechanism (pressurization pump) and the gas discharge mechanism (suction pump) of the pressure fluctuation device 3 are started (step S3).
  • the pressure in the buffer tank 311a (the pressure of the gauge pressure sensor 314) is kept constant (for example, at atmospheric pressure conditions of 0 m to 1500 m) by the pressure adjustment unit 313 of the pressurization mechanism 31 or the flow rate adjustment unit 323 of the gas discharge mechanism 32. Adjust (step S4).
  • the atmospheric pressure conditions are gradually increased to lower altitudes such as 1500 m, 1000 m, 500 m, 0 m, 500 m, 1000 m, and 1500 m. It is conceivable to gradually increase the altitude again after the air pressure condition reaches the predetermined minimum altitude.
  • the measured value of the gauge pressure sensor 314 of the pressure fluctuation device 3 is referred to, and the pressure adjusting section 313 or the flow rate adjusting section 323 is operated to control the desired pressure.
  • This operation may be automatically controlled using a computer, or may be manually performed by an operator.
  • the calibration gas for zero calibration and the calibration gas for span calibration are respectively flowed, and measurements are performed by each analyzer 21 to 23 (step S5).
  • These calibration gases flow into the main flow path L1 from the calibration gas flow path L2.
  • an excess amount of the calibration gas is supplied so that it flows not only to the downstream side (gas discharge port P2) from the connection point but also to the upstream side (sample gas introduction port P1). That is, the calibration gas flows out from the sample gas introduction port P1 to the first flow path 3L1. This allows pure calibration gas to flow into each analyzer 21-23.
  • the excess amount means that the supply flow rate of the calibration gas is larger than the flow rate obtained by subtracting the introduction amount from the atmosphere introduction port P3 from the discharge amount from the gas discharge port P2.
  • step S6 After each measurement is completed (step S6), the pressure fluctuation device 3 and the exhaust gas analyzer 2 are stopped (step S7). Then, a pressure correction coefficient (step S8) is calculated from the measurement results obtained by each measurement. Specifically, a pressure correction coefficient is created so that the measurement result obtained from each measurement matches the measurement value of the calibration gas at the reference pressure.
  • the pressure correction coefficient of each analyzer 21-23 can be obtained.
  • this pressure correction coefficient may be configured to be calculated by the information processing section 4, or may be manually calculated by the operator.
  • the pressure correction coefficient may be in a tabular format or in a functional format. Data of the pressure correction coefficient obtained in this manner is stored in the internal memory of the information processing section 4 .
  • the pressure correction coefficient at each concentration can be obtained.
  • the same operation may be performed for each calibration gas, or a mixed gas of a plurality of calibration gases may be used for calibration.
  • the information processing unit 4 calculates the reference pressure ( The pressure at the time of preparing the calibration curve is corrected to calculate the concentration converted to the pressure at the time of preparation of the calibration curve.
  • the procedure for obtaining the pressure correction coefficient with the flue gas analyzer in a pressurized state was shown.
  • the pressure correction coefficient can be obtained by reproducing not only the state of altitude lower than the calibration point, but also the state of altitude higher than the calibration point.
  • the calibration gas flowing out of the sample gas introduction port P1 or the gas discharge port P2 is applied to the pressure fluctuation device 3 while the sample gas introduction port P1, the gas discharge port P2, and the atmosphere introduction port P3 are pressurized. Since the calibration gas is discharged by the gas discharge mechanism 32, the backflow of the calibration gas due to pressurization is suppressed, and the pressure correction coefficient can be obtained with high accuracy.
  • the exhaust gas analyzer 2 has the function of diluting the exhaust gas and the ozone generator, so it has the atmosphere introduction passage L3. It may be something that does not have.
  • the air does not necessarily need to be introduced into the air introduction port P3 and the air introduction path 3L3.
  • oxygen or ozone may be supplied from a cylinder, or other gas may be supplied.
  • the pressure fluctuation device 3 may be configured to have only the function of pressurizing the gas analysis device 2 without having the decompression mechanism 33 and the switching mechanism 34 .
  • the desired pressure may be obtained by adjusting the pressure.
  • the on-off valve 315 is on/off-controlled so that the pressure detected by the gauge pressure sensor 314, for example, becomes the target pressure.
  • a pressurization container 316 such as a buffer tank storing gas pressurized above the ambient pressure may be used.
  • a compressor 317 may be connected to the pressurized container 316 . 7 has the same configuration as that of the above-described embodiment, it may have a configuration using the on-off valve 315 shown in FIG.
  • the data of the pressure correction coefficients are stored in the internal memory of the exhaust gas analyzer 2, but the data of the pressure correction coefficients are stored in the internal memory of the information processing device which is separate from the exhaust gas analyzer 2.
  • the information processing device may acquire analysis data from the analyzers 21 to 23 of the exhaust gas analyzer 2 and correct the pressure.
  • the pressure fluctuation device of the above embodiment may be configured to automatically switch between the pressurized state and the depressurized state.
  • the pressure variation device may further include a control unit that controls the switching mechanism to automatically switch between the pressurized state and the depressurized state.
  • the control unit may compare the pressure of the gauge pressure sensor 314 and a preset target pressure, for example, and automatically switch between the pressurized state and the depressurized state.
  • the pressure correction coefficient of the gas analyzer 2 can be calculated by cooperatively controlling the gas analyzer 2 and the pressure fluctuation device 3 using an external operating device 6 such as a computer. .
  • the operation of the gas analyzer 2 is performed using an external operation device 6 .
  • the external operation device 6 performs operations for starting and stopping measurement of the gas analyzer 2 via a communication cable or the like.
  • a control unit 51 (which may be the information processing unit 4 ) of the gas analyzer 2 controls the suction pump 25 and various valves according to signals from the external operation device 6 .
  • the operation of the pressure fluctuation device 3 is performed using an external operation device 6 .
  • the external operation device 6 performs operations for starting and stopping the pressure variation device 3 via a communication cable or the like.
  • the control unit 52 of the pressure fluctuation device 3 controls the pressure pump 313, the suction pump 322, various valves 323, etc. according to the signal from the external operation device 6.
  • FIG. The external operating device 6 has a judgment section 61 for judging whether the pressure inside the gas analyzer 2 and the pressure fluctuation device 3 is positive pressure or negative pressure with respect to a preset target pressure.
  • the pressure gauge referred to by the determination unit 61 for example, the gauge pressure sensor 314 is used. Then, based on the determination result of the determination unit 61, the external operation device 6 outputs control command signals for the pumps and the like of each device to the gas analysis device 2 and the pressure fluctuation device 3 so as to achieve a preset target pressure. do.
  • the function of the determination unit 61 may be provided in the control unit 51 or the control unit 52 .
  • step S2 zero/span calibration is performed, but zero/span calibration may not be performed.
  • the pressure correction coefficient may be created using the pressure at the time of zero/span calibration in addition to the pressure at the time of calibration curve creation as the reference pressure.
  • a pressure variation device different from the above embodiment may be connected to any of the sample gas introduction port, gas discharge port, and atmosphere introduction port of the gas analyzer. Then, by controlling these pressure variation devices, each port may be adjusted to the same pressure.
  • sample gas introduction port, the gas discharge port, and the air introduction port of the gas analyzer may be independently provided with a pressurization mechanism and a gas discharge mechanism.
  • gas exhaust mechanisms may be provided between the pressurizing mechanism and the sample gas introduction port, between the pressurizing mechanism 31 and the gas exhaust port, and between the pressurizing mechanism and the atmosphere introducing port.
  • the pressure fluctuation device is a pressure fluctuation device that fluctuates the pressure of the gas analysis device, and the first channel connected to the sample gas introduction port of the gas analysis device and the gas discharge port of the gas analysis device. a connected second flow path, a gas discharge mechanism for discharging gas from the sample gas introduction port and the gas discharge port via the first flow path and the second flow path, and the gas discharge mechanism Pressure is applied to the flow path between the sample gas introduction port and the flow path between the gas discharge mechanism and the gas discharge port to vary the pressures of the sample gas introduction port and the gas discharge port. and a pressurizing mechanism.
  • a gas analysis system similar to that of the above embodiment can be configured.
  • a vehicle-mounted type exhaust gas analyzer has been described, but a stationary type exhaust gas analyzer may be used instead of a vehicle-mounted type.
  • the measurement target of the exhaust gas analyzer is not limited to exhaust gas from vehicles, but may be exhaust gas from other moving bodies such as engines or ships, or the atmosphere may be directly measured.
  • an exhaust gas analyzer that analyzes exhaust gas from a vehicle equipped with a gasoline engine or a diesel engine has been described. can also be applied.
  • an analyzer equipped with a fisherman's cascade laser (QCL) in the analysis part leaked hydrogen from the fuel cell was measured in the exhaust gas of the fuel cell, and the exhaust gas of the hydrogen engine did not react in the combustion tower. Unburned hydrogen may be measured.
  • QCL fisherman's cascade laser

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The present invention enables accurate calculation of a pressure correction coefficient while reproducing the pressurized state in a gas analyzer, and involves: connecting, to a sample gas introduction port P1 and a gas discharge port P2 of a gas analyzer 2, a pressure variation apparatus 3 having a pressurizing mechanism 31 and a gas discharge mechanism 32; varying the pressure at the sample gas introduction port P1 and at the gas discharge port P2 by the pressurizing mechanism 31 of the pressure variation apparatus 3; introducing, in the pressure varied state, a calibration gas from a calibration gas introduction port P0 of the gas analyzer 2, and causing the calibration gas flowing out of the sample gas introduction port P1 or the gas discharge port P2 to be discharged by means of the gas discharge mechanism 32 of the pressure variation apparatus 3; and calculating the pressure correction coefficient of the gas analyzer 2 by using measurement results of the gas analyzer 3 on the calibration gas.

Description

ガス分析装置の校正方法、ガス分析装置の圧力補正方法、ガス分析装置の検査方法、圧力変動方法、圧力変動装置、及び、ガス分析システムGas analyzer calibration method, gas analyzer pressure correction method, gas analyzer inspection method, pressure fluctuation method, pressure fluctuation device, and gas analysis system
 本発明は、ガス分析装置の校正方法、ガス分析装置の圧力補正方法、ガス分析装置の検査方法、圧力変動方法、圧力変動装置、及び、ガス分析システムに関するものである。 The present invention relates to a gas analyzer calibration method, a gas analyzer pressure correction method, a gas analyzer inspection method, a pressure fluctuation method, a pressure fluctuation device, and a gas analysis system.
 近年、路上走行中の車両から排出される排ガスの成分分析や車両試験を行う場合には、車両搭載型の排ガス分析装置が用いられている。この排ガス分析装置は、例えば、窒素酸化物(NO)、一酸化炭素(CO)、二酸化炭素(CO)などの成分を分析するための分析計を有している。 2. Description of the Related Art In recent years, vehicle-mounted exhaust gas analyzers have been used for component analysis and vehicle testing of exhaust gases emitted from vehicles running on roads. This exhaust gas analyzer has an analyzer for analyzing components such as nitrogen oxides (NO x ), carbon monoxide (CO) and carbon dioxide (CO 2 ).
 この排ガス分析装置に設けられた各分析計では、路上走行中の標高などに伴う気圧変動によって、その測定値が圧力影響を受けてしまう。そのため、排ガス分析装置は、圧力影響を補正するための圧力補正係数を用いることによって、各分析計の測定値に対して圧力補正を行い、基準圧力(例えば検量線作成時の圧力)に換算した各成分濃度を算出している。  In each analyzer installed in this exhaust gas analyzer, the measured values are affected by pressure fluctuations caused by changes in altitude and other factors while driving on the road. Therefore, the exhaust gas analyzer uses a pressure correction coefficient for correcting the pressure influence to perform pressure correction on the measured value of each analyzer and convert it to a reference pressure (for example, the pressure when creating a calibration curve). Each component concentration is calculated.
 そして、この排ガス分析装置に用いられる圧力補正係数を求めるものとしては、特許文献1のガス分析装置の校正方法がある。このガス分析装置の校正方法では、サンプルガス導入ポート及びガス排出ポートに圧力変動装置を接続し、圧力変動装置によりサンプルガス導入ポート及びガス排出ポートを減圧し、その減圧の状態において、校正ガス導入ポートから校正ガスを導入し、校正ガスの測定結果を用いて、ガス分析装置の圧力補正係数を算出している。この時、排ガス分析装置は車両搭載時と同じ動作状態、つまり排気ポンプが動作して各分析計に校正ガスを流し続けるとともに各種センサも動作した状態で行う。 And, as a method for obtaining the pressure correction coefficient used in this exhaust gas analyzer, there is a method for calibrating a gas analyzer disclosed in Patent Document 1. In this gas analyzer calibration method, a pressure variation device is connected to the sample gas introduction port and the gas discharge port, the sample gas introduction port and the gas discharge port are decompressed by the pressure variation device, and the calibration gas is introduced in the decompressed state. A calibration gas is introduced from the port, and the measurement results of the calibration gas are used to calculate the pressure correction coefficient of the gas analyzer. At this time, the exhaust gas analyzer is operated in the same operating state as when it is mounted on the vehicle, that is, the exhaust pump is operating to keep the calibration gas flowing to each analyzer and various sensors are operating.
特開2019-86371号公報JP 2019-86371 A
 しかしながら、上記のガス分析装置の校正方法を用いて求めた圧力補正係数を使用した場合、その校正地点よりも低い標高における測定結果を、その校正地点よりも低い標高でも圧力影響が同じであるという仮定のもとに外挿的に補正することになるため、実測で低い標高での測定結果とズレが生じる恐れがある。 However, when using the pressure correction factor obtained using the calibration method of the gas analyzer described above, the measurement results at altitudes lower than the calibration point are considered to have the same pressure effect even at altitudes lower than the calibration point. Since the correction is extrapolated based on assumptions, there is a risk that there will be discrepancies between the actual measurement results and those at low altitudes.
 また、特許文献1には、文言上、サンプルガス導入ポート及びガス排出ポートを加圧し、その加圧状態において、校正ガス導入ポートから校正ガスを導入し、校正ガスの測定結果を用いて、ガス分析装置の圧力補正係数を算出することも記載されているが、具体的な構成については一切開示されていない。 In addition, in Patent Document 1, the sample gas introduction port and the gas discharge port are pressurized, and in the pressurized state, the calibration gas is introduced from the calibration gas introduction port, and the measurement result of the calibration gas is used to Calculation of the pressure correction coefficient of the analyzer is also described, but no specific configuration is disclosed.
 このため、加圧状態でガス分析装置を校正するには先行文献1に記載されている通り、加圧試験室に排ガス分析装置を持ち込んで校正作業する必要がある。 Therefore, in order to calibrate the gas analyzer in a pressurized state, as described in Prior Document 1, it is necessary to bring the exhaust gas analyzer into the pressurized test room for calibration work.
 そこで本発明は上記問題点を解決すべくなされたものであり、加圧試験室のような環境設備を用意せずともガス分析装置に対して加圧の状態を再現しつつ、圧力補正係数を精度良く求めることをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems, and the pressure correction coefficient can be calculated while reproducing the state of pressurization for the gas analyzer without preparing an environmental facility such as a pressurization test chamber. The main task is to find it with high accuracy.
 すなわち本発明に係るガス分析装置の校正方法は、ガス分析装置のサンプルガス導入ポート及びガス排出ポートに、加圧機構及びガス排出機構を有する圧力変動装置を接続し、前記圧力変動装置の前記加圧機構により、前記サンプルガス導入ポート及び前記ガス排出ポートに圧力を加えて、前記サンプルガス導入ポート及び前記ガス排出ポートの圧力を変動させ、圧力が変動された状態(具体的には、前記加圧機構が動作する前と比較して圧力が加えられた状態)において、前記ガス分析装置の校正ガス導入ポートから校正ガスを導入しつつ、前記サンプルガス導入ポート又は前記ガス排出ポートから流出する校正ガスを、前記圧力変動装置の前記ガス排出機構により排出し、前記ガス分析装置における前記校正ガスの測定結果を用いて、前記ガス分析装置の圧力補正係数を算出することを特徴とする。 That is, in the method for calibrating a gas analyzer according to the present invention, a pressure fluctuation device having a pressurization mechanism and a gas discharge mechanism is connected to a sample gas introduction port and a gas discharge port of the gas analyzer, A pressure mechanism applies pressure to the sample gas introduction port and the gas discharge port to vary the pressures of the sample gas introduction port and the gas discharge port, and the state in which the pressure is changed (specifically, the pressure In a state where pressure is applied compared to before the pressure mechanism is operated), calibration gas is introduced from the calibration gas introduction port of the gas analyzer and flows out from the sample gas introduction port or the gas discharge port. Gas is discharged by the gas discharge mechanism of the pressure fluctuation device, and the pressure correction coefficient of the gas analysis device is calculated using the measurement result of the calibration gas in the gas analysis device.
 本発明によれば、ガス分析装置のサンプルガス導入ポート及びガス排出ポートに圧力変動装置を接続しているので、加圧試験室を用いることなく、ガス分析装置に対して加圧の状態を再現することができる。したがって、校正地点よりも低い標高において、圧力補正係数を外挿的に補正すること無く、精度良く圧力補正係数を求めることができる。 According to the present invention, since the pressure fluctuation device is connected to the sample gas introduction port and the gas discharge port of the gas analyzer, the pressurized state of the gas analyzer can be reproduced without using a pressurization test chamber. can do. Therefore, at altitudes lower than the calibration point, the pressure correction coefficient can be obtained with high accuracy without extrapolative correction of the pressure correction coefficient.
 また、圧力補正係数を精度良く求めるためには、前記圧力変動装置により複数の圧力に変動させ、それら複数の圧力それぞれにおける前記校正ガスの測定結果が基準圧力での校正ガスの測定結果と一致するように、前記ガス分析装置の圧力補正係数を算出することが望ましい。なお、基準圧力としては、ガス分析装置の検量線作成時の圧力又はゼロ校正やスパン校正などの校正時の圧力が考えられる。 In addition, in order to obtain the pressure correction coefficient with high accuracy, the pressure variation device is used to vary a plurality of pressures, and the measurement results of the calibration gas at each of the plurality of pressures match the measurement results of the calibration gas at the reference pressure. It is desirable to calculate the pressure correction factor of the gas analyzer as follows. As the reference pressure, the pressure at the time of preparing the calibration curve of the gas analyzer or the pressure at the time of calibration such as zero calibration or span calibration can be considered.
 前記校正ガス導入ポートから校正ガスを過剰量導入し、前記サンプルガス導入ポートから校正ガスをオーバーフローさせながら、前記校正ガスを測定することが望ましい。この構成であれば、ガス分析装置の分析計に校正ガスを希釈することなく導入することができる。 It is desirable to introduce an excessive amount of the calibration gas from the calibration gas introduction port and measure the calibration gas while allowing the calibration gas to overflow from the sample gas introduction port. With this configuration, the calibration gas can be introduced into the analyzer of the gas analyzer without being diluted.
 従来のガス分析装置には、大気導入ポートをさらに備えたものがある。ここで、大気導入ポートから導入された大気はガスの希釈やオゾンの生成に用いられることが考えられる。なお、大気から生成されたオゾンは、分析計の測定に用いられる。この場合の分析計は、オゾンガスによる酸化反応を利用した化学発光(CLD)法の窒素酸化物計であることが考えられる。
 この場合であっても、ガス分析装置の測定結果は、大気導入ポートを介して気圧変動による圧力影響を受けてしまう恐れがある。そのため、本発明のガス分析装置の校正方法は、前記ポンプを前記大気導入ポートに接続して、前記サンプルガス導入ポート、前記ガス排出ポート及び前記大気導入ポートに圧力を加えて、前記サンプルガス導入ポート、前記ガス排出ポート及び前記大気導入ポートの圧力を変動させることが望ましい。
 このとき、圧力変動装置のガス排出機構により校正ガスを排出しているので、大気導入ポートにおける校正ガスの逆流を抑制することができる。
Some conventional gas analyzers are further equipped with an atmosphere introduction port. Here, it is conceivable that the air introduced from the air introduction port is used to dilute the gas or generate ozone. Ozone generated from the atmosphere is used for the measurement of the analyzer. The analyzer in this case is considered to be a nitrogen oxide analyzer of the chemiluminescence (CLD) method using an oxidation reaction by ozone gas.
Even in this case, there is a risk that the measurement results of the gas analyzer will be affected by pressure fluctuations through the atmosphere introduction port. Therefore, in the calibration method of the gas analyzer of the present invention, the pump is connected to the atmosphere introduction port, pressure is applied to the sample gas introduction port, the gas discharge port and the atmosphere introduction port, and the sample gas is introduced. It is desirable to vary the pressure of the port, the gas exhaust port and the atmospheric inlet port.
At this time, since the calibration gas is discharged by the gas discharge mechanism of the pressure fluctuation device, backflow of the calibration gas at the atmosphere introduction port can be suppressed.
 前記ガス分析装置が、車両搭載型のものであれば、実路走行試験における走行ルートにより気圧変動が生じやすいことから、本発明の効果を顕著にすることができる。 If the gas analyzer is of a vehicle-mounted type, the effects of the present invention can be made remarkable because air pressure fluctuations are likely to occur depending on the travel route in the actual road test.
 また、本発明に係るガス分析装置の圧力補正方法は、上記の校正方法により得られた圧力補正係数を用いて、前記ガス分析装置の実測定の測定結果を、当該実測定時の圧力に基づいて、前記ガス分析装置の基準圧力における測定結果に補正することを特徴とする。 Further, the pressure correction method for a gas analyzer according to the present invention uses the pressure correction coefficient obtained by the above calibration method to convert the measurement result of the actual measurement of the gas analyzer based on the pressure at the time of the actual measurement. and correcting the measurement result at the reference pressure of the gas analyzer.
 また、本発明に係るガス分析装置の検査方法は、圧力補正係数を用いた圧力補正機能を有するガス分析装置のサンプルガス導入ポート及びガス排出ポートに、加圧機構及びガス排出機構を有する圧力変動装置を接続し、前記圧力変動装置の前記加圧機構により、前記サンプルガス導入ポート及び前記ガス排出ポートに圧力を加えて、前記サンプルガス導入ポート及び前記ガス排出ポートの圧力を変動させ、圧力が変動された状態(具体的には、前記加圧機構が動作する前と比較して圧力が加えられた状態)において、前記ガス分析装置の校正ガス導入ポートから校正ガスを導入しつつ、前記サンプルガス導入ポート又は前記ガス排出ポートから流出する校正ガスを、前記圧力変動装置の前記ガス排出機構により排出し、前記ガス分析装置における前記圧力補正係数を用いた補正後の測定値と、前記校正ガスの基準圧力における既知濃度とを比較することを特徴とする。 Further, a method for inspecting a gas analyzer according to the present invention is a gas analyzer having a pressure correction function using a pressure correction coefficient. The device is connected, and the pressurizing mechanism of the pressure variation device applies pressure to the sample gas introduction port and the gas discharge port to vary the pressures of the sample gas introduction port and the gas discharge port, and the pressure changes. In a changed state (specifically, a state in which pressure is applied compared to before the pressurization mechanism operates), while introducing a calibration gas from a calibration gas introduction port of the gas analyzer, the sample The calibration gas flowing out from the gas introduction port or the gas discharge port is discharged by the gas discharge mechanism of the pressure fluctuation device, and the measured value after correction using the pressure correction coefficient in the gas analysis device and the calibration gas is compared with a known concentration at a reference pressure of
 また、本発明に係る圧力変動方法は、ガス分析装置のサンプルガス導入ポート及びガス排出ポートに、加圧機構及びガス排出機構を有する圧力変動装置を接続し、前記圧力変動装置の前記加圧機構により、前記サンプルガス導入ポート及び前記ガス排出ポートに圧力を加えて、前記サンプルガス導入ポート及び前記ガス排出ポートの圧力を変動させて前記ガス分析装置の圧力を変動させつつ、前記サンプルガス導入ポート又は前記ガス排出ポートから流出するガスを、前記圧力変動装置の前記ガス排出機構により排出することを特徴とする。 Further, in the pressure fluctuation method according to the present invention, a pressure fluctuation device having a pressurization mechanism and a gas discharge mechanism is connected to a sample gas introduction port and a gas discharge port of a gas analyzer, and the pressure fluctuation device of the pressure fluctuation device is connected to the gas discharge port. applies pressure to the sample gas introduction port and the gas discharge port to vary the pressure of the sample gas introduction port and the gas discharge port to vary the pressure of the gas analyzer, and the sample gas introduction port Alternatively, the gas flowing out from the gas discharge port is discharged by the gas discharge mechanism of the pressure fluctuation device.
 さらに、本発明に係る圧力変動装置は、ガス分析装置の圧力を変動させる圧力変動装置であって、前記ガス分析装置のサンプルガス導入ポートに接続される第1流路と、前記ガス分析装置のガス排出ポートに接続される第2流路と、前記第1流路及び前記第2流路を介して前記サンプルガス導入ポート及び前記ガス排出ポートに圧力を加えて、前記サンプルガス導入ポート及び前記ガス排出ポートの圧力を変動させる加圧機構と、前記加圧機構と前記サンプルガス導入ポートとの間の流路、及び前記加圧機構と前記ガス排出ポートとの間の流路に接続され、前記サンプルガス導入ポート又は前記ガス排出ポートから流出するガスを排出するガス排出機構とを備えることを特徴とする。 Further, a pressure fluctuation device according to the present invention is a pressure fluctuation device for fluctuating the pressure of a gas analyzer, comprising: a first channel connected to a sample gas introduction port of the gas analyzer; A second flow path connected to a gas discharge port, and applying pressure to the sample gas introduction port and the gas discharge port through the first flow path and the second flow path to remove the sample gas introduction port and the gas discharge port. connected to a pressure mechanism for varying the pressure of the gas discharge port, a flow path between the pressure mechanism and the sample gas introduction port, and a flow path between the pressure mechanism and the gas discharge port; and a gas discharge mechanism for discharging gas flowing out from the sample gas introduction port or the gas discharge port.
 共通の加圧源により第1流路及び第2流路を介してガス分析装置に対して加圧の状態を再現するためには、前記加圧機構は、前記第1流路及び前記第2流路が接続される合流流路と、前記合流流路を介して前記第1流路及び前記第2流路を加圧する加圧源とを有することが望ましい。ここで、各流路の圧力を調整しやすくするためには、加圧機構は、前記合流流路の圧力を調整する圧力調整部とを有することが望ましい。 In order to reproduce the state of pressurization of the gas analyzer through the first flow path and the second flow path by a common pressurization source, the pressurization mechanism should include the first flow path and the second flow path. It is desirable to have a confluence channel to which the flow paths are connected, and a pressurization source that pressurizes the first flow path and the second flow path via the confluence flow path. Here, in order to easily adjust the pressure of each channel, it is desirable that the pressurizing mechanism has a pressure adjusting section that adjusts the pressure of the merged channel.
 加圧機構の具体的な実施の態様としては、前記合流流路は、バッファタンクを有しており、前記加圧源は、ポンプであり、前記第1流路及び第2流路は、バッファタンクを介して前記ポンプに接続されていることが望ましい。ここで、第1流路及び第2流路がバッファタンクを介してポンプに接続されているので、ポンプの脈動を低減しつつ、ガス分析装置に対して加圧の状態を再現することができる。 As a specific embodiment of the pressurization mechanism, the confluence flow path has a buffer tank, the pressurization source is a pump, and the first flow path and the second flow path are buffer tanks. It is desirable to be connected to the pump through a tank. Here, since the first channel and the second channel are connected to the pump through the buffer tank, it is possible to reproduce the pressurized state of the gas analyzer while reducing the pulsation of the pump. .
 ガス分析装置を加圧の状態にするだけでなく、減圧の状態にすることができる装置構成としては、圧力変動装置は、前記第1流路及び前記第2流路を介して前記サンプルガス導入ポート及び前記ガス排出ポートを減圧する減圧機構と、前記加圧機構による加圧状態と、前記減圧機構による減圧状態とを切り替える切り替え機構とをさらに備えることが望ましい。 As an apparatus configuration capable of putting the gas analysis apparatus into a pressure-reduced state as well as a pressurized state, the pressure fluctuation device is configured such that the sample gas is introduced through the first flow path and the second flow path. It is desirable to further include a decompression mechanism for decompressing the port and the gas discharge port, and a switching mechanism for switching between a pressurized state by the pressurization mechanism and a decompressed state by the decompression mechanism.
 本発明の圧力変動装置は、前記切り替え機構を制御して、前記加圧状態と前記減圧状態とを自動的に切り替える制御部をさらに備えることが望ましい。 It is desirable that the pressure fluctuation device of the present invention further include a control section that controls the switching mechanism to automatically switch between the pressurized state and the depressurized state.
 ガス排出機構及び減圧機構の構成を共通化して装置構成を簡略化するためには、前記ガス排出機構は、吸引ポンプを有しており、前記減圧機構は、前記吸引ポンプを用いて構成されていることが望ましい。 In order to simplify the device configuration by sharing the configurations of the gas discharge mechanism and the decompression mechanism, the gas discharge mechanism has a suction pump, and the decompression mechanism is configured using the suction pump. It is desirable to be
 上述したようにガス分析装置には、大気導入ポートを有するものがある。この場合には、圧力変動装置は、前記ガス分析装置の大気導入ポートに接続される第3流路をさらに備え、前記加圧機構は、前記第3流路を介して前記大気導入ポートに圧力を加えて、前記大気導入ポートの圧力を変動させるものであることが望ましい。 As mentioned above, some gas analyzers have an air introduction port. In this case, the pressure fluctuation device further includes a third flow path connected to the atmosphere introduction port of the gas analyzer, and the pressurizing mechanism supplies pressure to the atmosphere introduction port via the third flow path. is added to change the pressure of the atmosphere introduction port.
 さらに本発明に係るガス分析システムは、サンプルガス中の測定対象成分を分析するガス分析装置と、上述した圧力変動装置とを備えることを特徴とする。 Furthermore, a gas analysis system according to the present invention is characterized by comprising a gas analysis device for analyzing a component to be measured in a sample gas, and the pressure fluctuation device described above.
 以上に述べた本発明によれば、ガス分析装置に対して加圧の状態を再現しつつ、圧力補正係数を精度良く求めることができる。 According to the present invention described above, it is possible to obtain the pressure correction coefficient with high accuracy while reproducing the state of pressurization for the gas analyzer.
本発明の一実施形態に係る排ガス分析システムの全体模式図である。1 is an overall schematic diagram of an exhaust gas analysis system according to an embodiment of the present invention; FIG. 同実施形態に係る排ガス分析システムの大気導入ポートからの大気の流れを示す模式図である。FIG. 4 is a schematic diagram showing the flow of air from the air introduction port of the exhaust gas analysis system according to the same embodiment. 同実施形態に係る排ガス分析システムの大気導入ポートからの大気の流れを示す模式図である。FIG. 4 is a schematic diagram showing the flow of air from the air introduction port of the exhaust gas analysis system according to the same embodiment. 同実施形態の校正方法のフローチャートを示す図である。It is a figure which shows the flowchart of the calibration method of the same embodiment. 変形実施形態の圧力変動装置の構成を示す模式図である。FIG. 4 is a schematic diagram showing the configuration of a pressure variation device according to a modified embodiment; 変形実施形態の圧力変動装置の構成を示す模式図である。FIG. 4 is a schematic diagram showing the configuration of a pressure variation device according to a modified embodiment; 変形実施形態の圧力変動装置の構成を示す模式図である。FIG. 4 is a schematic diagram showing the configuration of a pressure variation device according to a modified embodiment; 変形実施形態の排ガス分析システムの全体模式図である。FIG. 3 is an overall schematic diagram of an exhaust gas analysis system of a modified embodiment;
 以下、本発明の一実施形態に係る排ガス分析システム100について、図面を参照しながら説明する。 An exhaust gas analysis system 100 according to an embodiment of the present invention will be described below with reference to the drawings.
 本実施形態の排ガス分析システム100は、図1に示すように、車両に搭載される車両搭載型の排ガス分析装置2と、当該排ガス分析装置2に接続されて排ガス分析装置2の圧力補正係数を求める際に用いる圧力変動装置3とを備えている。 As shown in FIG. 1, the exhaust gas analysis system 100 of the present embodiment includes a vehicle-mounted exhaust gas analyzer 2 mounted on a vehicle, and a pressure correction coefficient of the exhaust gas analyzer 2 connected to the exhaust gas analyzer 2. and a pressure fluctuation device 3 used when obtaining the pressure.
 その他、排ガス分析システム100は、図示しないが、車両の内燃機関(エンジン)に連結された排気管から排出される排ガスの全部又は一部を採取するサンプリング管などの排ガス採取機構と、当該排ガス採取機構で採取された排ガスを所定の温度に加熱又は維持しながら排ガス分析装置2に導入するための加熱管と、排ガス分析装置2及び加熱管に電力を供給する電源とを備えている。 In addition, although not shown, the exhaust gas analysis system 100 includes an exhaust gas sampling mechanism such as a sampling pipe for sampling all or part of exhaust gas discharged from an exhaust pipe connected to an internal combustion engine (engine) of a vehicle, and the exhaust gas sampling mechanism. It is equipped with a heating tube for introducing the exhaust gas collected by the mechanism into the exhaust gas analyzer 2 while heating or maintaining it at a predetermined temperature, and a power supply for supplying power to the exhaust gas analyzer 2 and the heating tube.
<排ガス分析装置2>
 排ガス分析装置2は、排ガス中の、例えば一酸化炭素(CO)、二酸化炭素(CO)、窒素酸化物(NO)、メタン(CH)、全炭化水素(THC)等の測定対象成分を分析するものであり、本実施形態では、CO・CO分析計21と、NO分析計22と、NO分析計23とを備えている。
<Exhaust gas analyzer 2>
The exhaust gas analyzer 2 detects components to be measured, such as carbon monoxide (CO), carbon dioxide (CO 2 ), nitrogen oxides (NO x ), methane (CH 4 ), total hydrocarbons (THC), etc., in the exhaust gas. In this embodiment, a CO/CO 2 analyzer 21 , an NO X analyzer 22 and an NO analyzer 23 are provided.
 前記CO・CO分析計21は、非分散赤外線吸収(NDIR)法により排ガス中に含まれる一酸化炭素又は二酸化炭素の濃度を連続測定するものである。NO分析計22は、排ガス中のNOの濃度を化学発光(CLD)法(ケミルミネッセンス法)により連続測定するものである。NO分析計23も、NO分析計22と同様に、排ガス中のNOの濃度をCLD法により連続測定するものである。その他、排ガス分析装置2には、測定対象成分に応じて種々の分析計を備えさせることができる。例えば、メタン(CH)、全炭化水素(THC)を測定する場合には、水素炎イオン化(FID)法を用いた分析計を備えている。また、排ガス中の個体粒子数(PN)を計測する場合には、凝縮粒子カウンタ(CPC)を備えている。なお、これらの分析計21~23により得られた分析データは、情報処理部4に出力されて、当該情報処理部4により、分析データの処理、記録又は表示がされる。また、上記の複数の分析計はそれぞれ別体で設けられたものであってもよい。 The CO/CO 2 analyzer 21 continuously measures the concentration of carbon monoxide or carbon dioxide contained in the exhaust gas by a non-dispersive infrared absorption (NDIR) method. The NO X analyzer 22 continuously measures the concentration of NO X in the exhaust gas by a chemiluminescence (CLD) method (chemiluminescence method). The NO analyzer 23, like the NO X analyzer 22, continuously measures the NO concentration in the exhaust gas by the CLD method. In addition, the exhaust gas analyzer 2 can be equipped with various analyzers depending on the component to be measured. For example, when measuring methane (CH 4 ) and total hydrocarbons (THC), an analyzer using a flame ionization (FID) method is provided. A condensation particle counter (CPC) is also provided for measuring the number of solid particles (PN) in the exhaust gas. The analysis data obtained by these analyzers 21 to 23 are output to the information processing section 4, and the analysis data are processed, recorded, or displayed by the information processing section 4. FIG. Also, the plurality of analyzers may be provided separately.
 ここで、情報処理部4は、CPU、内部メモリ、AD変換器、入出力インバータ等を有する専用乃至汎用のコンピュータであり、分析計21~23の分析データだけでなく、その他のセンサ群からのデータを取得して処理、記録又は表示する。ここで、前記センサ群は、車両の空燃比(A/F)を測定する空燃比センサ、排気管から排出される排ガス流量を測定する流量計、車両の位置を検出するGPSセンサ、車両外部の温度を測定する温度センサ、車両外部の湿度を測定する湿度センサ、車両外部の圧力(気圧)を測定する圧力センサなどである。 Here, the information processing unit 4 is a dedicated or general-purpose computer having a CPU, an internal memory, an AD converter, an input/output inverter, etc., and not only analyzes data from the analyzers 21 to 23, but also receives data from other sensors. Acquire and process, record or display data. Here, the sensor group includes an air-fuel ratio sensor that measures the air-fuel ratio (A/F) of the vehicle, a flow meter that measures the flow rate of the exhaust gas discharged from the exhaust pipe, a GPS sensor that detects the position of the vehicle, and a sensor outside the vehicle. They include a temperature sensor that measures temperature, a humidity sensor that measures humidity outside the vehicle, and a pressure sensor that measures pressure (atmospheric pressure) outside the vehicle.
 そして、排ガス分析装置2には、CO・CO分析計21、NO分析計22及びNO分析計23に排ガスを導入するためのサンプルガス導入ポートP1と、それら分析計21~23を通過した排ガスなどを排出するためのガス排出ポートP2とが設けられている。また、排ガス分析装置2には、NO分析計22及びNO分析計23に用いられるオゾンガスを生成するオゾン発生器24と、当該オゾン発生器24に大気を導入するための大気導入ポートP3とが設けられている。つまり、本実施形態において、大気開放されて気圧変動の影響を受けるポートは、サンプルガス導入ポートP1、ガス排出ポートP2及び大気導入ポートP3である。 Then, in the exhaust gas analyzer 2, a sample gas introduction port P1 for introducing the exhaust gas to the CO/CO 2 analyzer 21, the NO X analyzer 22 and the NO analyzer 23, and the analyzers 21 to 23. A gas discharge port P2 for discharging exhaust gas and the like is provided. The exhaust gas analyzer 2 also includes an ozone generator 24 that generates ozone gas used in the NO X analyzer 22 and the NO analyzer 23, and an air introduction port P3 for introducing air into the ozone generator 24. is provided. That is, in the present embodiment, the ports exposed to the atmosphere and affected by atmospheric pressure fluctuations are the sample gas introduction port P1, the gas discharge port P2, and the atmosphere introduction port P3.
 サンプルガス導入ポートP1は、排ガスが流れるメイン流路L1の上流端に接続されており、当該メイン流路L1にCO・CO分析計21、NO分析計22及びNO分析計23が設けられている。また、このメイン流路L1の下流端にガス排出ポートP2が接続される。 The sample gas introduction port P1 is connected to the upstream end of the main flow path L1 through which the exhaust gas flows, and the main flow path L1 is provided with a CO/CO 2 analyzer 21, an NO X analyzer 22 and an NO analyzer 23. ing. A gas discharge port P2 is connected to the downstream end of the main flow path L1.
 また、メイン流路L1において、CO・CO分析計21、NO分析計22及びNO分析計23の下流には、吸引ポンプ25が設けられている。この吸引ポンプ25によって、排ガスが排ガス採取機構により採取されるとともに、サンプルガス導入ポートP1からメイン流路L1に導入されて各分析計21~23において測定される。なお、この吸引ポンプ25により、CO・CO分析計21、NO分析計22及びNO分析計23は減圧条件下で分析を行うことになる。 A suction pump 25 is provided downstream of the CO/CO 2 analyzer 21, the NO X analyzer 22, and the NO analyzer 23 in the main flow path L1. The exhaust gas is sampled by the exhaust gas sampling mechanism by the suction pump 25, introduced into the main flow path L1 from the sample gas introduction port P1, and measured by the analyzers 21-23. The suction pump 25 allows the CO/CO 2 analyzer 21, NO X analyzer 22 and NO analyzer 23 to perform analysis under reduced pressure conditions.
 本実施形態のメイン流路L1は、各分析計21~23に対応した流路L11~L13に分岐し、各分析計21~23が並列に接続されるように構成されており、吸引ポンプ25の上流側で合流している。各分岐路L11~L13には、各分析計21~23に流入する排ガスの流量を一定にするためのキャピラリーなどの定流量器CP1~CP3が設けられている。ここで、メイン流路L1においてサンプルガス導入ポートP1からCO・CO分析計21までの流路及びCO・CO分析計21は、加熱ブロック26により排ガス中の水分が結露しないように所定温度(例えば95℃)に加熱されている。また、NO分析計22が設けられた分岐路L12においてNO分析計22の上流には、NOをNOに変換するコンバータ触媒27が設けられており、当該コンバータ触媒27は、加熱ブロック28により所定温度(例えば210℃)に加熱されている。 The main flow path L1 of the present embodiment branches into flow paths L11 to L13 corresponding to the analyzers 21 to 23, and the analyzers 21 to 23 are connected in parallel. merges upstream of Constant flow rate devices CP1-CP3 such as capillaries are provided in the branch paths L11-L13 to keep the flow rate of the exhaust gas flowing into the analyzers 21-23 constant. Here, in the main flow path L1, the flow path from the sample gas introduction port P1 to the CO/CO 2 analyzer 21 and the CO/CO 2 analyzer 21 are heated to a predetermined temperature by the heating block 26 so that moisture in the exhaust gas does not condense. (eg 95° C.). A converter catalyst 27 that converts NO X to NO is provided upstream of the NO X analyzer 22 in the branch L12 where the NO X analyzer 22 is provided. is heated to a predetermined temperature (for example, 210° C.).
 メイン流路L1において各分析計21~23の上流側(分岐点の上流側)には、濃度既知の校正ガスを導入するための校正ガス導入ポートP0を有する校正ガス流路L2が接続されている。当該校正ガス流路L2は、校正ガスボンベ(図示しない)に接続されている。また、校正ガス流路L2には、メイン流路L1に校正ガスの供給/停止を切り替えるための電磁開閉弁V1が設けられている。なお、この電磁開閉弁V1は、前記情報処理部4の弁制御部により制御される。 A calibration gas flow path L2 having a calibration gas introduction port P0 for introducing a calibration gas having a known concentration is connected to the upstream side of each analyzer 21 to 23 in the main flow path L1 (upstream side of the branch point). there is The calibration gas flow path L2 is connected to a calibration gas cylinder (not shown). Further, the calibration gas flow path L2 is provided with an electromagnetic on-off valve V1 for switching supply/stop of the calibration gas to the main flow path L1. The electromagnetic on-off valve V1 is controlled by the valve control section of the information processing section 4. As shown in FIG.
 大気導入ポートP3には大気導入流路L3の上流端が接続されており、当該大気導入流路L3の下流端はオゾン発生器24に接続されている。オゾン発生器24により生成されたオゾンガスは、オゾン発生器24とNO分析計22及びNO分析計23それぞれとを接続するオゾンガス流路L4を介してNO分析計22及びNO分析計23に導入される。 The air introduction port P3 is connected to the upstream end of the air introduction flow path L3, and the downstream end of the air introduction flow path L3 is connected to the ozone generator 24. As shown in FIG. The ozone gas generated by the ozone generator 24 is introduced into the NO X analyzer 22 and the NO analyzer 23 through the ozone gas flow path L4 connecting the ozone generator 24 and the NO X analyzer 22 and the NO analyzer 23, respectively. be done.
 なお、オゾンガス流路L4には、図2に示すように、オゾンガスの流量を一定にするためのキャピラリーなどの定流量器CP4が設けられている。また、大気導入流路L3には、メイン流路L1において加熱ブロック26の下流側、且つ、NO分析計22及びNO分析計23の上流側に、大気を導入して排ガスを希釈する分岐流路L5が接続されている。分岐流路L5には、大気の流量を一定にするためのキャピラリーなどの定流量器CP5が設けられている。オゾン発生器24の圧力は圧力調整弁V2により大気導入ポートP3の圧力に対して第1圧力(例えば-20kPa)となるように所定圧に調整され、分析計22、23の圧力は、電磁比例弁V3及び定流量器CP4により大気導入ポートP3の圧力に対して第2圧力(例えば-40kPa)となるように所定圧に調整される。また、定流量器CP2の下流側(分析計22、23)の圧力は、電磁比例弁V3及び定流量器CP5により大気導入ポートP3の圧力に対して第2圧力(例えば-40kPa)となるように所定圧に調整される。このようにして、一定流量のオゾンガスが分析計22、23に供給され、一定流量の希釈空気がメイン流路L1に供給される。 As shown in FIG. 2, the ozone gas flow path L4 is provided with a constant flow device CP4 such as a capillary for making the flow rate of the ozone gas constant. Further, in the atmosphere introduction passage L3, there is a branch flow that introduces the atmosphere to the downstream side of the heating block 26 and the upstream side of the NO X analyzer 22 and the NO analyzer 23 in the main passage L1 to dilute the exhaust gas. path L5 is connected. A constant flow device CP5 such as a capillary is provided in the branch flow path L5 to keep the air flow constant. The pressure of the ozone generator 24 is adjusted by the pressure regulating valve V2 to a predetermined pressure so as to be the first pressure (eg -20 kPa) with respect to the pressure of the atmosphere introduction port P3, and the pressures of the analyzers 22 and 23 are controlled by electromagnetic proportionality. A second pressure (eg, -40 kPa) is adjusted to a predetermined pressure with respect to the pressure of the atmosphere introduction port P3 by the valve V3 and the constant flow device CP4. Further, the pressure on the downstream side (analyzers 22, 23) of the constant flow device CP2 is set to a second pressure (for example, -40 kPa) with respect to the pressure of the atmosphere introduction port P3 by the electromagnetic proportional valve V3 and the constant flow device CP5. is adjusted to a predetermined pressure. In this manner, a constant flow rate of ozone gas is supplied to the analyzers 22 and 23, and a constant flow rate of dilution air is supplied to the main flow path L1.
 また、大気導入流路L3は、図3に示すように、NO分析計22及びNO分析計23に一定流量の排ガスを流すための定流量機能も担っている。具体的には、大気導入流路L3には、メイン流路L1においてNO分析計22及びNO分析計23の下流側、且つ、吸引ポンプ25の上流側に接続された接続流路L6が接続されている。本実施形態の接続流路L6は、分岐路L13の一部と共通の流路とされている。また、大気導入流路L3における接続流路L6の接続点の上流側(定流量器CP1の上流側)には、圧力調整弁V2が設けられており、接続流路L6と大気導入流路L3とを接続するバイパス流路L7には、電磁比例弁V3が設けられている。圧力調整弁V2は、メイン流路L1における定流量器CP2の上流側の入力圧力を参照して、当該入力圧力に対して第1圧力(例えば-20kPa)となるように所定圧に調整するものである。また、電磁比例弁V3は、メイン流路L1における定流量器CP2の上流側の入力圧力及び接続流路L6における電磁比例弁V3の下流側の出力圧力を参照して、電磁比例弁V3の下流側の出力圧力(バッファタンクBTの圧力)を入力圧力に対して第2圧力(例えば-40kPa)となるように所定圧に調整するものである。つまり、圧力調整弁V2と定流量器CP1により、バッファタンクBTの圧力が大気導入ポートP3の圧力に対して第2圧力(例えば-40kPa)となるように所定圧に減圧される。このように圧力調整弁V2及び電磁比例弁V3により、各分岐路L11~分岐路L13に設けられた定流量器CP1~CP3の上流側圧力及び下流側圧力の差圧が一定(-20kPa)となり、CO・CO分析計21、NO分析計21及びNO分析計22に一定流量の排ガスを流すことができる。なお、圧力調整弁V2及び電磁比例弁V3は何れか一方が設けられる構成であればよい。また、圧力調整弁V2を電磁比例弁に置き換えてもよい。 In addition, as shown in FIG. 3, the atmosphere introduction passage L3 also has a constant flow rate function for causing a constant flow rate of the exhaust gas to flow to the NO X analyzer 22 and the NO analyzer 23 . Specifically, a connection flow path L6 connected to the downstream side of the NO X analyzer 22 and the NO analyzer 23 and the upstream side of the suction pump 25 in the main flow path L1 is connected to the atmosphere introduction flow path L3. It is The connection channel L6 of the present embodiment is a common channel with a part of the branch channel L13. A pressure regulating valve V2 is provided on the upstream side of the connection point of the connection flow path L6 in the atmosphere introduction flow path L3 (upstream of the constant flow device CP1). A solenoid proportional valve V3 is provided in a bypass flow path L7 connecting the . The pressure regulating valve V2 refers to the input pressure on the upstream side of the constant flow device CP2 in the main flow path L1, and adjusts the input pressure to a first pressure (eg, -20 kPa) to a predetermined pressure. is. Further, the proportional solenoid valve V3 refers to the input pressure on the upstream side of the constant flow device CP2 in the main flow path L1 and the output pressure on the downstream side of the proportional solenoid valve V3 in the connection path L6, side output pressure (buffer tank BT pressure) is adjusted to a predetermined pressure so as to be a second pressure (for example, -40 kPa) with respect to the input pressure. That is, the pressure in the buffer tank BT is reduced to a predetermined pressure by the pressure regulating valve V2 and the constant flow device CP1 so as to become a second pressure (eg, -40 kPa) with respect to the pressure in the atmosphere introduction port P3. In this way, the differential pressure between the upstream pressure and the downstream pressure of the constant flow devices CP1 to CP3 provided in each of the branch paths L11 to L13 is kept constant (-20 kPa) by the pressure regulating valve V2 and the electromagnetic proportional valve V3. , the CO/CO 2 analyzer 21 , the NO X analyzer 21 and the NO analyzer 22 at a constant flow rate. Any one of the pressure regulating valve V2 and the electromagnetic proportional valve V3 may be provided. Also, the pressure control valve V2 may be replaced with an electromagnetic proportional valve.
<圧力変動装置3>
 圧力変動装置3は、上述した排ガス分析装置2を校正する際、具体的には、排ガス分析装置2の圧力補正係数を求める際に用いられるものである。なお、本実施形態の圧力補正係数は、CO・CO分析計21により得られるCO濃度、CO濃度の圧力変動を補正する係数、NO分析計22により得られるNO濃度の圧力変動を補正する係数、NO分析計23により得られるNO濃度の圧力変動を補正する係数である。具体的に圧力補正係数は、それらの濃度を基準圧力(本実施形態では検量線作成時の圧力)に換算するための係数である。
<Pressure fluctuation device 3>
The pressure fluctuation device 3 is used when calibrating the exhaust gas analyzer 2 described above, specifically when determining the pressure correction coefficient of the exhaust gas analyzer 2 . Note that the pressure correction coefficients of the present embodiment are the CO concentration obtained by the CO/CO 2 analyzer 21, a coefficient for correcting pressure fluctuations in the CO 2 concentration, and pressure fluctuations in the NO X concentration obtained by the NO X analyzer 22. A correction coefficient is a coefficient for correcting pressure fluctuations of the NO concentration obtained by the NO analyzer 23 . Specifically, the pressure correction coefficients are coefficients for converting these concentrations into reference pressures (in this embodiment, the pressure at the time of preparing the calibration curve).
 この圧力変動装置3は、排ガス分析装置2の大気開放された複数のポートP1~P3を加圧するものである。 This pressure fluctuation device 3 pressurizes a plurality of ports P1 to P3 of the exhaust gas analyzer 2 that are open to the atmosphere.
 具体的に圧力変動装置3は、図1~図3に示すように、サンプルガス導入ポートP1に一端が接続される第1流路3L1と、排ガス分析装置2のガス排出ポートP2に一端が接続される第2流路3L2と、排ガス分析装置2の大気導入ポートP3に一端が接続される第3流路3L3と、それら流路3L1~3L3を介してサンプルガス導入ポートP1、ガス排出ポートP2及び大気導入ポートP3に圧力を加えて、サンプルガス導入ポートP1、ガス排出ポートP2及び大気導入ポートP3の圧力を変動させる加圧機構31と、サンプルガス導入ポートP1又はガス排出ポートP2から流出するガスを排出するガス排出機構32とを備えている。 Specifically, as shown in FIGS. 1 to 3, the pressure fluctuation device 3 has a first flow path 3L1, one end of which is connected to the sample gas introduction port P1, and one end of which is connected to the gas discharge port P2 of the exhaust gas analyzer 2. a second flow path 3L2 connected at one end to the atmosphere introduction port P3 of the exhaust gas analyzer 2, and a sample gas introduction port P1 and a gas discharge port P2 via the flow paths 3L1 to 3L3 and the atmosphere introduction port P3 to change the pressure of the sample gas introduction port P1, the gas discharge port P2 and the atmosphere introduction port P3, and the sample gas introduction port P1 or the gas discharge port P2. and a gas discharge mechanism 32 for discharging gas.
 加圧機構31は、第1~第3流路3L1~3L3が接続される合流流路311と、当該合流流路311を介して第1~第3流路3L1~3L3を加圧する加圧源312と、合流流路311の圧力を調整する圧力調整部313とを有している。 The pressurizing mechanism 31 includes a confluence flow path 311 to which the first to third flow paths 3L1 to 3L3 are connected, and a pressure source that pressurizes the first to third flow paths 3L1 to 3L3 via the confluence flow path 311. 312 and a pressure adjustment unit 313 that adjusts the pressure of the confluence channel 311 .
 合流流路311は、第1流路3L1及び第2流路3L2の他端が接続されるバッファタンク311aと、当該バッファタンク311a及び加圧源312を接続する接続流路311bとを有している。また、接続流路311bには、第3流路3L3の他端が接続されている。 The confluence flow path 311 has a buffer tank 311a to which the other ends of the first flow path 3L1 and the second flow path 3L2 are connected, and a connection flow path 311b that connects the buffer tank 311a and the pressure source 312. there is The other end of the third flow path 3L3 is connected to the connection flow path 311b.
 加圧源312は、加圧ポンプであり、当該加圧ポンプ312により接続流路311bを介してバッファタンク311aが加圧され、当該バッファタンク311aに接続された第1流路3L1及び第2流路3L2が加圧されるとともに、接続流路311bに接続された第3流路3L3が加圧される。 The pressurization source 312 is a pressurization pump, and the pressurization pump 312 pressurizes the buffer tank 311a via the connection flow path 311b, and the first flow path 3L1 and the second flow path 3L1 connected to the buffer tank 311a. While the channel 3L2 is pressurized, the third channel 3L3 connected to the connection channel 311b is pressurized.
 圧力調整部313は、接続流路311bに接続されており、例えば圧力調整弁又はニードルバルブなどを用いて構成されている。この圧力調整部313は、接続流路311bを流れる空気の一部を排気することにより、圧力を調整するものである。また、加圧機構31は、排ガス分析装置2の流路内の圧力を検出する圧力センサ又はバッファタンク311a内の圧力を検出する圧力センサ(例えばゲージ圧センサ314)を有する。 The pressure adjustment unit 313 is connected to the connection channel 311b, and is configured using, for example, a pressure adjustment valve or a needle valve. The pressure adjusting section 313 adjusts the pressure by exhausting part of the air flowing through the connection channel 311b. The pressurizing mechanism 31 also has a pressure sensor (for example, a gauge pressure sensor 314) that detects the pressure in the flow path of the exhaust gas analyzer 2 or the pressure in the buffer tank 311a.
 ガス排出機構32は、加圧機構31とサンプルガス導入ポートP1との間の流路、加圧機構31とガス排出ポートP2との間の流路、及び、加圧機構31と大気導入ポートP3との間の流路に接続されており、サンプルガス導入ポートP1又はガス排出ポートP2から流出するガスを排出するものである。 The gas discharge mechanism 32 includes a flow path between the pressure mechanism 31 and the sample gas introduction port P1, a flow path between the pressure mechanism 31 and the gas discharge port P2, and a flow path between the pressure mechanism 31 and the atmosphere introduction port P3. and discharges the gas flowing out from the sample gas introduction port P1 or the gas discharge port P2.
 具体的にガス排出機構32は、合流流路311に接続された排気流路321と、当該排気流路321に設けられた吸引ポンプ322とを有している。本実施形態の排気流路321は、バッファタンク311aに接続されている。また、排気流路321には、ニードルバルブなどの流量調整部323が設けられている。この流量調整部323によって、吸引ポンプ322による排気流量を調整する。 Specifically, the gas discharge mechanism 32 has an exhaust flow path 321 connected to the confluence flow path 311 and a suction pump 322 provided in the exhaust flow path 321 . The exhaust flow path 321 of this embodiment is connected to the buffer tank 311a. Further, the exhaust flow path 321 is provided with a flow rate adjusting section 323 such as a needle valve. The exhaust flow rate by the suction pump 322 is adjusted by the flow rate adjusting section 323 .
 また、本実施形態の圧力変動装置3は、第1~第3流路3L1~3L3を介してサンプルガス導入ポートP1、ガス排出ポートP2及び大気導入ポートP3を減圧する減圧機構33と、加圧機構31による加圧状態と、減圧機構33による減圧状態とを切り替える切り替え機構34とを備えている。 Further, the pressure fluctuation device 3 of the present embodiment includes a decompression mechanism 33 for decompressing the sample gas introduction port P1, the gas discharge port P2 and the atmosphere introduction port P3 via the first to third flow paths 3L1 to 3L3, A switching mechanism 34 for switching between a pressurized state by the mechanism 31 and a depressurized state by the depressurizing mechanism 33 is provided.
 減圧機構33は、上記の加圧機構31及びガス排出機構32の一部の構成を用いて構成されている。具体的に減圧機構33は、ガス排出機構32の吸引ポンプ322を用いて構成されている。また、減圧機構33は、接続流路311bに接続されるとともに、大気を導入するための大気導入路331を有している。この大気導入路331には、圧力調整弁などの圧力調整部332が設けられている。この圧力調整部332によって、減圧時において、第1流路L31、第2流路3L2及び第3流路3L3の圧力が一定に調整される。 The decompression mechanism 33 is configured using a part of the configurations of the pressurization mechanism 31 and the gas discharge mechanism 32 described above. Specifically, the decompression mechanism 33 is configured using the suction pump 322 of the gas discharge mechanism 32 . Further, the decompression mechanism 33 is connected to the connection flow path 311b and has an atmosphere introduction path 331 for introducing the atmosphere. A pressure regulating portion 332 such as a pressure regulating valve is provided in the atmosphere introduction passage 331 . The pressure adjustment unit 332 adjusts the pressures of the first flow path L31, the second flow path 3L2, and the third flow path 3L3 to be constant during pressure reduction.
 切り替え機構34は、加圧機構31が動作する場合には、加圧ポンプ312をバッファタンク311aに接続し、減圧機構33が動作する場合には、大気導入路331をバッファタンク311aに接続するものである。本実施形態の切り替え機構34は、接続流路311bと大気導入路331との接続点に設けられた三方弁により構成されている。なお、切り替え機構34は、接続流路に311bおいて大気導入路331の接続点よりも加圧ポンプ312側に開閉弁を設け、大気導入路331に開閉弁を設けて、それらの開閉弁の開閉を制御することにより構成しても良い。 The switching mechanism 34 connects the pressurizing pump 312 to the buffer tank 311a when the pressurizing mechanism 31 operates, and connects the atmosphere introduction passage 331 to the buffer tank 311a when the depressurizing mechanism 33 operates. is. The switching mechanism 34 of the present embodiment is composed of a three-way valve provided at the connection point between the connection channel 311b and the atmosphere introduction channel 331 . The switching mechanism 34 is provided with an opening/closing valve on the pressurizing pump 312 side of the connection point of the atmosphere introduction passage 331 at 311b in the connection flow path, and the opening/closing valve is provided in the atmosphere introduction passage 331. It may be configured by controlling opening and closing.
 なお、本実施形態の圧力変動装置3は、加圧機構31、ガス排出機構32、減圧機構33及び切り替え機構34を含む流体機器は、筐体35内に収容されている。そして、筐体35に設けられた接続ポートP4~P6に、第1流路3L1、第2流路3L2、第3流路3L3の一部を構成する接続管が接続される。このように筐体35と排ガス分析装置2とを接続管を介して接続することにより、排ガス分析装置2と圧力変動装置3との接続を容易にすることができる。 In addition, in the pressure fluctuation device 3 of the present embodiment, fluid devices including the pressurizing mechanism 31, the gas exhausting mechanism 32, the depressurizing mechanism 33, and the switching mechanism 34 are housed in the housing 35. The connection ports P4 to P6 provided in the housing 35 are connected to connection pipes that form part of the first flow path 3L1, the second flow path 3L2, and the third flow path 3L3. By connecting the housing 35 and the exhaust gas analyzer 2 via the connection pipe in this way, the connection between the exhaust gas analyzer 2 and the pressure fluctuation device 3 can be facilitated.
<加圧動作>
 切り替え機構34により加圧ポンプ312をバッファタンク311aに接続した状態とする。この状態において、排ガス分析装置2の吸引ポンプ25、圧力変動装置3の加圧ポンプ312及び吸引ポンプ322を動作させ、校正ガスを校正ガス流路L2から供給すると、ガスの流れは次のようになる。
<Pressure operation>
The switching mechanism 34 connects the pressurizing pump 312 to the buffer tank 311a. In this state, when the suction pump 25 of the exhaust gas analyzer 2 and the pressure pump 312 and suction pump 322 of the pressure fluctuation device 3 are operated to supply the calibration gas from the calibration gas flow path L2, the gas flow is as follows. Become.
 つまり、排ガス分析装置2の吸引ポンプ25によって、校正ガスが校正ガス流路L2から各分析計21~23に供給される。ここで、サンプルガス導入ポートP1からは校正ガスの一部が流出し、また、ガス排出ポートP2からは各分析計21~23を通過した校正ガスが流出する。また、サンプルガス導入ポートP1及びガス排出ポートP2は、加圧機構31により加圧された状態(加圧機構31が動作する前と比較して圧力が加えられた状態)である。さらに、加圧ポンプ312を介して第3流路3L3から排ガス分析装置2の大気導入ポートP3に大気が導入される。ここで、バッファタンク311aに流入する校正ガスは、ガス排出機構32により外部に排出されているので、校正ガスが逆流してサンプルガス導入ポートP1及びガス排出ポートに流れ込むこと、及び、校正ガスが第3流路3L3に流れ込むことを防ぐことができる。これにより、サンプルガス導入ポートP1、ガス排出ポートP2及び大気導入ポートP3が加圧された状態(加圧機構31が動作する前と比較して圧力が加えられた状態)で、各分析計21~23に校正ガスが供給される。 That is, the suction pump 25 of the exhaust gas analyzer 2 supplies the calibration gas from the calibration gas flow path L2 to each of the analyzers 21-23. Here, a part of the calibration gas flows out from the sample gas introduction port P1, and the calibration gas that has passed through the analyzers 21 to 23 flows out from the gas discharge port P2. Also, the sample gas introduction port P1 and the gas discharge port P2 are in a state of being pressurized by the pressurizing mechanism 31 (a state in which pressure is applied compared to before the pressurizing mechanism 31 operates). Further, air is introduced into the air introduction port P3 of the exhaust gas analyzer 2 from the third flow path 3L3 via the pressurizing pump 312 . Here, since the calibration gas flowing into the buffer tank 311a is discharged to the outside by the gas discharge mechanism 32, the calibration gas flows backward into the sample gas introduction port P1 and the gas discharge port. It is possible to prevent the liquid from flowing into the third flow path 3L3. As a result, with the sample gas introduction port P1, the gas discharge port P2, and the atmosphere introduction port P3 pressurized (a state in which pressure is applied compared to before the pressurization mechanism 31 operates), each analyzer 21 .about.23 are supplied with calibration gas.
<減圧動作>
 切り替え機構34により大気導入路331をバッファタンク311aに接続した状態とする。この状態において、排ガス分析装置2の吸引ポンプ25、圧力変動装置3の吸引ポンプ322を動作させ、校正ガスを校正ガス流路L2から供給すると、ガスの流れは次のようになる。
<Decompression operation>
The switching mechanism 34 connects the atmosphere introduction passage 331 to the buffer tank 311a. In this state, when the suction pump 25 of the exhaust gas analyzer 2 and the suction pump 322 of the pressure fluctuation device 3 are operated to supply the calibration gas from the calibration gas flow path L2, the gas flows as follows.
 つまり、排ガス分析装置2の吸引ポンプ25によって、校正ガスが校正ガス流路L2から各分析計21~23に供給される。ここで、第1流路3L1を介してサンプルガス導入ポートP1から校正ガスが吸引される。また、吸引ポンプ322を介して第3流路3L3から排ガス分析装置2の大気導入ポートP3に大気が導入される。ここで、第3流路3L3は、大気導入路331に接続されているので、第1流路3L1及び第2流路3L2を介してバッファタンク311aに流入する校正ガスが第3流路3L3に流れ込む心配がない。これにより、サンプルガス導入ポートP1、ガス排出ポートP2及び大気導入ポートP3が減圧された状態で、各分析計21~23に校正ガスが供給される。 That is, the suction pump 25 of the exhaust gas analyzer 2 supplies the calibration gas from the calibration gas flow path L2 to each of the analyzers 21-23. Here, the calibration gas is sucked from the sample gas introduction port P1 through the first flow path 3L1. Also, air is introduced into the air introduction port P3 of the exhaust gas analyzer 2 from the third flow path 3L3 via the suction pump 322 . Here, since the third flow path 3L3 is connected to the atmosphere introduction path 331, the calibration gas flowing into the buffer tank 311a through the first flow path 3L1 and the second flow path 3L2 flows into the third flow path 3L3. Don't worry about it leaking. As a result, the calibration gas is supplied to each of the analyzers 21 to 23 while the sample gas introduction port P1, the gas discharge port P2 and the air introduction port P3 are decompressed.
<校正方法(圧力補正係数の算出方法)>
 次にこのように構成した圧力変動装置3を用いた圧力補正係数の算出方法について、図4を参照して説明する。本実施形態の校正方法は、排ガス分析装置2に対して加圧の状態を再現し、排ガス分析装置2のゼロ・スパン校正に加えて、排ガス分析装置2の圧力補正係数を算出することを含む。なお、校正方法は、検量線作成を含んでもよい。
<Calibration method (calculation method of pressure correction coefficient)>
Next, a method of calculating the pressure correction coefficient using the pressure fluctuation device 3 configured as described above will be described with reference to FIG. The calibration method of the present embodiment includes reproducing the pressurized state of the exhaust gas analyzer 2, and calculating the pressure correction coefficient of the exhaust gas analyzer 2 in addition to the zero-span calibration of the exhaust gas analyzer 2. . Note that the calibration method may include preparation of a calibration curve.
 まず、校正対象である排ガス分析装置2を用意する。このとき、排ガス分析装置2が車両に搭載されたものである場合には、搭載された状態であってもよいし、車両から取り外した状態であってもよい。 First, prepare the exhaust gas analyzer 2 to be calibrated. At this time, when the exhaust gas analyzer 2 is mounted on the vehicle, it may be mounted or removed from the vehicle.
 そして、この排ガス分析装置2を暖機運転させる(ステップS1)。このとき、排ガス分析装置2の吸引ポンプ25は起動している。なお、排ガス分析装置2が圧力補正機能を有する場合には、当該圧力補正機能はオフにする。 Then, the exhaust gas analyzer 2 is warmed up (step S1). At this time, the suction pump 25 of the exhaust gas analyzer 2 is activated. If the exhaust gas analyzer 2 has a pressure correction function, the pressure correction function is turned off.
 暖機運転後、大気圧環境下において、排ガス分析装置2にゼロ校正用の校正ガスを流して、ゼロ校正を行う。また、排ガス分析装置2にスパン校正用の校正ガスを流して、スパン校正を行う(ステップS2)。これら校正ガスは、校正ガス流路L2から供給される。なお、このとき、圧力変動装置3は停止状態である。 After the warm-up operation, the zero calibration is performed by flowing the calibration gas for zero calibration to the exhaust gas analyzer 2 under the atmospheric pressure environment. Also, span calibration is performed by flowing a calibration gas for span calibration into the exhaust gas analyzer 2 (step S2). These calibration gases are supplied from the calibration gas flow path L2. At this time, the pressure fluctuation device 3 is in a stopped state.
 その後、排ガス分析装置2の各ポートP1~P3に圧力変動装置3の各流路3L1~3L3を接続する。この状態で、圧力変動装置3の加圧機構(加圧用ポンプ)及びガス排出機構(吸引ポンプ)を起動する(ステップS3)。 After that, the channels 3L1 to 3L3 of the pressure fluctuation device 3 are connected to the ports P1 to P3 of the exhaust gas analyzer 2, respectively. In this state, the pressurization mechanism (pressurization pump) and the gas discharge mechanism (suction pump) of the pressure fluctuation device 3 are started (step S3).
 ここで、加圧機構31の圧力調整部313又はガス排出機構32の流量調整部323により、バッファタンク311a内の圧力(ゲージ圧センサ314の圧力)を一定(例えば0m~1500mの気圧条件)に調整する(ステップS4)。気圧条件の変更順としては、例えば、排ガス分析装置2が標高1500mに設定されている場合、1500m、1000m、500m、0m、500m、1000m、1500mといったように、徐々に標高の低い気圧条件に上げていき、所定の最低標高の気圧条件にした後に、再び徐々に標高を上げていくことが考えられる。ここで、圧力変動装置3のゲージ圧センサ314の測定値を参照して圧力調整部313又は流量調整部323を操作して所望の圧力となるように制御する。この操作は、コンピュータを用いた自動制御であってもよいし、オペレータが手動で行うものであってもよい。 Here, the pressure in the buffer tank 311a (the pressure of the gauge pressure sensor 314) is kept constant (for example, at atmospheric pressure conditions of 0 m to 1500 m) by the pressure adjustment unit 313 of the pressurization mechanism 31 or the flow rate adjustment unit 323 of the gas discharge mechanism 32. Adjust (step S4). As for the order of changing the atmospheric pressure conditions, for example, when the exhaust gas analyzer 2 is set at an altitude of 1500 m, the atmospheric pressure conditions are gradually increased to lower altitudes such as 1500 m, 1000 m, 500 m, 0 m, 500 m, 1000 m, and 1500 m. It is conceivable to gradually increase the altitude again after the air pressure condition reaches the predetermined minimum altitude. Here, the measured value of the gauge pressure sensor 314 of the pressure fluctuation device 3 is referred to, and the pressure adjusting section 313 or the flow rate adjusting section 323 is operated to control the desired pressure. This operation may be automatically controlled using a computer, or may be manually performed by an operator.
 各気圧条件において、ゼロ校正用の校正ガス及びスパン校正用の校正ガスをそれぞれ流して、各分析計21~23により測定を行う(ステップS5)。これら校正ガスは、校正ガス流路L2からメイン流路L1に流入される。このとき、校正ガスは接続点から下流側(ガス排出ポートP2)に流れるだけでなく、上流側(サンプルガス導入ポートP1)にも流れるように過剰量を供給する。つまり、サンプルガス導入ポートP1から第1流路3L1に校正ガスが流出する。これにより、純粋な校正ガスを各分析計21~23に流入させている。サンプルガス導入ポートP1から校正ガスが逆流しない場合には、サンプルガス導入ポートP1から大気が導入されることになり、校正ガスが希釈されてしまい正確な校正ができないためである。なお、過剰量とは、校正ガスの供給流量がガス排出ポートP2からの排出量から大気導入ポートP3からの導入量を差し引いた流量よりも多いことを意味する。 Under each pressure condition, the calibration gas for zero calibration and the calibration gas for span calibration are respectively flowed, and measurements are performed by each analyzer 21 to 23 (step S5). These calibration gases flow into the main flow path L1 from the calibration gas flow path L2. At this time, an excess amount of the calibration gas is supplied so that it flows not only to the downstream side (gas discharge port P2) from the connection point but also to the upstream side (sample gas introduction port P1). That is, the calibration gas flows out from the sample gas introduction port P1 to the first flow path 3L1. This allows pure calibration gas to flow into each analyzer 21-23. This is because if the calibration gas does not flow backward from the sample gas introduction port P1, the atmosphere will be introduced from the sample gas introduction port P1, which will dilute the calibration gas and prevent accurate calibration. The excess amount means that the supply flow rate of the calibration gas is larger than the flow rate obtained by subtracting the introduction amount from the atmosphere introduction port P3 from the discharge amount from the gas discharge port P2.
 各測定が終了した後(ステップS6)に、圧力変動装置3及び排ガス分析装置2を停止させる(ステップS7)。そして、各測定により得られた測定結果から圧力補正係数(ステップS8)を算出する。具体的には、各測定により得られた測定結果が、基準圧力における校正ガスの測定値と一致するように圧力補正係数を作成する。 After each measurement is completed (step S6), the pressure fluctuation device 3 and the exhaust gas analyzer 2 are stopped (step S7). Then, a pressure correction coefficient (step S8) is calculated from the measurement results obtained by each measurement. Specifically, a pressure correction coefficient is created so that the measurement result obtained from each measurement matches the measurement value of the calibration gas at the reference pressure.
 複数の圧力に変動させて、各圧力において各分析計21~23の測定値を取得することによって、各分析計21~23の圧力補正係数を求めることができる。
 ここで、この圧力補正係数は、情報処理部4により演算されるように構成してもよいし、オペレータが手計算により算出するようにしてもよい。なお、圧力補正係数は、表形式であってもよいし、関数形式であってもよい。このように求められた圧力補正係数のデータは情報処理部4の内部メモリに格納される。
By varying the pressure to a plurality of pressures and acquiring the measurement values of each analyzer 21-23 at each pressure, the pressure correction coefficient of each analyzer 21-23 can be obtained.
Here, this pressure correction coefficient may be configured to be calculated by the information processing section 4, or may be manually calculated by the operator. Note that the pressure correction coefficient may be in a tabular format or in a functional format. Data of the pressure correction coefficient obtained in this manner is stored in the internal memory of the information processing section 4 .
 以上の処理を濃度の異なる校正ガス毎に行うことによって、各濃度における圧力補正係数を求めることができる。また、ガス種の異なる複数の校正ガスを用いる場合には、校正ガス毎に同様の操作を行ってもよいし、複数の校正ガスの混合ガスを用いて校正してもよい。 By performing the above process for each calibration gas with different concentrations, the pressure correction coefficient at each concentration can be obtained. When using a plurality of calibration gases of different gas types, the same operation may be performed for each calibration gas, or a mixed gas of a plurality of calibration gases may be used for calibration.
 この圧力補正係数を用いることによって、情報処理部4は、実路走行中(実測定時)の圧力センサ(図示しない)により得られる圧力及び各分析計21~23により得られる濃度から、基準圧力(検量線作成時の圧力)との圧力差を補正して、検量線作成時の圧力に換算した濃度を算出する。 By using this pressure correction coefficient, the information processing unit 4 calculates the reference pressure ( The pressure at the time of preparing the calibration curve is corrected to calculate the concentration converted to the pressure at the time of preparation of the calibration curve.
 なお、上記では、排ガス分析装置を加圧の状態にして圧力補正係数を求める手順を示したが、加圧機構だけでなく、減圧機構及び切り替え機構を用いることにより、校正地点の標高に関わらず、当該校正地点よりも低い標高の状態を再現するだけでなく、校正地点よりも高い標高の状態を再現して、圧力補正係数を求めることができる。 In the above, the procedure for obtaining the pressure correction coefficient with the flue gas analyzer in a pressurized state was shown. , the pressure correction coefficient can be obtained by reproducing not only the state of altitude lower than the calibration point, but also the state of altitude higher than the calibration point.
<本実施形態の効果>
 本実施形態のガス分析システム100によれば、排ガス分析装置2のサンプルガス導入ポートP1及びガス排出ポートP2に圧力変動装置3を接続しているので、加圧試験室を用いることなく、排ガス分析装置2に対して加圧の状態を再現することができる。したがって、校正地点よりも低い標高において、圧力補正係数を外挿的に補正すること無く、精度良く圧力補正係数を求めることができる。その結果、排ガス分析装置2の測定結果を外挿的に予想することなく、精度よく測定することができる。
<Effects of this embodiment>
According to the gas analysis system 100 of the present embodiment, since the pressure fluctuation device 3 is connected to the sample gas introduction port P1 and the gas discharge port P2 of the exhaust gas analyzer 2, the exhaust gas can be analyzed without using a pressurization test chamber. The state of pressurization for the device 2 can be reproduced. Therefore, at altitudes lower than the calibration point, the pressure correction coefficient can be obtained with high accuracy without extrapolative correction of the pressure correction coefficient. As a result, the measurement result of the exhaust gas analyzer 2 can be accurately measured without extrapolation.
 特に本実施形態では、サンプルガス導入ポートP1、ガス排出ポートP2及び大気導入ポートP3を加圧した状態において、サンプルガス導入ポートP1又はガス排出ポートP2から流出する校正ガスを、圧力変動装置3のガス排出機構32により排出しているので、加圧に伴う校正ガスの逆流を抑制して、圧力補正係数を精度良く求めることができる。 In particular, in this embodiment, the calibration gas flowing out of the sample gas introduction port P1 or the gas discharge port P2 is applied to the pressure fluctuation device 3 while the sample gas introduction port P1, the gas discharge port P2, and the atmosphere introduction port P3 are pressurized. Since the calibration gas is discharged by the gas discharge mechanism 32, the backflow of the calibration gas due to pressurization is suppressed, and the pressure correction coefficient can be obtained with high accuracy.
<変形実施形態>
 なお、本発明は前記実施形態に限られるものではない。
<Modified embodiment>
It should be noted that the present invention is not limited to the above embodiments.
 例えば、排ガス分析装置2は、排ガスを希釈する機能及びオゾン発生器を有しているので大気導入流路L3を有するものであったが、それらを有さない場合には、大気導入流路を有さないものであっても良い。 For example, the exhaust gas analyzer 2 has the function of diluting the exhaust gas and the ozone generator, so it has the atmosphere introduction passage L3. It may be something that does not have.
 また、大気導入ポートP3及び大気導入路3L3には、必ずしも大気が導入される必要はない。例えばボンベから酸素やオゾンが供給されてもよいし、それ以外のガスが供給されるものであってもよい。 In addition, the air does not necessarily need to be introduced into the air introduction port P3 and the air introduction path 3L3. For example, oxygen or ozone may be supplied from a cylinder, or other gas may be supplied.
 さらに、圧力変動装置3は、図5に示すように、減圧機構33及び切り替え機構34を有さずに、ガス分析装置2を加圧する機能のみを有する構成としても良い。 Furthermore, as shown in FIG. 5, the pressure fluctuation device 3 may be configured to have only the function of pressurizing the gas analysis device 2 without having the decompression mechanism 33 and the switching mechanism 34 .
 前記実施形態の加圧機構31の圧力調整部313の変形例として、図6に示すように、接続流路311bに例えば電磁弁などの開閉弁315を設け、当該開閉弁315をオンオフ制御することによって、所望の圧力となるように調整するものであっても良い。ここで、開閉弁315は、例えばゲージ圧センサ314の検出圧力が目標圧力となるようにオンオフ制御される。 As a modification of the pressure adjusting unit 313 of the pressurizing mechanism 31 of the above-described embodiment, as shown in FIG. The desired pressure may be obtained by adjusting the pressure. Here, the on-off valve 315 is on/off-controlled so that the pressure detected by the gauge pressure sensor 314, for example, becomes the target pressure.
 また、加圧源312としては、加圧ポンプの他に、図7に示すように、周囲圧力よりも加圧したガスが貯められた例えばバッファタンク等の加圧容器316を用いても良い。また、加圧容器316にはコンプレッサー317を接続しても良い。なお、図7の圧力調整部313は、前記実施形態と同様の構成としているが、図6に示す開閉弁315を用いた構成としても良い。 As the pressurization source 312, in addition to the pressurization pump, as shown in FIG. 7, a pressurization container 316 such as a buffer tank storing gas pressurized above the ambient pressure may be used. Also, a compressor 317 may be connected to the pressurized container 316 . 7 has the same configuration as that of the above-described embodiment, it may have a configuration using the on-off valve 315 shown in FIG.
 前記実施形態では、排ガス分析装置2の内部メモリに圧力補正係数のデータを格納しているが、排ガス分析装置2とは別体をなす情報処理装置の内部メモリに圧力補正係数のデータを格納しておき、当該情報処理装置が排ガス分析装置2の各分析計21~23の分析データを取得して、圧力補正するようにしても良い。 In the above embodiment, the data of the pressure correction coefficients are stored in the internal memory of the exhaust gas analyzer 2, but the data of the pressure correction coefficients are stored in the internal memory of the information processing device which is separate from the exhaust gas analyzer 2. Alternatively, the information processing device may acquire analysis data from the analyzers 21 to 23 of the exhaust gas analyzer 2 and correct the pressure.
 さらに、前記実施形態の圧力変動装置において、加圧状態と減圧状態とを自動的に切り替える構成としても良い。具体的には、圧力変動装置が、切り替え機構を制御して、加圧状態と減圧状態とを自動的に切り替える制御部をさらに備える構成が考えられる。この場合、制御部は、例えばゲージ圧センサ314の圧力と、予め設定された目標圧力とを比較して、加圧状態と減圧状態とを自動的に切り替えることが考えられる。 Furthermore, the pressure fluctuation device of the above embodiment may be configured to automatically switch between the pressurized state and the depressurized state. Specifically, the pressure variation device may further include a control unit that controls the switching mechanism to automatically switch between the pressurized state and the depressurized state. In this case, the control unit may compare the pressure of the gauge pressure sensor 314 and a preset target pressure, for example, and automatically switch between the pressurized state and the depressurized state.
 また、図8に示すように、コンピュータ等の外部操作機器6を用いて、ガス分析装置2と圧力変動装置3とを連携制御して、ガス分析装置2の圧力補正係数を算出することもできる。具体的にガス分析装置2の操作は外部操作機器6を用いて行う。外部操作機器6は通信ケーブル等を経由して、ガス分析装置2の測定開始及び停止の操作を行う。ガス分析装置2の制御部51(情報処理部4であっても良い。)は、外部操作機器6からの信号に従って吸引ポンプ25や各種バルブなどの制御を行う。また、圧力変動装置3の操作は外部操作機器6を用いて行う。外部操作機器6は通信ケーブル等を経由して、圧力変動装置3の開始及び停止の操作を行う。圧力変動装置3の制御部52は、外部操作機器6からの信号に従って加圧ポンプ313や吸引ポンプ322や各種バルブ323などの制御を行う。そして、外部操作機器6には、予め設定された目標圧力に対してガス分析装置2内部及び圧力変動装置3の圧力が陽圧か陰圧かを判断する判断部61を有している。なお、判断部61が参照する圧力計には、例えばゲージ圧センサ314などを用いる。そして、外部操作機器6は、判断部61の判断結果に基づいて、予め設定された目標圧力となるように、各装置のポンプなどの制御指令信号をガス分析装置2及び圧力変動装置3に出力する。なお、判断部61の機能は、制御部51又は制御部52に備えさせても良い。 Further, as shown in FIG. 8, the pressure correction coefficient of the gas analyzer 2 can be calculated by cooperatively controlling the gas analyzer 2 and the pressure fluctuation device 3 using an external operating device 6 such as a computer. . Specifically, the operation of the gas analyzer 2 is performed using an external operation device 6 . The external operation device 6 performs operations for starting and stopping measurement of the gas analyzer 2 via a communication cable or the like. A control unit 51 (which may be the information processing unit 4 ) of the gas analyzer 2 controls the suction pump 25 and various valves according to signals from the external operation device 6 . Moreover, the operation of the pressure fluctuation device 3 is performed using an external operation device 6 . The external operation device 6 performs operations for starting and stopping the pressure variation device 3 via a communication cable or the like. The control unit 52 of the pressure fluctuation device 3 controls the pressure pump 313, the suction pump 322, various valves 323, etc. according to the signal from the external operation device 6. FIG. The external operating device 6 has a judgment section 61 for judging whether the pressure inside the gas analyzer 2 and the pressure fluctuation device 3 is positive pressure or negative pressure with respect to a preset target pressure. As the pressure gauge referred to by the determination unit 61, for example, the gauge pressure sensor 314 is used. Then, based on the determination result of the determination unit 61, the external operation device 6 outputs control command signals for the pumps and the like of each device to the gas analysis device 2 and the pressure fluctuation device 3 so as to achieve a preset target pressure. do. Note that the function of the determination unit 61 may be provided in the control unit 51 or the control unit 52 .
 前記実施形態の校正方法では、ゼロ・スパン校正(ステップS2)を行うものであったが、ゼロ・スパン校正を行わなくてもよい。 In the calibration method of the above embodiment, zero/span calibration (step S2) is performed, but zero/span calibration may not be performed.
 さらに、圧力補正係数は、基準圧力として検量線作成時の圧力の他に、ゼロ・スパン校正時の圧力を用いて作成してもよい。 Furthermore, the pressure correction coefficient may be created using the pressure at the time of zero/span calibration in addition to the pressure at the time of calibration curve creation as the reference pressure.
 また、ガス分析装置のサンプルガス導入ポート、ガス排出ポート及び大気導入ポートの何れかに前記実施形態とは別の圧力変動装置を接続してもよい。そして、それら圧力変動装置を制御して、各ポートを同じ圧力に調整するようにしてもよい。 Also, a pressure variation device different from the above embodiment may be connected to any of the sample gas introduction port, gas discharge port, and atmosphere introduction port of the gas analyzer. Then, by controlling these pressure variation devices, each port may be adjusted to the same pressure.
 また、ガス分析装置のサンプルガス導入ポート、ガス排出ポート及び大気導入ポートそれぞれに独立して加圧機構及びガス排出機構を設けても良い。その他、加圧機構とサンプルガス導入ポートとの間、加圧機構31とガス排出ポートとの間、及び、加圧機構と大気導入ポートとの間のそれぞれにガス排出機構を設けても良い。 Also, the sample gas introduction port, the gas discharge port, and the air introduction port of the gas analyzer may be independently provided with a pressurization mechanism and a gas discharge mechanism. In addition, gas exhaust mechanisms may be provided between the pressurizing mechanism and the sample gas introduction port, between the pressurizing mechanism 31 and the gas exhaust port, and between the pressurizing mechanism and the atmosphere introducing port.
 前記実施形態の圧力変動装置の技術的思想は、以下のように言うこともできる。
 つまり、圧力変動装置は、ガス分析装置の圧力を変動させる圧力変動装置であって、前記ガス分析装置のサンプルガス導入ポートに接続される第1流路と、前記ガス分析装置のガス排出ポートに接続される第2流路と、前記第1流路及び前記第2流路を介して、前記サンプルガス導入ポート及び前記ガス排出ポートから出るガスを排出するガス排出機構と、前記ガス排出機構と前記サンプルガス導入ポートとの間の流路、及び、前記ガス排出機構と前記ガス排出ポートとの間の流路に圧力を加えて、前記サンプルガス導入ポート及び前記ガス排出ポートの圧力を変動させる加圧機構とを備える。この構成であっても、前記実施形態と同様のガス分析システムを構成することができる。
The technical idea of the pressure fluctuation device of the embodiment can also be said as follows.
In other words, the pressure fluctuation device is a pressure fluctuation device that fluctuates the pressure of the gas analysis device, and the first channel connected to the sample gas introduction port of the gas analysis device and the gas discharge port of the gas analysis device. a connected second flow path, a gas discharge mechanism for discharging gas from the sample gas introduction port and the gas discharge port via the first flow path and the second flow path, and the gas discharge mechanism Pressure is applied to the flow path between the sample gas introduction port and the flow path between the gas discharge mechanism and the gas discharge port to vary the pressures of the sample gas introduction port and the gas discharge port. and a pressurizing mechanism. Even with this configuration, a gas analysis system similar to that of the above embodiment can be configured.
 また、前記実施形態では、車両搭載型の排ガス分析装置について説明したが、車両搭載型ではなく据え置き型の排ガス分析装置であっても良い。また、排ガス分析装置の計測対象は、車両からの排ガスに限られず、エンジン又は船舶等のその他の移動体からの排ガスであっても良いし、大気を直接計測しても良い。 Also, in the above embodiment, a vehicle-mounted type exhaust gas analyzer has been described, but a stationary type exhaust gas analyzer may be used instead of a vehicle-mounted type. Further, the measurement target of the exhaust gas analyzer is not limited to exhaust gas from vehicles, but may be exhaust gas from other moving bodies such as engines or ships, or the atmosphere may be directly measured.
 前記実施形態では、ガソリンエンジンやディーゼルエンジンを搭載した車両からの排ガスを分析する排ガス分析装置について説明したが、燃料電池によって動力を得る燃料電池車、水素を燃焼させて動力を得る水素エンジン車両にも適用することができる。分析部に漁師カスケードレーザ(QCL)を搭載した分析計を用いることで、燃料電池の排ガスには燃料電池からリークしたリーク水素を計測したり、水素エンジンの排ガスには燃焼塔で反応しなかった未燃水素を計測してもよい。 In the above embodiments, an exhaust gas analyzer that analyzes exhaust gas from a vehicle equipped with a gasoline engine or a diesel engine has been described. can also be applied. By using an analyzer equipped with a fisherman's cascade laser (QCL) in the analysis part, leaked hydrogen from the fuel cell was measured in the exhaust gas of the fuel cell, and the exhaust gas of the hydrogen engine did not react in the combustion tower. Unburned hydrogen may be measured.
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。 In addition, various modifications and combinations of the embodiments may be made as long as they do not contradict the spirit of the present invention.
 本発明によれば、ガス分析装置に対して加圧の状態を再現しつつ、圧力補正係数を精度良く求めることができる。 According to the present invention, it is possible to obtain the pressure correction coefficient with high accuracy while reproducing the state of pressurization for the gas analyzer.
100・・・ガス分析システム
2・・・排ガス分析装置(ガス分析装置)
P0・・・校正ガス導入ポート
P1・・・サンプルガス導入ポート
P2・・・ガス排出ポート
P3・・・大気導入ポート
3・・・圧力変動装置
31・・・加圧機構
32・・・ガス排出機構
322・・・吸引ポンプ
311・・・合流流路
312・・・加圧源(加圧ポンプ)
313・・・圧力調整部
311a・・・バッファタンク
33・・・減圧機構
34・・・切り替え機構
100 Gas analysis system 2 Exhaust gas analyzer (gas analyzer)
P0...Calibration gas introduction port P1...Sample gas introduction port P2...Gas discharge port P3...Atmosphere introduction port 3...Pressure fluctuation device 31...Pressurization mechanism 32...Gas discharge Mechanism 322 Suction pump 311 Merging channel 312 Pressurization source (pressurization pump)
313... Pressure adjustment part 311a... Buffer tank 33... Decompression mechanism 34... Switching mechanism

Claims (16)

  1.  ガス分析装置のサンプルガス導入ポート及びガス排出ポートに、加圧機構及びガス排出機構を有する圧力変動装置を接続し、
     前記圧力変動装置の前記加圧機構により、前記サンプルガス導入ポート及び前記ガス排出ポートに圧力を加えて、前記サンプルガス導入ポート及び前記ガス排出ポートの圧力を変動させ、
     圧力が変動された状態において、前記ガス分析装置の校正ガス導入ポートから校正ガスを導入しつつ、前記サンプルガス導入ポート又は前記ガス排出ポートから流出する校正ガスを、前記圧力変動装置の前記ガス排出機構により排出し、
     前記ガス分析装置における前記校正ガスの測定結果を用いて、前記ガス分析装置の圧力補正係数を算出する、ガス分析装置の校正方法。
    connecting a pressure fluctuation device having a pressurization mechanism and a gas discharge mechanism to the sample gas introduction port and the gas discharge port of the gas analyzer;
    applying pressure to the sample gas introduction port and the gas discharge port by the pressurizing mechanism of the pressure fluctuation device to vary the pressures of the sample gas introduction port and the gas discharge port;
    While the calibration gas is being introduced from the calibration gas introduction port of the gas analyzer in a state where the pressure is fluctuated, the calibration gas flowing out from the sample gas introduction port or the gas discharge port is discharged from the pressure fluctuation device. discharged by the mechanism,
    A method of calibrating a gas analyzer, comprising calculating a pressure correction coefficient of the gas analyzer using a measurement result of the calibration gas in the gas analyzer.
  2.  前記圧力変動装置により複数の圧力に変動させ、それら複数の圧力それぞれにおける前記校正ガスの測定結果が基準圧力での校正ガスの測定結果と一致するように、前記ガス分析装置の圧力補正係数を算出する、請求項1に記載のガス分析装置の校正方法。 A plurality of pressures are varied by the pressure variation device, and the pressure correction coefficient of the gas analyzer is calculated so that the measurement results of the calibration gas at each of the plurality of pressures match the measurement results of the calibration gas at the reference pressure. The method for calibrating a gas analyzer according to claim 1, wherein
  3.  前記校正ガス導入ポートから校正ガスを過剰量導入し、前記サンプルガス導入ポートから校正ガスをオーバーフローさせながら、前記校正ガスを測定する、請求項1又は2に記載のガス分析装置の校正方法。 3. The method of calibrating a gas analyzer according to claim 1 or 2, wherein an excessive amount of calibration gas is introduced from the calibration gas introduction port, and the calibration gas is measured while overflowing the calibration gas from the sample gas introduction port.
  4.  前記ガス分析装置は、大気導入ポートをさらに備えたものであり、
     前記圧力変動装置を前記大気導入ポートに接続して、前記サンプルガス導入ポート、前記ガス排出ポート及び前記大気導入ポートに圧力を加えて、前記サンプルガス導入ポート、前記ガス排出ポート及び前記大気導入ポートの圧力を変動させる、請求項1乃至3の何れか一項に記載のガス分析装置の校正方法。
    The gas analyzer further comprises an atmosphere introduction port,
    The pressure variation device is connected to the atmosphere introduction port to apply pressure to the sample gas introduction port, the gas discharge port and the atmosphere introduction port to apply pressure to the sample gas introduction port, the gas discharge port and the atmosphere introduction port. 4. The method for calibrating a gas analyzer according to any one of claims 1 to 3, wherein the pressure of is varied.
  5.  前記ガス分析装置は、車両搭載型のものである、請求項1乃至4の何れか一項に記載のガス分析装置の校正方法。 The gas analyzer calibration method according to any one of claims 1 to 4, wherein the gas analyzer is of a vehicle-mounted type.
  6.  請求項1乃至5の何れか一項に記載の校正方法により得られた圧力補正係数を用いて、前記ガス分析装置の実測定の測定結果を、当該実測定時の圧力に基づいて、前記ガス分析装置の基準圧力における測定結果に補正するガス分析装置の圧力補正方法。 Using the pressure correction coefficient obtained by the calibration method according to any one of claims 1 to 5, the measurement result of the actual measurement of the gas analysis device is converted to the gas analysis method based on the pressure at the time of the actual measurement. A pressure correction method for a gas analyzer for correcting measurement results at the reference pressure of the device.
  7.  圧力補正係数を用いた圧力補正機能を有するガス分析装置のサンプルガス導入ポート及びガス排出ポートに、加圧機構及びガス排出機構を有する圧力変動装置を接続し、
     前記圧力変動装置の前記加圧機構により、前記サンプルガス導入ポート及び前記ガス排出ポートに圧力を加えて、前記サンプルガス導入ポート及び前記ガス排出ポートの圧力を変動させ、
     圧力が変動された状態において、前記ガス分析装置の校正ガス導入ポートから校正ガスを導入しつつ、前記サンプルガス導入ポート又は前記ガス排出ポートから流出する校正ガスを、前記圧力変動装置の前記ガス排出機構により排出し、
     前記ガス分析装置における前記圧力補正係数を用いた補正後の測定値と、前記校正ガスの基準圧力における既知濃度とを比較する、ガス分析装置の検査方法。
    A pressure fluctuation device having a pressurization mechanism and a gas discharge mechanism is connected to a sample gas introduction port and a gas discharge port of a gas analyzer having a pressure correction function using a pressure correction coefficient,
    applying pressure to the sample gas introduction port and the gas discharge port by the pressurizing mechanism of the pressure fluctuation device to vary the pressures of the sample gas introduction port and the gas discharge port;
    While the calibration gas is being introduced from the calibration gas introduction port of the gas analyzer in a state where the pressure is fluctuated, the calibration gas flowing out from the sample gas introduction port or the gas discharge port is discharged from the pressure fluctuation device. discharged by the mechanism,
    A method of inspecting a gas analyzer, comprising comparing a measured value after correction using the pressure correction factor in the gas analyzer with a known concentration of the calibration gas at a reference pressure.
  8.  ガス分析装置のサンプルガス導入ポート及びガス排出ポートに、加圧機構及びガス排出機構を有する圧力変動装置を接続し、
     前記圧力変動装置の前記加圧機構により、前記サンプルガス導入ポート及び前記ガス排出ポートに圧力を加えて、前記サンプルガス導入ポート及び前記ガス排出ポートの圧力を変動させて前記ガス分析装置の圧力を変動させつつ、前記サンプルガス導入ポート又は前記ガス排出ポートから流出するガスを、前記圧力変動装置の前記ガス排出機構により排出する、圧力変動方法。
    connecting a pressure fluctuation device having a pressurization mechanism and a gas discharge mechanism to the sample gas introduction port and the gas discharge port of the gas analyzer;
    The pressurizing mechanism of the pressure variation device applies pressure to the sample gas introduction port and the gas discharge port to vary the pressure of the sample gas introduction port and the gas discharge port, thereby increasing the pressure of the gas analyzer. A pressure fluctuation method, wherein the gas flowing out from the sample gas introduction port or the gas discharge port is discharged by the gas discharge mechanism of the pressure fluctuation device while being varied.
  9.  ガス分析装置の圧力を変動させる圧力変動装置であって、
     前記ガス分析装置のサンプルガス導入ポートに接続される第1流路と、
     前記ガス分析装置のガス排出ポートに接続される第2流路と、
     前記第1流路及び前記第2流路を介して前記サンプルガス導入ポート及び前記ガス排出ポートに圧力を加えて、前記サンプルガス導入ポート及び前記ガス排出ポートの圧力を変動させる加圧機構と、
     前記加圧機構と前記サンプルガス導入ポートとの間の流路、及び前記加圧機構と前記ガス排出ポートとの間の流路に接続され、前記サンプルガス導入ポート又は前記ガス排出ポートから流出するガスを排出するガス排出機構とを備える、圧力変動装置。
    A pressure fluctuation device for fluctuating the pressure of a gas analyzer,
    a first channel connected to the sample gas introduction port of the gas analyzer;
    a second flow path connected to a gas discharge port of the gas analyzer;
    a pressure mechanism that applies pressure to the sample gas introduction port and the gas discharge port via the first flow path and the second flow path to vary the pressures of the sample gas introduction port and the gas discharge port;
    It is connected to a flow path between the pressurization mechanism and the sample gas introduction port and a flow path between the pressurization mechanism and the gas discharge port, and flows out from the sample gas introduction port or the gas discharge port. and a gas discharge mechanism for discharging gas.
  10.  前記加圧機構は、
     前記第1流路及び前記第2流路が接続される合流流路と、
     前記合流流路を介して前記第1流路及び前記第2流路を加圧する加圧源と、
     前記合流流路の圧力を調整する圧力調整部とを有する、請求項9に記載の圧力変動装置。
    The pressure mechanism is
    a confluence channel where the first channel and the second channel are connected;
    a pressurization source that pressurizes the first channel and the second channel through the merged channel;
    10. The pressure fluctuation device according to claim 9, further comprising a pressure adjustment section that adjusts the pressure of said confluence flow path.
  11.  前記合流流路は、バッファタンクを有しており、
     前記加圧源は、ポンプであり、
     前記第1流路及び第2流路は、バッファタンクを介して前記ポンプに接続されている、請求項10に記載の圧力変動装置。
    The confluence channel has a buffer tank,
    The pressurization source is a pump,
    11. The pressure fluctuation device according to claim 10, wherein said first channel and said second channel are connected to said pump via a buffer tank.
  12.  前記第1流路及び前記第2流路を介して前記サンプルガス導入ポート及び前記ガス排出ポートを減圧する減圧機構と、
     前記加圧機構による加圧状態と、前記減圧機構による減圧状態とを切り替える切り替え機構とをさらに備える、請求項9乃至11の何れか一項に記載の圧力変動装置。
    a decompression mechanism for decompressing the sample gas introduction port and the gas discharge port through the first flow path and the second flow path;
    12. The pressure fluctuation device according to any one of claims 9 to 11, further comprising a switching mechanism for switching between a pressurized state by said pressurizing mechanism and a depressurized state by said depressurizing mechanism.
  13.  前記切り替え機構を制御して、前記加圧状態と前記減圧状態とを自動的に切り替える制御部をさらに備える、請求項12に記載の圧力変動装置。 The pressure fluctuation device according to claim 12, further comprising a control unit that controls the switching mechanism to automatically switch between the pressurized state and the depressurized state.
  14.  前記ガス排出機構は、吸引ポンプを有しており、
     前記減圧機構は、前記吸引ポンプを用いて構成されている、請求項12又は13に記載の圧力変動装置。
    The gas discharge mechanism has a suction pump,
    14. The pressure fluctuation device according to claim 12, wherein said decompression mechanism is constructed using said suction pump.
  15.  前記ガス分析装置の大気導入ポートに接続される第3流路をさらに備え、
     前記加圧機構は、前記第3流路を介して前記大気導入ポートに圧力を加えて、前記大気導入ポートの圧力を変動させるものである、請求項9乃至14の何れか一項に記載の圧力変動装置。
    further comprising a third flow path connected to the atmosphere introduction port of the gas analyzer,
    15. The pressurizing mechanism according to any one of claims 9 to 14, wherein the pressurizing mechanism applies pressure to the atmosphere introduction port via the third flow path to vary the pressure of the atmosphere introduction port. Pressure fluctuation device.
  16.  サンプルガス中の測定対象成分を分析するガス分析装置と、
     請求項9乃至15の何れか一項に記載の圧力変動装置とを備えるガス分析システム。
    a gas analyzer for analyzing a component to be measured in a sample gas;
    A gas analysis system comprising the pressure fluctuation device according to any one of claims 9 to 15.
PCT/JP2022/024578 2021-06-29 2022-06-20 Gas analyzer calibration method, gas analyzer pressure correcting method, gas analyzer inspection method, pressure variation method, pressure variation apparatus, and gas analysis system WO2023276762A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023531825A JPWO2023276762A1 (en) 2021-06-29 2022-06-20
CN202280031541.3A CN117242327A (en) 2021-06-29 2022-06-20 Correction method for gas analysis device, pressure correction method for gas analysis device, inspection method for gas analysis device, pressure fluctuation method, pressure fluctuation device, and gas analysis system
DE112022003279.0T DE112022003279T5 (en) 2021-06-29 2022-06-20 Calibration method for a gas analysis device, pressure correction method for a gas analysis device, test method for a gas analysis device, pressure change method, pressure change device and gas analysis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-107805 2021-06-29
JP2021107805 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276762A1 true WO2023276762A1 (en) 2023-01-05

Family

ID=84691757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024578 WO2023276762A1 (en) 2021-06-29 2022-06-20 Gas analyzer calibration method, gas analyzer pressure correcting method, gas analyzer inspection method, pressure variation method, pressure variation apparatus, and gas analysis system

Country Status (4)

Country Link
JP (1) JPWO2023276762A1 (en)
CN (1) CN117242327A (en)
DE (1) DE112022003279T5 (en)
WO (1) WO2023276762A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118393059B (en) * 2024-06-27 2024-09-17 杭州泽天春来科技股份有限公司 Water quality analyzer and data processing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032959A (en) * 2011-08-02 2013-02-14 Best Sokki:Kk Gas analyzer
JP2019086371A (en) * 2017-11-06 2019-06-06 株式会社堀場製作所 Gas analyzer calibration method, gas analysis system, and pressure change device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032959A (en) * 2011-08-02 2013-02-14 Best Sokki:Kk Gas analyzer
JP2019086371A (en) * 2017-11-06 2019-06-06 株式会社堀場製作所 Gas analyzer calibration method, gas analysis system, and pressure change device

Also Published As

Publication number Publication date
JPWO2023276762A1 (en) 2023-01-05
DE112022003279T5 (en) 2024-04-18
CN117242327A (en) 2023-12-15

Similar Documents

Publication Publication Date Title
CN109752485B (en) Calibration, pressure correction and inspection method for gas analysis device, and gas analysis system
US7281440B2 (en) Particulate sampling system having flow check device
EP2518466B1 (en) Gas analysis system
US11168629B2 (en) Exhaust gas analysis apparatus, exhaust gas analysis method, and correction expression creation method
EP1333270A1 (en) Exhaust emissions analysis system
JP4413160B2 (en) Exhaust gas component analyzer
CN108226387B (en) Vehicle-mounted exhaust gas analysis system, inspection method thereof, storage medium, and inspection system
CN108226268B (en) Gas analysis device, gas sampling device, and gas analysis method
WO2023276762A1 (en) Gas analyzer calibration method, gas analyzer pressure correcting method, gas analyzer inspection method, pressure variation method, pressure variation apparatus, and gas analysis system
WO2022211111A1 (en) System for measuring amount of consumed hydrogen
EP3336539B1 (en) Gas analysis device, gas sampling device and gas analysis method
JP4925489B1 (en) Gas analyzer
JP2014174054A (en) Exhaust gas analyzer
JP4550645B2 (en) Vehicle-mounted exhaust gas analyzer
JP4572043B2 (en) Gas analyzer
JP2001159587A (en) Gas analyzer
JPH11344425A (en) Device for analyzing exhaust gas of internal combustion engine using gas trace method
JP4896267B1 (en) Gas analyzer
JP4300350B2 (en) Exhaust gas measuring device and exhaust gas measuring method
JPS6340833A (en) Exhaust gas analyzer
WO2023112597A1 (en) Gas analysis device, exhaust gas analysis system, and gas analysis method
JPH09145562A (en) Apparatus for measuring exhaust gas
JP2012230006A (en) Gas analyzing device and method for controlling pressure or flow rate of gas cell using the gas analyzing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531825

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280031541.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022003279

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832910

Country of ref document: EP

Kind code of ref document: A1