JP2001026085A - Heat-resistant substrate - Google Patents

Heat-resistant substrate

Info

Publication number
JP2001026085A
JP2001026085A JP11199883A JP19988399A JP2001026085A JP 2001026085 A JP2001026085 A JP 2001026085A JP 11199883 A JP11199883 A JP 11199883A JP 19988399 A JP19988399 A JP 19988399A JP 2001026085 A JP2001026085 A JP 2001026085A
Authority
JP
Japan
Prior art keywords
fine particles
polyimide resin
film
insulating fine
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11199883A
Other languages
Japanese (ja)
Inventor
Asaji Hayashi
浅次 林
Takefumi Yoshikawa
武文 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP11199883A priority Critical patent/JP2001026085A/en
Publication of JP2001026085A publication Critical patent/JP2001026085A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve lightweight properties, flexibility, heat resistance, chemical resistance and electric insulating properties and to obtain high photoelectric conversion efficiency by forming polyimide resin layers in which insulating fine particles are dispersed on both surfaces of a plastic film and providing a V-shaped groove structure with a specific angle to the surface of the coating film. SOLUTION: Polyimide resin layers in which insulating fine particles are dispersed are laminated to both surfaces of a plastic film. A polyimide resin is synthesized by copolymerizing benzophenonetetracarboxylic acid dianhydride with two kinds of aromatic diisocyanates, that is, 4,4'- diphenylmethanediisocyanate and 2,4-tolylenediisocyanate or synthesized from biphenyltetracarboxylic acid dianhydrate and aromatic diamine through polyamide acid. As the insulating fine particles, silica fine particles are especially pref. and the compounding amt. of the insulating fine particles to the polyimide resin is usually set to 5-500 wt.% and the mean particle size of the insulating fine particles is pref. 0.1-1.0 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐熱性基板、詳しく
は、電子材料分野に好適な耐熱性基板に関する。本発明
に係る耐熱性基板は太陽電池、光センサー,光スイッチ
などの光電変換装置用の基板としての用途がある。
[0001] The present invention relates to a heat-resistant substrate, and more particularly to a heat-resistant substrate suitable for the field of electronic materials. The heat-resistant substrate according to the present invention has use as a substrate for a photoelectric conversion device such as a solar cell, an optical sensor, and an optical switch.

【0002】[0002]

【従来の技術】太陽電池、光センサーなどの光電変換装
置用基板としては、一般的にガラス基板やステンレス基
板が用いられている。また、該基板の光電変換効率を向
上させるため、光の吸収量を増加させる方法としては、
基板の表面に微細な凹凸を形成させることが好ましいと
の提案がある(特開平7−254721号)。特開平1
0−329268号では、ステンレス板表面に絶縁性微
粒子を分散したポリイミド樹脂膜を設けた微細な凹凸を
有する耐熱性基板が提案されている。
2. Description of the Related Art In general, a glass substrate or a stainless steel substrate is used as a substrate for a photoelectric conversion device such as a solar cell or an optical sensor. Further, in order to improve the photoelectric conversion efficiency of the substrate, as a method of increasing the amount of light absorption,
There is a proposal that it is preferable to form fine irregularities on the surface of the substrate (JP-A-7-254721). JP 1
No. 0-329268 proposes a heat-resistant substrate having fine irregularities provided with a polyimide resin film in which insulating fine particles are dispersed on the surface of a stainless steel plate.

【0003】[0003]

【発明が解決しようとする課題】ガラスやステンレス製
の基板では、太陽電池の特徴である薄膜及び可撓性を生
かすことができない欠点がある。一方、耐熱性のプラス
チックフィルムを基板として用いればかかる欠点は解消
できるものの、光電変換効率が不十分である。そこで、
本発明者等は、プラスチックフィルムの片方の表面に絶
縁性微粒子を分散したポリイミド樹脂膜を設けて表面に
微細な凹凸を形成させることで光電変換効率を向上させ
た耐熱性基板に到達した。しかしながら、この耐熱性基
板では、ポリイミド樹脂膜の影響より基板に「反り」が
発生し、該耐熱性基板を太陽電池として成膜工程等にお
ける製造上、取扱上の困難さに直面した。
The glass and stainless steel substrates have a drawback that the thin film and the flexibility characteristic of the solar cell cannot be utilized. On the other hand, if a heat-resistant plastic film is used as a substrate, such a disadvantage can be solved, but the photoelectric conversion efficiency is insufficient. Therefore,
The present inventors have arrived at a heat-resistant substrate having improved photoelectric conversion efficiency by providing a polyimide resin film in which insulating fine particles are dispersed on one surface of a plastic film and forming fine irregularities on the surface. However, with this heat-resistant substrate, "warping" occurred in the substrate due to the influence of the polyimide resin film, and the heat-resistant substrate faced difficulty in manufacturing and handling in a film-forming process and the like as a solar cell.

【0004】[0004]

【課題を解決するための手段】本発明者等は、上記の状
況にあって、従来技術の諸欠点を一挙に解決した耐熱性
基板を提供すべく、鋭意検討の結果本発明に到達した。
即ち、本発明は、プラスチックフィルムの両面に絶縁性
微粒子を分散させたポリイミド樹脂層を積層してなる耐
熱性基板に関する。
Under the circumstances described above, the inventors of the present invention have made intensive studies to provide a heat-resistant substrate in which all the drawbacks of the prior art have been solved, and have reached the present invention.
That is, the present invention relates to a heat-resistant substrate in which a polyimide resin layer in which insulating fine particles are dispersed is laminated on both surfaces of a plastic film.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明におけるプラスチックフィルムとは、厚さが通常
20〜200μm程度である。フィルムを構成するプラ
スチック材料としては耐熱性が150℃以上のものが望
ましく、例えば、ポリイミド、ポリスルホン、ポリエー
テルスルホン、ポリエチレンナフタレート、ポリカーボ
ネート、芳香族ポリアミド等が挙げられるが、好ましく
はポリイミドである。ポリイミドのフィルムは、芳香族
酸無水物と芳香族ジアミンとを混合したポリアミド酸の
樹脂溶液を流延法により製膜しキュアーして製造する一
般的なポリイミドフィルムでよく、例えば、ピロメリッ
ト酸無水物(PMDA)と4,4’オキシジアニリン
(ODA)の縮合物である商品名KAPTON、ビフェ
ニルテトラカルボン酸無水物(BPDA)と4,4’オ
キシジアニリン(ODA)の縮合物である商品名ユーピ
レックス−R、ビフェニルテトラカルボン酸無水物(B
PDA)とパラフェニレンジアミン(PPD)の縮合物
である商品名ユーピレックス−S等が挙げられる。ポリ
イミドフィルムは、光電変換層を成膜するためにスパッ
ター及びCVDの工程で基板温度が250℃程度に上昇
しても耐熱性があるため、太陽電池用基板の基材として
好適である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The plastic film in the present invention generally has a thickness of about 20 to 200 μm. The plastic material constituting the film preferably has a heat resistance of 150 ° C. or higher, and includes, for example, polyimide, polysulfone, polyethersulfone, polyethylene naphthalate, polycarbonate, aromatic polyamide, etc., and is preferably polyimide. The polyimide film may be a general polyimide film produced by casting and curing a polyamic acid resin solution obtained by mixing an aromatic acid anhydride and an aromatic diamine, for example, pyromellitic anhydride. (KAPTON) which is a condensate of product (PMDA) and 4,4 'oxydianiline (ODA), a product which is a condensate of biphenyltetracarboxylic anhydride (BPDA) and 4,4' oxydianiline (ODA) Iupirex-R, biphenyltetracarboxylic anhydride (B
(PDA) and paraphenylenediamine (PPD). A polyimide film has heat resistance even when the substrate temperature is increased to about 250 ° C. in the steps of sputtering and CVD in order to form a photoelectric conversion layer, and thus is suitable as a substrate for a solar cell substrate.

【0006】本発明の太陽電池用基板は、上記のプラス
チックフィルムの両面に球状微粒子を分散させたポリイ
ミド樹脂層を積層してなる。このポリイミド樹脂層で用
いるポリイミド樹脂とは、前記の特開平10−3292
68号に例示されているようなポリイミド、ポリアミド
イミド、ポリエーテルイミド及び、およびこれらの混合
物であって、溶媒可溶性のものを言う。ポリイミド系樹
脂には、第二成分として、例えばポリサルホン、ポリエ
ーテルポリサルホンなどの溶媒可溶性の樹脂を混合した
ものも含まれる。ポリイミド系樹脂の具体例としては、
ベンゾフェノンテトラカルボン酸二無水物(BTDA)
と、二種の芳香族ジイソシアネート、すなわち、4,4
´−ジフェニルメタンジイソシアネートおよび2,4−
トリレンジイソシアネートを共重合させたもの、ビフェ
ニルテトラカルボン酸二無水物(BPDA)と、芳香族
ジアミンからポリアミド酸を経由して合成される構造の
ものが挙げられる。また、芳香族ジアミンと、芳香族テ
トラカルボン酸及び/又はその誘導体を溶質として溶媒
中に溶解しているポリイミド前駆体溶液としてフィルム
の表面に塗布し、その後の熱処理により熱可塑性ポリイ
ミドを形成するものであってもよく、具体的には、4,
4’−オキシジアニリン及び/又は3,4’−オキシジ
アニリンと4,4’−オキシジフタル酸及び/又はその
誘導体との組み合わせ、又は、4,4’−オキシジアニ
リン又は3,4’−オキシジアニリン、及びパラフェニ
レンジアミンと4,4’− オキシジフタル酸酸及び/
又はその誘導体との組み合わせなどが例示される。
[0006] The solar cell substrate of the present invention is obtained by laminating a polyimide resin layer in which spherical fine particles are dispersed on both surfaces of the above-mentioned plastic film. The polyimide resin used in the polyimide resin layer is described in JP-A-10-3292.
No. 68, such as polyimides, polyamideimides, polyetherimides, and mixtures thereof, which are solvent-soluble. The polyimide-based resin also includes a mixture of a solvent-soluble resin such as polysulfone and polyether polysulfone as the second component. As a specific example of the polyimide resin,
Benzophenone tetracarboxylic dianhydride (BTDA)
And two aromatic diisocyanates, ie, 4,4
'-Diphenylmethane diisocyanate and 2,4-
Examples thereof include those obtained by copolymerizing tolylene diisocyanate, and those synthesized from biphenyltetracarboxylic dianhydride (BPDA) and aromatic diamine via polyamic acid. In addition, an aromatic diamine and an aromatic tetracarboxylic acid and / or a derivative thereof are applied as a solute to a film surface as a polyimide precursor solution dissolved in a solvent, and then a thermoplastic polyimide is formed by heat treatment. And specifically, 4,
Combination of 4'-oxydianiline and / or 3,4'-oxydianiline with 4,4'-oxydiphthalic acid and / or a derivative thereof, or 4,4'-oxydianiline or 3,4'- Oxydianiline, and paraphenylenediamine and 4,4′-oxydiphthalic acid and / or
Or a combination with a derivative thereof.

【0007】一方、上記ポリイミド樹脂に分散させる絶
縁性微粒子としては、その平均粒径が0.1〜1.0μ
mのものが好適である。太陽光の波長は、0.4〜1.
2μmの範囲にあり本発明の目的である吸収量を増加さ
せるための光路長を増加させるには、0.1μm未満又
は1.0μmを超えるのはあまり好ましくない。使用さ
れる絶縁性微粒子としては、炭酸カルシウム、アルミ
ナ、シリカ、酸化チタンなどが挙げられ、中でもシリカ
が好適に用いられる。微粉子のポリイミド系樹脂への配
合量は、その種類、平均粒径、被膜の厚さなどにより変
るが、その層表面に微細な凹凸を形成させて太陽光の吸
収量を高めるようにすることが必要であり、ポリイミド
系樹脂に対してが通常5〜500重量%、特に100〜
500重量%とするのが好ましい。微粒子の配合量が5
重量%未満であると層の表面に微細な凹凸を形成するこ
とが難しく、配合量が500重量%を超えると被膜にピ
ンホールが発生し易いので好ましくない。
On the other hand, the insulating fine particles dispersed in the polyimide resin have an average particle diameter of 0.1 to 1.0 μm.
m is preferred. The wavelength of sunlight is 0.4-1.
In order to increase the optical path length in the range of 2 μm for increasing the absorption amount which is the object of the present invention, less than 0.1 μm or more than 1.0 μm is less preferable. Examples of the insulating fine particles to be used include calcium carbonate, alumina, silica, and titanium oxide. Among them, silica is preferably used. The amount of fine powder mixed with the polyimide resin varies depending on the type, average particle size, thickness of the coating, etc., but it is necessary to form fine irregularities on the surface of the layer to increase the amount of sunlight absorption. Is necessary, and is usually 5 to 500% by weight, especially 100 to 500% by weight based on the polyimide resin.
Preferably it is 500% by weight. The amount of fine particles is 5
When the amount is less than 50% by weight, it is difficult to form fine irregularities on the surface of the layer.

【0008】以上のプラスチックフィルムの両面に形成
されるポリイミド樹脂層の片面は、光を反射吸収するた
めのものであるが、他方面のポリイミド樹脂層は主に基
板の反りを防止するために形成するものである。従っ
て、この反りの防止用のポリイミド樹脂層は、光反射吸
収用のポリイミド樹脂層と全く同じものである必要はな
く、反り防止の効果が維持できる限りは、該層を構成す
るポリイミド樹脂と絶縁性微粒子を安価な別グレードの
ものとしたり、層の厚さを薄くするなどしてコストダウ
ンを図ることができる。
[0008] One side of the polyimide resin layer formed on both sides of the plastic film is for reflecting and absorbing light, while the polyimide resin layer on the other side is formed mainly for preventing warpage of the substrate. Is what you do. Therefore, the polyimide resin layer for preventing warpage does not need to be exactly the same as the polyimide resin layer for light reflection and absorption, and as long as the effect of preventing warpage can be maintained, it is insulated from the polyimide resin constituting the layer. The cost can be reduced by using a different grade of inexpensive fine particles or by reducing the thickness of the layer.

【0009】プラスチックフィルムに球状微粒子を分散
させたポリイミド樹脂層を積層する方法としては、通
常、ポリイミド成分を溶媒に溶解し、且つ微粒子成分を
分散させた溶液をフィルムの表面に塗布する方法が採用
される。使用可能な溶媒としては、N−メチルピロリド
ン、N,N´−ジメチルホルムアミド、o−メチルフェ
ノール、m−メチルフェノール、p−メチルフェノー
ル、o−クロロフェノール、p−クロロフェノール、
2,4−ジクロロフェノール、ジエチレングリコールジ
メチルエーテルなどが挙げられる。中でも、N−メチル
ピロリドン、N,N´−ジメチルホルムアミドが好適で
ある。
As a method for laminating a polyimide resin layer in which spherical fine particles are dispersed on a plastic film, a method in which a polyimide component is dissolved in a solvent and a solution in which the fine particle component is dispersed is applied to the surface of the film is usually adopted. Is done. Usable solvents include N-methylpyrrolidone, N, N′-dimethylformamide, o-methylphenol, m-methylphenol, p-methylphenol, o-chlorophenol, p-chlorophenol,
Examples thereof include 2,4-dichlorophenol and diethylene glycol dimethyl ether. Among them, N-methylpyrrolidone and N, N'-dimethylformamide are preferred.

【0010】塗布液の調製方法としては、絶縁性微粒子
をポリイミド樹脂の希薄溶液中に分散させた状態の溶液
を調整する。分散性を向上させるためには、溶液中に分
散剤を添加してもよい。塗布の方法としては、ダイコー
ト法、ロールコート法、フローコート法、、ドクターブ
レードコート法等が挙げられる。中でも、ダイコート
法、ロールコート法が好適に用いられポリイミドフィル
ムを移動させながら連続的に塗布する。塗布液の樹脂濃
度及び粘度等を調節して湿った状態の塗布膜の厚さを5
〜100μm程度とし、塗布乾燥後の被膜の厚さが好ま
しくは1〜20μmとなるように調節する。膜厚が1μ
m未満では、均一な膜厚を形成するのが難しくまた20
μmを超えると膜の柔軟性が減少するのに加えて経済的
でない。塗布操作が完了したら、直ちに塗布薄膜を加熱
乾燥する。加熱乾燥の方法は、乾燥の初期を風が当たら
ない状態で乾燥し、溶媒が飛散したらポリイミド樹脂を
硬化させるため、300℃程度まで昇温し薄膜を形成さ
せる。
As a method for preparing a coating solution, a solution in which insulating fine particles are dispersed in a dilute solution of a polyimide resin is prepared. In order to improve dispersibility, a dispersant may be added to the solution. Examples of the coating method include a die coating method, a roll coating method, a flow coating method, and a doctor blade coating method. Among them, a die coating method and a roll coating method are preferably used, and the polyimide film is continuously applied while moving. By adjusting the resin concentration and viscosity of the coating liquid, the thickness of the wet coating film is adjusted to 5
The thickness is adjusted so that the thickness of the coating after coating and drying is preferably 1 to 20 μm. 1μ thickness
If it is less than m, it is difficult to form a uniform film thickness and
If it exceeds μm, the flexibility of the membrane is reduced, and it is not economical. As soon as the coating operation is completed, the coated thin film is heated and dried. In the method of heating and drying, the initial stage of drying is performed in a state where air is not applied, and the temperature is raised to about 300 ° C. to form a thin film in order to cure the polyimide resin when the solvent is scattered.

【0011】以上のようにして本発明の耐熱性基板が製
造されるが、その後、本基板上に光電変換用積層構造が
形成して薄膜太陽電池を製造することができる。この太
陽電池は、基板表面に形成された微少な凹凸から入射し
た太陽光の光路長を増加させ、吸収量を増大する事によ
り光電変換効率を向上できる。また、光電変換用積層構
造として、Ag,Alのような金属電極 a−Si(p
層,i層,n層)ITO,SnO2のような透明電極の
順にスパッター、CVDで成膜するが、この際、本発明
の耐熱性基板における表面の微少な凹凸の形成が、基板
と金属電極の密着性を向上させる効果ももたらす。
[0011] The heat-resistant substrate of the present invention is manufactured as described above. Thereafter, a laminated structure for photoelectric conversion is formed on the substrate to manufacture a thin-film solar cell. In this solar cell, the photoelectric conversion efficiency can be improved by increasing the optical path length of the sunlight incident from the minute unevenness formed on the substrate surface and increasing the absorption amount. Further, as a photoelectric conversion laminated structure, a metal electrode such as Ag or Al a-Si (p
Layer, i-layer, n-layer) A film is formed by sputtering and CVD in the order of transparent electrode such as ITO and SnO 2. It also has the effect of improving the adhesion of the electrodes.

【0012】[0012]

【実施例】以下、本発明を実施例に基いて詳細に説明す
るが、本発明はその趣旨を越えない限り以下の記載例に
限定されるものではない。 実施例1 3,3’,4,4’−ベンゾフェノンテトラカルボン酸
無水物(BTDA)と4,4’−ジフェニルメタンジイ
ソシアネート及び2,4−トリレンジイソシアネートを
共重合させて得たポリイミド樹脂をジメチルホルムアミ
ドに溶解させ、固形分濃度15%の溶液とした。この溶
液に平均粒径0.3μmの球状シリカを、ポリイミド固
形分濃度に対し250重量%を加えてサンドミルで撹拌
混合した後、孔径1μmのフィルターで濾過して薄膜形
成用の溶液とした。他方ピロメリット酸無水物(PMD
A)と4,4’オキシジアニリン(ODA)縮合体であ
るポリイミドフィルム(商品名KAPTON、巾300
mm,厚さ75μm)を基材とし、この片面に上記記載
の薄膜形成用の溶液をダイコーターで湿り膜厚50μm
を塗布し、80℃の乾燥炉で10分間乾燥した。更に、
反対面にも同様の処理を行った後、その後該塗布コイル
を乾燥炉で80℃から300℃まで30分で昇温し、3
00℃で30分乾燥した。得られたポリイミド系樹脂層
の厚さは5μmであり、基材の反りは殆ど認められなか
った。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to the following description unless it exceeds the gist. Example 1 A polyimide resin obtained by copolymerizing 3,3 ′, 4,4′-benzophenonetetracarboxylic anhydride (BTDA) with 4,4′-diphenylmethane diisocyanate and 2,4-tolylene diisocyanate was prepared by using dimethylformamide. To give a solution having a solid concentration of 15%. To this solution was added 250% by weight of spherical silica having an average particle diameter of 0.3 μm based on the solid content of polyimide, and the mixture was stirred and mixed by a sand mill. On the other hand, pyromellitic anhydride (PMD
A) and a polyimide film that is a condensate of 4,4 ′ oxydianiline (ODA) (trade name: KAPTON, width 300)
mm, thickness 75 μm) as a base material, and the above-mentioned solution for forming a thin film is wetted on one surface with a die coater to a film thickness of 50 μm.
And dried in a drying oven at 80 ° C. for 10 minutes. Furthermore,
After performing the same treatment on the opposite side, the coated coil was heated from 80 ° C. to 300 ° C. in a drying furnace for 30 minutes, and
It was dried at 00 ° C. for 30 minutes. The thickness of the obtained polyimide resin layer was 5 μm, and almost no warpage of the substrate was observed.

【0013】実施例2 球状シリカの平均粒径が0.5μmのものをポリイミド
固形分濃度に対し300重量%を加えて薄膜形成用の溶
液とした以外は、実施例1と同様にしてポリイミドフィ
ルムを基材とした基板を作成した。得られたポリイミド
系樹脂の厚さは7μmであり、基材の反りは殆ど認めら
れなかった。
Example 2 A polyimide film was prepared in the same manner as in Example 1 except that a spherical silica having an average particle size of 0.5 μm was added as a solution for forming a thin film by adding 300% by weight to the solid content of polyimide. Was prepared as a substrate. The thickness of the obtained polyimide resin was 7 μm, and almost no warpage of the substrate was observed.

【0014】比較例1 実施例1の方法で、ポリイミドフィルムの片面のみに塗
布及び乾燥処理を行ったところ、ポリイミドフィルムの
熱収縮量と塗布層の熱収縮量の差により、基材に強い反
りが発生した。
Comparative Example 1 When coating and drying were performed on only one side of the polyimide film by the method of Example 1, the substrate was strongly warped due to the difference between the heat shrinkage of the polyimide film and the heat shrinkage of the coating layer. There has occurred.

【0015】応用例 実施例1、2及び比較例1上記で得た基板表面に、ま
ず、スパッター法でAg膜を2000オングストローム
の厚みで金属電極として形成した。次に、この金属電極
の上にnip接合をもつ厚さ5000オングストローム
のアモルファスシリコン膜(光電変換層)をプラズマC
VD法で形成した。最後に、透明電極としてITO膜を
600オングストロームの厚さでスパッター法で形成し
薄膜太陽電池を作成した。この太陽電池の変換効率は、
対照として製造した、ポリイミド樹脂層が積層していな
いポリイミドフィルムを使用した太陽電池と比較して3
0〜50%高い値を示した。また、実施例1、2の基材
を使用した太陽電池の生産歩留まりは、比較例1による
基材を使用した太陽電池の生産歩留まりと比較して20
%程度高くなった。
Application Examples 1 and 2 and Comparative Example 1 First, an Ag film having a thickness of 2000 Å was formed as a metal electrode on the substrate surface obtained above by a sputtering method. Next, a 5000 angstrom thick amorphous silicon film (photoelectric conversion layer) having a nip junction is formed on the metal electrode by plasma C.
It was formed by the VD method. Finally, a thin film solar cell was formed by forming an ITO film as a transparent electrode to a thickness of 600 Å by sputtering. The conversion efficiency of this solar cell is
As compared with a solar cell using a polyimide film without a polyimide resin layer manufactured as a control, 3
The value was 0 to 50% higher. The production yield of the solar cells using the base materials of Examples 1 and 2 was 20 times as compared with the production yield of the solar cell using the base materials of Comparative Example 1.
% Increased.

【0016】[0016]

【発明の効果】本発明の耐熱性基板は、軽量で可撓性に
優れているほか、耐熱性、耐薬品性、電気絶縁性などの
面でも良好であ。また、基板に発生する反りが抑制され
るので、その取り扱いを容易にすることにより、太陽電
池の生産歩留りを向上し、より安価なコストでの製造が
可能である。更に、本発明の耐熱性基板は、太陽電池用
基板として高い光電変換効率が達成できる。
The heat-resistant substrate of the present invention is lightweight and excellent in flexibility, and also excellent in heat resistance, chemical resistance, electrical insulation and the like. In addition, since the warpage generated on the substrate is suppressed, the handling thereof is facilitated, so that the production yield of the solar cell is improved, and the production at a lower cost is possible. Furthermore, the heat-resistant substrate of the present invention can achieve high photoelectric conversion efficiency as a solar cell substrate.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F100 AA20 AK01A AK49B AK49C BA03 BA08 BA10B BA10C DE01B DE01C GB41 JG04B JG04C JJ03 JK17 JL03 JL04 5F051 BA15 GA05 GA11 GA20  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F100 AA20 AK01A AK49B AK49C BA03 BA08 BA10B BA10C DE01B DE01C GB41 JG04B JG04C JJ03 JK17 JL03 JL04 5F051 BA15 GA05 GA11 GA20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プラスチックフィルムの両面に絶縁性微
粒子を分散させたポリイミド樹脂を積層してなる耐熱性
基板。
1. A heat-resistant substrate formed by laminating a polyimide resin having insulating fine particles dispersed on both surfaces of a plastic film.
【請求項2】 ポリイミド樹脂層に、平均粒径が0.1
〜1μmの絶縁性微粒子を5〜500重量%分散させた
請求項1の耐熱性基板。
2. The polyimide resin layer has an average particle size of 0.1.
The heat-resistant substrate according to claim 1, wherein insulating fine particles of 1 to 1 µm are dispersed in a content of 5 to 500% by weight.
【請求項3】 プラスチックフィルムがポリイミドフィ
ルムである請求項1又は2の耐熱性基板。
3. The heat-resistant substrate according to claim 1, wherein the plastic film is a polyimide film.
JP11199883A 1999-07-14 1999-07-14 Heat-resistant substrate Pending JP2001026085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11199883A JP2001026085A (en) 1999-07-14 1999-07-14 Heat-resistant substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11199883A JP2001026085A (en) 1999-07-14 1999-07-14 Heat-resistant substrate

Publications (1)

Publication Number Publication Date
JP2001026085A true JP2001026085A (en) 2001-01-30

Family

ID=16415204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11199883A Pending JP2001026085A (en) 1999-07-14 1999-07-14 Heat-resistant substrate

Country Status (1)

Country Link
JP (1) JP2001026085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114901A1 (en) * 2005-04-18 2006-11-02 Toyo Boseki Kabushiki Kaisha Thin film-laminated polyimide film and flexible printed wiring board
JP2011109110A (en) * 2009-11-20 2011-06-02 E I Du Pont De Nemours & Co Photovoltaic composition or precursor thereto, and method relating to the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006114901A1 (en) * 2005-04-18 2006-11-02 Toyo Boseki Kabushiki Kaisha Thin film-laminated polyimide film and flexible printed wiring board
JP2011109110A (en) * 2009-11-20 2011-06-02 E I Du Pont De Nemours & Co Photovoltaic composition or precursor thereto, and method relating to the same

Similar Documents

Publication Publication Date Title
JP5152429B2 (en) Laminated body
JP5650458B2 (en) LAMINATE MANUFACTURING METHOD AND FLEXIBLE DEVICE MANUFACTURING METHOD
US20090288699A1 (en) Laminate structures for high temperature photovoltaic applications, and methods relating thereto
KR102066280B1 (en) Transparent flexible laminate and laminate roll
TWI530392B (en) Laminate and method for manufacturing same, method for manufacturing device structure body using the laminate
KR100973637B1 (en) Thin Film-Laminated Polyimide Film and Flexible Printed Wiring Board
KR101482707B1 (en) Method of surface planarization of colorless and transparent polyimide films impregnated with glass fabric for display substrates and cover window
EP1749850A1 (en) Low color polyimide compositions useful in optical type applications and methods and compositions related thereto
JP5545032B2 (en) LAMINATE, ELECTRIC CIRCUIT-ADDED LAMINATE, SEMICONDUCTOR-ADDED LAMINATE, AND METHOD FOR PRODUCING THE SAME
WO2021261177A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, method for producing layered product, and electronic device
KR20070056148A (en) Polymer, method for producing the polymer, optical film, and image display device
JP2011122132A (en) Assembly provided with thermally and dimensionally stabilized polyimide film and electrode, and method about the same
JP3346228B2 (en) Aromatic polyimide film, laminate and solar cell
TW202035520A (en) Polyimide precursor composition, polyimide film and flexible device produced therefrom, and method for producing polyimide film excellent in heat resistance and transparency, and causing no problem such as coloration at high temperature
KR20150115461A (en) Manufacturing method of polyimide complex substrate and polyimide complex substrate using the same
KR102097431B1 (en) Polyimide and method for preparing the same
JP2001026085A (en) Heat-resistant substrate
JP4821997B2 (en) Film-like solar cell
JP2001031866A (en) Polyimide composition and substrate for solar cell produced by using the composition
JP2007201069A (en) Polyimide film for forming solar cell
JP2006321220A (en) Thin laminated polyimide film, thin laminated polyimide film roll and utilization of them
EP4223521A1 (en) Layered body including inorganic substrate and polyamic acid cured product
JP2000091606A (en) Manufacture of substrate for solar battery
JP2001015778A (en) Substrate for solar battery
JP2003073473A (en) Polyimide film, production method therefor and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060613