JPH10272725A - Heat-resistant base - Google Patents

Heat-resistant base

Info

Publication number
JPH10272725A
JPH10272725A JP7994397A JP7994397A JPH10272725A JP H10272725 A JPH10272725 A JP H10272725A JP 7994397 A JP7994397 A JP 7994397A JP 7994397 A JP7994397 A JP 7994397A JP H10272725 A JPH10272725 A JP H10272725A
Authority
JP
Japan
Prior art keywords
heat
range
stainless steel
steel plate
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7994397A
Other languages
Japanese (ja)
Inventor
Asaji Hayashi
浅次 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7994397A priority Critical patent/JPH10272725A/en
Publication of JPH10272725A publication Critical patent/JPH10272725A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat resistant base of not high cost for forming extremely small recesses and projections on the surface of an insulated base and provided with the high conversion efficiency for converting beams into electricity. SOLUTION: The surface roughness Rmax of a heat-resistant base measured based oh JIS B0651 is in the range of 1-50 μm and the pitch of projections is formed in the range of 1-50 μm, and a polyimide resin film is formed on the rough surface, and the surface roughness Rmax of the film is in the range of 1-10 μm, and the pitch of projections is formed in the range of 0.1-20 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱性基板に関す
る。さらに詳しくは、電子材料分野に好適な耐熱性基板
に関し、本発明に係る耐熱性基板は、太陽電池、光セン
サー、光スイッチなどの光電変換装置用の基板としての
用途がある。
The present invention relates to a heat-resistant substrate. More specifically, the present invention relates to a heat-resistant substrate suitable for the field of electronic materials, and the heat-resistant substrate according to the present invention has use as a substrate for a photoelectric conversion device such as a solar cell, an optical sensor, and an optical switch.

【0002】[0002]

【従来の技術】電子材料用の絶縁基板は、従来から、太
陽電池用基板、プリント配線用基板、サーマルヘッド用
基板などとして広く用いられている。絶縁基板の用途が
集積型の太陽電池の場合には表面平滑性が要求されるの
で、ステンレス板の表面粗度Rmaxを40nm未満、突
起のピッチを4nm未満の極めて平滑な鏡面状に研磨す
る方法が知られている。しかしながら、ステンレス板表
面を上の様に極めて平滑な鏡面状に研磨するにはコスト
高になり、経済的に極めて不利となる。これを解決する
方法として、ステンレス板の表面にポリイミド系樹脂な
どの電気絶縁性樹脂の被膜を形成する方法が提案され、
実用化されている(特公平6−59715号公報)。
2. Description of the Related Art Conventionally, insulating substrates for electronic materials have been widely used as substrates for solar cells, substrates for printed wiring, substrates for thermal heads and the like. When the insulating substrate is used for an integrated solar cell, surface smoothness is required. Therefore, a method of polishing a stainless steel plate into a very smooth mirror surface with a surface roughness Rmax of less than 40 nm and a pitch of protrusions of less than 4 nm. It has been known. However, polishing the surface of the stainless steel plate into an extremely smooth mirror surface as described above is costly and extremely disadvantageous economically. As a method of solving this, a method of forming a coating of an electrically insulating resin such as a polyimide resin on the surface of a stainless steel plate has been proposed,
It has been put into practical use (Japanese Patent Publication No. 6-59715).

【0003】太陽電池の用途に使用する場合に光線の電
気への変換効率を向上させるには、上記の様に絶縁基板
の表面を超平滑な鏡面状にする方法とは逆に、最近で
は、絶縁基板の表面に微細な凹凸を形成する方法が提案
されている(特開平7−254721号公報)。この方
法によるときは、入射する光線を絶縁基板の微細な凹凸
によって乱反射させ、絶縁基板の微細な凹凸に封じ込め
ることによって光線の電気への変換効率を向上させるも
のである。しかしながら、特開平7−254721号公
報に記載の方法では、絶縁基板の表面に形成する凹凸が
余りにも微細過ぎて、この極微細な凹凸を形成する工程
のためにコスト高になるのは免れないという欠点があっ
た。
In order to improve the efficiency of converting light into electricity when used in solar cell applications, contrary to the method of making the surface of an insulating substrate a super smooth mirror surface as described above, recently, A method for forming fine irregularities on the surface of an insulating substrate has been proposed (Japanese Patent Application Laid-Open No. 7-254721). According to this method, the incident light beam is irregularly reflected by the minute unevenness of the insulating substrate, and the light is converted into electricity efficiently by being enclosed in the minute unevenness of the insulating substrate. However, in the method described in Japanese Patent Application Laid-Open No. 7-254721, the irregularities formed on the surface of the insulating substrate are too fine, and the process of forming the extremely fine irregularities inevitably increases the cost. There was a disadvantage.

【0004】[0004]

【発明が解決しようとした課題】本発明者は、かかる状
況にあって、上記従来技術の諸欠点を一挙に解決した耐
熱性基板を提供すべく、鋭意検討の結果本発明を完成し
たものである。本発明の目的は、次の通りである。 1.絶縁基板の表面に微細な凹凸を形成するのにコスト
高にならない耐熱性基板を提供すること。 2.光線の電気への変換効率の高い耐熱性基板を提供す
ること。
SUMMARY OF THE INVENTION Under such circumstances, the present inventors have made intensive studies to provide a heat-resistant substrate in which all the above-mentioned disadvantages of the prior art have been solved at once. is there. The objects of the present invention are as follows. 1. To provide a heat-resistant substrate which does not increase the cost for forming fine irregularities on the surface of an insulating substrate. 2. To provide a heat-resistant substrate having high light-to-electricity conversion efficiency.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明では、ステンレス板の表面にポリイミド系樹
脂の被膜が形成されてなる耐熱性基板において、ステン
レス板はJIS B0651に準拠して測定した表面粗
度Rmaxが0.1〜50μmの範囲、突起のピッチが1
〜50μmの範囲にされてなり、ポリイミド系樹脂の被
膜の厚さが1〜50μmの範囲にされてなり、かつ、こ
の被膜の表面粗度Rmaxが0.1〜10μmの範囲、突
起のピッチが0.1〜20μmの範囲にされてなること
を特徴とする耐熱性基板を提供する。
In order to solve the above-mentioned problems, according to the present invention, in a heat-resistant substrate having a surface of a stainless steel plate coated with a polyimide resin, the stainless steel plate is measured in accordance with JIS B0651. Surface roughness Rmax is in the range of 0.1 to 50 μm, and the pitch of projections is 1
5050 μm, the thickness of the polyimide resin coating is in the range of 1-50 μm, and the surface roughness Rmax of this coating is in the range of 0.1-10 μm, and the pitch of the projections is Provided is a heat-resistant substrate characterized by being in a range of 0.1 to 20 μm.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に係る耐熱性基板は、その基体はステンレス板よ
り構成される。本発明においてステンレス板とは、通常
の炭素鋼に比較して耐蝕性の優れた特殊鋼を言う。多く
はCr含有率が約12%以上のクロム鋼を主体とし、こ
れにNi、Mo、Ti、Nbなどを含ませたものであ
る。組織の観点から、マルテンサイト型、フェライト
型、オーステナイト型などに分類できる。マルテンサイ
ト型炭素鋼の標準組成は、Cr含有率が13%であるの
で、13クロムステンレス鋼と称され、SUS301、
304、305、310(いずれもJIS記号。以下同
じ)などが挙げられる。フェライト型炭素鋼の標準組成
は、Cr含有率が18%であるので、18クロムステン
レス鋼と称され、SUS430、434などが挙げられ
る。オーステナイト型炭素鋼の標準組成は、Cr含有率
が18%、Ni含有率が8%であるので、18−8ステ
ンレス鋼と称され、SUS410、THR100などが
挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The heat-resistant substrate according to the present invention has a base made of a stainless steel plate. In the present invention, a stainless steel plate refers to a special steel having excellent corrosion resistance as compared with ordinary carbon steel. In most cases, the main component is a chromium steel having a Cr content of about 12% or more, which contains Ni, Mo, Ti, Nb, and the like. From the viewpoint of the structure, it can be classified into a martensite type, a ferrite type, an austenite type and the like. The standard composition of martensitic carbon steel is called 13 chromium stainless steel because the Cr content is 13%, and SUS301,
304, 305, and 310 (all are JIS symbols; the same applies hereinafter). The standard composition of ferritic carbon steel is that it is referred to as 18 chromium stainless steel since its Cr content is 18%, and examples thereof include SUS430 and 434. The standard composition of the austenitic carbon steel is 18% stainless steel since the Cr content is 18% and the Ni content is 8%, and examples thereof include SUS410 and THR100.

【0007】上記のステンレス板の表面粗度は、JIS
B0601で定義されている値であって、JIS B
0651に準拠して測定した表面粗度Rmaxが0.1〜
50μmの範囲、突起のピッチが1〜50μmの範囲に
されている必要がある。ステンレス板の表面粗度Rmax
が0.1未満、および、突起のピッチが1μm未満であ
ると、ステンレス板の表面に微細な凹凸を形成するのが
困難でコスト高になるので好ましくない。表面粗度Rma
xが50μmを超える場合、および、突起のピッチが5
0μmを超える場合には、凹凸が大きくなり過ぎて、入
射する太陽光線を乱反射させ絶縁基板の表面に封じ込め
ると言う本発明の目的が達成されないので好ましくな
い。
[0007] The surface roughness of the stainless steel plate is determined by JIS.
B0601, a value defined in JIS B
Surface roughness Rmax measured in accordance with No. 0651 is 0.1 to
It is necessary that the range of 50 μm and the pitch of the projections be in the range of 1 to 50 μm. Surface roughness Rmax of stainless steel plate
Is less than 0.1 and the pitch of the projections is less than 1 μm, it is difficult to form fine irregularities on the surface of the stainless steel plate, which increases the cost, which is not preferable. Surface roughness Rma
When x exceeds 50 μm, and when the pitch of the protrusions is 5
If the thickness exceeds 0 μm, the irregularities become too large, and the object of the present invention of irregularly reflecting incident solar light and sealing it on the surface of the insulating substrate is not achieved.

【0008】ステンレス板の厚さは、一般的には0.0
5〜5mmの範囲で選ぶのがよく、中でも特に好ましい
0.1〜1mmの範囲である。ステンレス板の表面に上記
の様な微細な凹凸を形成するには、機械的研磨法、ヘア
ライン加工法、粗面化されたロールで圧延するダル仕上
げ加工法、圧延後焼鈍酸洗浄法、デンドライト状結晶の
析出法などのメッキ法、などのいずれかの方法によれば
よい。
The thickness of the stainless steel plate is generally 0.0
It is preferred to select from a range of 5 to 5 mm, and particularly preferable is a range of 0.1 to 1 mm. In order to form such fine irregularities on the surface of the stainless steel plate, there are mechanical polishing method, hairline processing method, dull finishing method of rolling with roughened rolls, annealing acid cleaning method after rolling, dendrite shape Any method such as a plating method such as a crystal precipitation method may be used.

【0009】本発明においてポリイミド系樹脂とは、ポ
リイミド、ポリアミドイミド、ポリエーテルイミド、お
よびこれらの混合物であって、溶媒可溶性のものを言
う。ポリイミド系樹脂には、第二成分として、例えばポ
リサルホン、ポリエーテルポリサルホンなどの溶媒可溶
性の樹脂を混合したものも含まれる。
In the present invention, the term "polyimide resin" means polyimide, polyamideimide, polyetherimide, or a mixture thereof, which is soluble in a solvent. The polyimide resin also includes a mixture of a solvent-soluble resin such as polysulfone and polyether polysulfone as the second component.

【0010】ポリイミド系樹脂の具体例としては、ベン
ゾフェノンテトラカルボン酸二無水物(BTDA)と、
二種の芳香族ジイソシアネート、すなわち、4,4´−
ジフェニルメタンジイソシアネートおよび2,4−トリ
レンジイソシアネートを共重合させたもの、例えば、次
の構造式[I]で表される構造のものが挙げられる。
As specific examples of the polyimide resin, benzophenonetetracarboxylic dianhydride (BTDA);
Two kinds of aromatic diisocyanates, that is, 4,4'-
Those obtained by copolymerizing diphenylmethane diisocyanate and 2,4-tolylene diisocyanate, for example, those having a structure represented by the following structural formula [I] can be mentioned.

【0011】[0011]

【化1】 Embedded image

【0012】[0012]

【化2】 Embedded image

【0013】[0013]

【化3】 Embedded image

【0014】他の具体例としては、ビフェニルテトラカ
ルボン酸二無水物(BPDA)と、芳香族ジアミンから
ポリアミド酸を経由して合成され、以下の構造式[II]
および構造式[III]で表わされる構造のものが挙げられ
る。
As another specific example, a compound synthesized from biphenyltetracarboxylic dianhydride (BPDA) and an aromatic diamine via a polyamic acid has the following structural formula [II]:
And those having a structure represented by Structural Formula [III].

【0015】[0015]

【化4】 Embedded image

【0016】[0016]

【化5】 Embedded image

【0017】さらに他の具体例としては、以下の構造式
[IV]の繰返し単位を約80モル%、および、以下の構
造式[V]の繰返し単位を約20モル%有する構造の共
重合(コ)ポリイミドが挙げられる。
Still another specific example is a copolymerization of a structure having about 80 mol% of a repeating unit of the following structural formula [IV] and about 20 mol% of a repeating unit of the following structural formula [V]: Co) Polyimide.

【0018】[0018]

【化6】 Embedded image

【0019】[0019]

【化7】 Embedded image

【0020】上記ポリイミド系樹脂に該当し、市販され
ているものとしては、米国アモコ社のTorlon(そ
の構造式は以下の[VI]に例示した通りである。)、米
国ゼネラル・エレクトリック社のUltem(ポリエー
テルイミド)(その構造式は以下の[VII]に例示した通
りである。)などが挙げられる。
Commercially available polyimide resins which correspond to the above-mentioned polyimide resins include Torlon (Amoco, USA) (the structural formula is as exemplified in the following [VI]), and Ultem (General Electric, USA). (Polyetherimide) (the structural formula of which is as exemplified in the following [VII]).

【0021】[0021]

【化8】 Embedded image

【0022】[0022]

【化9】 Embedded image

【0023】上記の共重合(コ)ポリイミド、共重合
(コ)ポリアミドイミドは、その相対粘度(ηinh)が
0.1〜10dl/g(N−メチルピロリドン中、濃度
0.5重量%、30℃で測定)の範囲のものが好まし
い。
The above-mentioned copolymer (co) polyimide and copolymer (co) polyamideimide have a relative viscosity (ηinh) of 0.1 to 10 dl / g (in N-methylpyrrolidone, a concentration of 0.5% by weight, 30% by weight). (Measured at ° C).

【0024】前記ステンレス板に、上記のポリイミド系
樹脂の被膜を形成するには、溶媒に溶解した溶液として
塗布する。使用可能な溶媒としては、N−メチルピロリ
ドン、N,N´−ジメチルホルムアミド、o−メチルフ
ェノール、m−メチルフェノール、p−メチルフェノー
ル、o−クロロフェノール、p−クロロフェノール、
2,4−ジクロロフェノール、ジエチレングリコールジ
メチルエーテルなどが挙げられる。中でも、N−メチル
ピロリドン、N,N´−ジメチルホルムアミドが好適で
ある。塗布液の樹脂の濃度は、塗布作業が円滑に遂行で
きる程度の粘度が得られるように、1〜25重量%の範
囲で選ぶのが好ましい。
In order to form a film of the above-mentioned polyimide resin on the stainless steel plate, it is applied as a solution dissolved in a solvent. Usable solvents include N-methylpyrrolidone, N, N′-dimethylformamide, o-methylphenol, m-methylphenol, p-methylphenol, o-chlorophenol, p-chlorophenol,
Examples thereof include 2,4-dichlorophenol and diethylene glycol dimethyl ether. Among them, N-methylpyrrolidone and N, N'-dimethylformamide are preferred. The concentration of the resin in the coating solution is preferably selected in the range of 1 to 25% by weight so as to obtain a viscosity such that the coating operation can be performed smoothly.

【0025】塗布方法としては、スピンコート法、ドク
ターブレードコート法、バーコート法、ロールコート
法、フローコート法などが挙げられる。ステンレス板表
面への塗布量は、塗布液の樹脂の濃度、塗布液の粘度な
どを調節して、湿った状態の塗布膜の厚さを3〜300
μm程度とし、塗布乾燥後の被膜が所定厚さの被膜とな
るように、塗布操作を繰返し行い調節する。
Examples of the coating method include a spin coating method, a doctor blade coating method, a bar coating method, a roll coating method, and a flow coating method. The coating amount on the surface of the stainless steel plate is adjusted by adjusting the concentration of the resin in the coating solution, the viscosity of the coating solution, and the like, so that the thickness of the wet coating film is 3 to 300.
The coating operation is repeated and adjusted so that the coating after application and drying has a predetermined thickness.

【0026】塗布操作が完了したら塗布膜を加熱乾燥す
る。加熱条件は、ポリイミド系樹脂の種類、溶媒の種
類、得られる基板の用途などにもよるが、200〜40
0℃の温度範囲で、5〜60分の範囲で加熱し、基板表
面の被膜の残留溶媒濃度を十分に低い値とする。例え
ば、溶媒がN,N´−ジメチルホルムアミドであって、
基板の用途がアモルファス太陽電池基板の場合は、真空
下のCVD操作で悪影響を与えない残留溶媒濃度は、5
0ppm程度未満とする必要がある。なお、乾燥する際
の基板の加熱は、急速加熱すると溶媒が急激に気化して
被膜の表面性が悪くなることがあるので、徐々に昇温加
熱するのが好ましい。また、加熱温度が低い場合は加熱
時間を長くし、加熱温度が高い場合は加熱時間を短くす
るのが一般的である。
When the coating operation is completed, the coating film is dried by heating. The heating condition depends on the type of the polyimide resin, the type of the solvent, the use of the obtained substrate, and the like.
Heating is performed in a temperature range of 0 ° C. for a period of 5 to 60 minutes to make the residual solvent concentration of the film on the substrate surface sufficiently low. For example, when the solvent is N, N'-dimethylformamide,
When the substrate is used for an amorphous solar cell substrate, the residual solvent concentration that does not adversely affect the CVD operation under vacuum is 5%.
It needs to be less than about 0 ppm. In the heating of the substrate during drying, if the solvent is rapidly heated, the solvent may rapidly evaporate and the surface properties of the coating may be deteriorated. Therefore, it is preferable to gradually heat the substrate. In general, when the heating temperature is low, the heating time is lengthened, and when the heating temperature is high, the heating time is generally shortened.

【0027】基板の表面に形成する被膜の厚さは、1〜
50μmの範囲とする。被膜の厚さが1μm未満である
と、被膜にピンホールなどの欠陥が発生し易く、電子部
品として使用する際に絶縁破壊を起こす危険が高くな
り、好ましくない。また、被膜の厚さが50μmを超え
ると、被膜に残留溶媒が残り易くなる他、基体のステン
レス板表面の凹凸を埋めてしまうので、好ましくない。
The thickness of the film formed on the surface of the substrate ranges from 1 to
The range is 50 μm. If the thickness of the coating is less than 1 μm, defects such as pinholes are likely to occur in the coating, and the risk of causing dielectric breakdown when used as an electronic component increases, which is not preferable. On the other hand, if the thickness of the coating exceeds 50 μm, the residual solvent tends to remain in the coating, and the unevenness of the surface of the stainless steel plate of the base is buried, which is not preferable.

【0028】本発明に係る耐熱性基板は、ポリイミド系
樹脂の被膜の表面がJIS B0651に準拠して測定
した表面粗度Rmaxを0.1〜10μmの範囲、突起の
ピッチを0.1〜20μmの範囲とする。表面粗度Rma
xが0.1μm未満、突起のピッチが0.1μm未満で
あると、被膜の表面に微細な凹凸を形成するのが困難で
コスト高になるので好ましくない。表面粗度Rmaxが1
0μmを超え、突起のピッチが20μmを超える場合に
は、凹凸が大きくなり過ぎて、入射する太陽光線を乱反
射させ絶縁基板の表面に封じ込めると言う本発明の目的
が達成されないので好ましくない。
In the heat-resistant substrate according to the present invention, the surface of the polyimide resin film has a surface roughness Rmax measured in accordance with JIS B0651 in the range of 0.1 to 10 μm and a pitch of the projections in the range of 0.1 to 20 μm. Range. Surface roughness Rma
If x is less than 0.1 μm and the pitch of the projections is less than 0.1 μm, it is difficult to form fine irregularities on the surface of the coating film, which increases the cost, which is not preferable. Surface roughness Rmax is 1
If it exceeds 0 μm, and the pitch of the projections exceeds 20 μm, the irregularities become too large, and the object of the present invention of irregularly reflecting incident sunlight and sealing it on the surface of the insulating substrate is not achieved.

【0029】ポリイミド系樹脂の被膜の表面に上記の様
な微細な凹凸を形成する方法としては、テクスチュアな
どの物理的な方法、被膜の表面をカレンダーロール、マ
イクログラビアロールなどで梨地化する方法、ヒドラジ
ンでエッチングする方法、などが挙げられる。
As a method of forming the above-mentioned fine irregularities on the surface of the polyimide resin film, a physical method such as a texture, a method of matting the surface of the film with a calender roll, a microgravure roll, or the like, And a method of etching with hydrazine.

【0030】本発明に係る耐熱性基板は、基体のステン
レス板の表面に微細な凹凸が形成され、このステンレス
板の表面のポリイミド系樹脂の被膜にも極微細な凹凸が
形成されているので、入射した太陽光線を好ましく乱反
射させて絶縁基板の表面に封じ込めることができるの
で、光電変換効率を向上させることができる。耐熱性基
板は、太陽電池用基板、光センサー用基板、光スイッチ
用基板などの光電変換装置の基板の用途のほか、プリン
ト配線用基板、サーマルヘッド用基板などの電子機器の
基板などの用途に広く使用される。
In the heat-resistant substrate according to the present invention, fine irregularities are formed on the surface of the stainless steel plate of the base, and very fine irregularities are also formed on the polyimide resin film on the surface of the stainless steel plate. Since the incident sunlight can be preferably diffusely reflected and sealed on the surface of the insulating substrate, the photoelectric conversion efficiency can be improved. Heat-resistant substrates are used for substrates for photoelectric conversion devices, such as substrates for solar cells, substrates for optical sensors, and substrates for optical switches, as well as substrates for electronic devices, such as substrates for printed wiring and substrates for thermal heads. Widely used.

【0031】[0031]

【実施例】以下、本発明を実施例に基いて詳細に説明す
るが、本発明はその趣旨を越えない限り以下の記載例に
限定されるものではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to the following description unless it departs from the gist.

【0032】[共重合ポリイミドの製造例]米国特許第
3,708,458号明細書の実施例4の記載に準拠
し、3,3´,4,4´−ベンゾフェノンテトラカルボ
ン酸無水物と、80モル%のトリレンジイソシナネート
(2,4−異性体約80モル%と2,5−異性体約20
モル%の混合物)および20モル%の4,4´−ジフェ
ニルメタンジイソシナネートを含む混合物とから、N,
N´−ジメチルホルムアミド(DMF)を溶媒として、
共重合ポリイミドを合成した。得られた共重合ポリイミ
ドの相対粘度(ηinh)は、0.6dl/g(N−メチル
ピロリドン中、濃度0.5重量%、温度30℃)であっ
た。
[Production Example of Copolymerized Polyimide] Based on the description in Example 4 of US Pat. No. 3,708,458, 3,3 ', 4,4'-benzophenonetetracarboxylic anhydride and 80 mol% of tolylene diisocyanate (about 80 mol% of 2,4-isomer and about 20 2,5-isomer)
Mol% of a mixture) and a mixture containing 20 mol% of 4,4'-diphenylmethanediisocyanate,
Using N′-dimethylformamide (DMF) as a solvent,
A copolymerized polyimide was synthesized. The relative viscosity (ηinh) of the obtained copolymerized polyimide was 0.6 dl / g (in N-methylpyrrolidone, concentration 0.5% by weight, temperature 30 ° C.).

【0033】[実施例1]上記の製造例で製造した共重
合ポリイミドをDMFに溶解させ、固形分濃度15重量
%の溶液とし、孔径1μmのフィルターで濾過して被膜
形成用の溶液とした。他方、大きさが300mm×300
mm、厚さが0.3mmのSUS304ステンレス板を基体
とし、この基体の表面をヘアライン加工法によって粗面
化し、表面粗度Rmaxが2μm、突起のピッチが20μ
mの微細な凹凸を形成した。このステンレス板の片面
に、上記の被膜形成用の溶液を、室温下、ダイコーター
によって塗布し、直ちに80℃のオーブンに入れ、5分
間この温度を維持し、その後徐々に350℃まで昇温
し、この温度で5分間保持した。得られた耐熱性基板
は、共重合ポリイミドの被膜の厚さが10μm、表面粗
度Rmaxが0.2μm、突起のピッチが2μmであっ
た。
Example 1 The copolymerized polyimide produced in the above production example was dissolved in DMF to obtain a solution having a solid content of 15% by weight, and the solution was filtered through a filter having a pore size of 1 μm to obtain a solution for forming a film. On the other hand, the size is 300mm x 300
A SUS304 stainless steel plate having a thickness of 0.3 mm and a thickness of 0.3 mm was used as a substrate, and the surface of the substrate was roughened by a hairline processing method. The surface roughness Rmax was 2 μm, and the pitch of the projections was 20 μm.
m fine irregularities were formed. On one surface of this stainless steel plate, the above-mentioned solution for forming a film is applied by a die coater at room temperature, immediately put in an oven at 80 ° C., maintained at this temperature for 5 minutes, and then gradually heated to 350 ° C. At this temperature for 5 minutes. In the obtained heat-resistant substrate, the thickness of the copolymer polyimide film was 10 μm, the surface roughness Rmax was 0.2 μm, and the pitch of the projections was 2 μm.

【0034】[実施例2]実施例1に記載の例におい
て、基体を、大きさが300mm×300mmのSUS30
4ステンレス板であって、ダイロールを使用してダル仕
上げして粗面化し、表面粗度Rmaxが3μm、突起のピ
ッチが24μmの微細な凹凸を形成したものに変更した
他は、同例におけると同様の手順で被膜を形成した耐熱
性基板を得た。得られた耐熱性基板は、共重合ポリイミ
ドの被膜の厚さが12μm、表面粗度Rmaxが0.3μ
m、突起のピッチが2.4μmであった。
Example 2 In the example described in Example 1, the substrate was made of SUS30 having a size of 300 mm × 300 mm.
4 A stainless steel plate, which was dulled using a die roll to roughen the surface, and the surface roughness Rmax was changed to 3 μm, and the pitch of projections was changed to 24 μm to form fine irregularities, A heat-resistant substrate on which a coating was formed was obtained in the same procedure. The resulting heat-resistant substrate had a thickness of 12 μm of the copolymer polyimide film and a surface roughness Rmax of 0.3 μm.
m, the pitch of the projections was 2.4 μm.

【0035】[実施例3]実施例1に記載の例におい
て、基体を、大きさが300mm×300mmのSUS30
4ステンレス板であって、圧延後焼鈍酸洗浄して粗面化
(2D仕上げ)し、表面粗度Rmaxが1μm、突起のピ
ッチが10μmの微細な凹凸を形成したものに変更した
他は、同例におけると同様の手順で被膜を形成した耐熱
性基板を得た。得られた耐熱性基板は、共重合ポリイミ
ドの被膜の厚さが15μm、表面粗度Rmaxが0.1μ
m、突起のピッチが1μmであった。
Example 3 In the example described in Example 1, the substrate was made of SUS30 having a size of 300 mm × 300 mm.
4 stainless steel plate, except that the surface was roughened (2D finish) by rolling with an annealing acid after rolling to form fine irregularities with a surface roughness Rmax of 1 μm and a pitch of projections of 10 μm. A heat-resistant substrate having a coating formed thereon was obtained in the same procedure as in the example. The resulting heat-resistant substrate had a copolymer polyimide film thickness of 15 μm and a surface roughness Rmax of 0.1 μm.
m, the pitch of the projections was 1 μm.

【0036】[比較例]実施例1に記載の例において、
表面粗度Rmaxが100nm、突起のピッチが100n
mの極微細な凹凸を形成したものに変更した他は、同例
におけると同様の手順で被膜を形成した耐熱性基板を得
た。得られた耐熱性基板は、共重合ポリイミドの被膜の
厚さは15μmであった。
[Comparative Example] In the example described in Example 1,
Surface roughness Rmax is 100 nm, pitch of projections is 100 n
A heat-resistant substrate having a coating formed thereon was obtained in the same procedure as in the same example, except that the substrate was changed to one having an extremely fine unevenness of m. In the obtained heat-resistant substrate, the thickness of the copolymer polyimide film was 15 μm.

【0037】[応用例]実施例1〜実施例3および比較
例に記載の方法で得られた耐熱性基板の被膜の表面に、
まず、スパッタリング法で200nm厚さのAg電極層
を下部電極として形成した。さらに、このAg電極層の
上にpin接合をもつ厚さ500nmのアモルファスシ
リコン膜(光電変換層)をCVD法によって形成した。
最後に、透明電極として100nmのITO膜をスパッ
タリング法で形成して太陽電池を得た。得られた太陽電
池の光電変換効率を測定した結果、実施例1〜実施例3
の耐熱性基板を使用したものは、比較例の基板を使用し
たものに比較して、35〜70%高い値を示した。
[Application Example] The surface of the coating of the heat-resistant substrate obtained by the methods described in Examples 1 to 3 and Comparative Example
First, a 200-nm-thick Ag electrode layer was formed as a lower electrode by a sputtering method. Further, a 500 nm thick amorphous silicon film (photoelectric conversion layer) having a pin junction was formed on the Ag electrode layer by a CVD method.
Finally, a 100 nm ITO film was formed as a transparent electrode by a sputtering method to obtain a solar cell. As a result of measuring the photoelectric conversion efficiency of the obtained solar cell, Examples 1 to 3 were obtained.
The one using the heat-resistant substrate of No. 3 showed a value that was 35 to 70% higher than that using the substrate of the comparative example.

【0038】[0038]

【発明の効果】本発明は、次のような特別に有利な効果
を奏し、その産業上の利用価値は極めて大である。 1.本発明に係る耐熱性基板は、ステンレス板の表面に
ポリイミド系樹脂の薄いがピンホールのない被膜を形成
しているので、耐熱性、耐薬品性、電気絶縁性などに優
れており、電子材料用の用途に好適である。 2.本発明に係る耐熱性基板は、ステンレス板の表面に
形成されている微細な凹凸が、これを形成するのにコス
ト高となる超極微細なものではないので、安価に製造す
ることができる。 3.本発明に係る耐熱性基板は、ステンレス板の表面に
微細な凹凸を形成し、この表面に微細な凹凸を埋めない
程度に薄いポリイミド系樹脂の被膜を形成しているの
で、太陽電池基板として使用した場合には、入射した太
陽光線を好ましく乱反射させて絶縁基板の表面に封じ込
めることができるので、光電変換効率を向上させること
ができる。
The present invention has the following particularly advantageous effects, and its industrial value is extremely large. 1. The heat-resistant substrate according to the present invention is excellent in heat resistance, chemical resistance, electric insulation, etc. since a thin film of a polyimide resin but without pinholes is formed on the surface of the stainless steel plate. It is suitable for applications. 2. The heat-resistant substrate according to the present invention can be manufactured at low cost because the fine irregularities formed on the surface of the stainless steel plate are not ultra-fine, which would increase the cost for forming the same. 3. The heat-resistant substrate according to the present invention has fine irregularities formed on the surface of a stainless steel plate, and a thin film of a polyimide resin is formed on the surface so as not to fill the minute irregularities. In this case, the incident sunlight can be preferably diffusely reflected and confined to the surface of the insulating substrate, so that the photoelectric conversion efficiency can be improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス板の表面にポリイミド系樹脂
の被膜が形成されてなる耐熱性基板において、ステンレ
ス板はJIS B0651に準拠して測定した表面粗度
Rmaxが0.1〜50μmの範囲、突起のピッチが1〜
50μmの範囲にされてなり、ポリイミド系樹脂の被膜
の厚さが1〜50μmの範囲にされてなり、かつ、この
被膜の表面粗度Rmaxが0.1〜10μmの範囲、突起
のピッチが0.1〜20μmの範囲にされてなることを
特徴とする耐熱性基板。
1. A heat-resistant substrate having a surface of a stainless steel plate on which a polyimide resin film is formed, wherein the stainless steel plate has a surface roughness Rmax measured in accordance with JIS B0651 in the range of 0.1 to 50 μm. Pitch is 1
The thickness of the polyimide resin film is in the range of 1 to 50 μm, the surface roughness Rmax of this film is in the range of 0.1 to 10 μm, and the pitch of the projections is 0 μm. A heat-resistant substrate having a thickness in the range of 1 to 20 μm.
【請求項2】 ステンレス板の表面が、機械的研磨法、
ヘアライン加工法、ダル仕上げ加工法、圧延後焼鈍酸洗
浄法、メッキ法のいずれかによって粗面化されたもので
ある、請求項1記載の耐熱性基板。
2. The surface of a stainless steel plate is mechanically polished,
The heat-resistant substrate according to claim 1, wherein the substrate is roughened by any one of a hairline processing method, a dull finishing method, an annealing acid cleaning method after rolling, and a plating method.
JP7994397A 1997-03-31 1997-03-31 Heat-resistant base Pending JPH10272725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7994397A JPH10272725A (en) 1997-03-31 1997-03-31 Heat-resistant base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7994397A JPH10272725A (en) 1997-03-31 1997-03-31 Heat-resistant base

Publications (1)

Publication Number Publication Date
JPH10272725A true JPH10272725A (en) 1998-10-13

Family

ID=13704404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7994397A Pending JPH10272725A (en) 1997-03-31 1997-03-31 Heat-resistant base

Country Status (1)

Country Link
JP (1) JPH10272725A (en)

Similar Documents

Publication Publication Date Title
JP5946348B2 (en) Transparent conductive film and polyimide film for production thereof
JP2007063417A (en) Film and method for producing film, and film with gas-barrier layer, film with transparent electroconductive layer and image display device
WO2008004520A1 (en) Method of modifying surface of polyimide resin layer and process for producing metal-clad laminate
JP2011525698A (en) Heat and dimensionally stable polyimide film, assembly comprising electrode and absorber layer, and methods relating thereto
JP5086526B2 (en) POLYMER, METHOD FOR PRODUCING THE POLYMER, OPTICAL FILM, AND IMAGE DISPLAY DEVICE
EP0255037B1 (en) A method for forming polyimide film by chemical vapor deposition
WO2006043520A1 (en) Polyimide resin composition, liquid crystal alignment film using same and liquid crystal display using such liquid crystal alignment film
JP2007002023A (en) Film and image display
JP6461860B2 (en) Method for producing transparent conductive film
JPH10272725A (en) Heat-resistant base
JPH0249475A (en) Manufacture of amorphous silicon solar cell
JP7230148B2 (en) Metal-clad laminates and circuit boards
JPH10329268A (en) Heat resistant board
JP4490217B2 (en) Optical film and image display device
JP7405644B2 (en) Metal-clad laminates and circuit boards
JPH11227099A (en) Heat-resistant substrate
JPH10337806A (en) Manufacture of polyimide resin thin film with uneven groove on surface
JPS62101430A (en) Heat-resistant insulating substrate for forming thin-film and manufacture thereof
JP2006063133A (en) Optical film and image display device
JPH0659715B2 (en) Heat resistant substrate
JPH01156653A (en) Dew condensation sensor
JP2000022186A (en) Substrate for solar cell
CN210429837U (en) Flexible composite film
JP3497538B2 (en) Film-shaped amorphous silicon solar cell
JP2001026085A (en) Heat-resistant substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040528

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A02 Decision of refusal

Effective date: 20041026

Free format text: JAPANESE INTERMEDIATE CODE: A02