JPH10271651A - Method of locating faulty point of compressed gas insulated transmission line - Google Patents

Method of locating faulty point of compressed gas insulated transmission line

Info

Publication number
JPH10271651A
JPH10271651A JP9070066A JP7006697A JPH10271651A JP H10271651 A JPH10271651 A JP H10271651A JP 9070066 A JP9070066 A JP 9070066A JP 7006697 A JP7006697 A JP 7006697A JP H10271651 A JPH10271651 A JP H10271651A
Authority
JP
Japan
Prior art keywords
transmission line
failure
control unit
determination control
locating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9070066A
Other languages
Japanese (ja)
Inventor
Hirokazu Ito
弘和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9070066A priority Critical patent/JPH10271651A/en
Publication of JPH10271651A publication Critical patent/JPH10271651A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/065Means for detecting or reacting to mechanical or electrical defects

Abstract

PROBLEM TO BE SOLVED: To locate the faulty point of a compressed gas insulated transmission line, by sending the measurement data on from a faulty point locating sensor to a faulty judgment controller, and performing the judgment in every gas block with a fault judgment controller. SOLUTION: A temperature and pressure sensor 10 measures the temperature and pressure of a gas block, and a current sensor 11 measures the current of an earth line 7 connected to a metallic container 1. A data converter 12 receives measurement data from the sensors 10 and 11, converts them into signal form, sends out the signals periodically to an optical fiber 13 and a telephone circuit in the city, and the signal from the data converter 12 to a fault judgment controller 17. By this way, since the temperature and pressure sensor 10 and the current sensor 11 measure and detect the change of temperature and pressure and the change of the current of the grounding line separately for each gas block, so the fault judgment controller 17 can judge the fault separately for each gas block, and the faulty point can be located with high accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地中送電線路の故
障点を標定する方法に関するものであり、特に大容量送
電が可能なガス絶縁管路気中送電線路の故障点標定方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for locating a fault on an underground transmission line, and more particularly, to a method for locating a fault on an underground transmission line of a gas insulated pipe capable of transmitting a large amount of power.

【0002】[0002]

【従来の技術】一般に、地中送電線路としては架橋ポリ
エチレンケーブル(CV)などを使用しているが、この
ような地中送電線路は架空送電線路に比べて熱放散性能
が低く、送電容量が小さい。そのため、地中送電線路に
よって架空送電線路と同一容量の送電を行うには、地中
送電線路を多回線化しなくてはならなかった。しかし、
送電線路の多回線化は引き出し変電設備の複雑化し、コ
ストの増大を招くことになる。そこで近年では、地中送
電線路でありながら架空送電線路と同様な送電容量が可
能なガス絶縁管路気中送電線路が採用され始めている。
2. Description of the Related Art Generally, a crosslinked polyethylene cable (CV) or the like is used as an underground transmission line, but such an underground transmission line has lower heat dissipation performance and transmission capacity than an overhead transmission line. small. Therefore, in order to transmit power of the same capacity as the overhead transmission line by the underground transmission line, the underground transmission line had to be multiplied. But,
Increasing the number of transmission lines complicates the outgoing substation equipment and increases the cost. Therefore, in recent years, gas-insulated pipelines and underground transmission lines, which have the same transmission capacity as overhead transmission lines even though they are underground transmission lines, have begun to be adopted.

【0003】ここで図4および図5を参照して、従来の
ガス絶縁管路気中送電線路について、具体的に説明す
る。図4は管路気中送電線路の長手方向の構造を示した
構造図、図5の(A)は管路気中送電線路の側面断面
図、(B)は同正面断面図である。なお、図4、5は単
相導体での構成を示すが、三相構成でも三相導体が配置
されている以外は基本的には同等な構造である。
Referring to FIGS. 4 and 5, a conventional gas-insulated pipeline air transmission line will be specifically described. FIG. 4 is a structural view showing a longitudinal structure of the pipeline air transmission line, FIG. 5A is a side sectional view of the pipeline air transmission line, and FIG. 5B is a front sectional view of the same. 4 and 5 show a configuration using a single-phase conductor, but the three-phase configuration has basically the same structure except that a three-phase conductor is arranged.

【0004】図4、図5に示すように、ガス絶縁管路気
中送電線路には金属容器1が設けられており、その内部
には電気絶縁特性を有する絶縁ガス6が充填されてい
る。金属容器1の一部には機械的および熱的変形を吸収
するためのベローズ2が形成されている。また、金属容
器1の中心部には電気送電用の主回路導体3が収納され
ている。
As shown in FIGS. 4 and 5, a metal container 1 is provided in a gas insulated conduit air transmission line, and the inside thereof is filled with an insulating gas 6 having electric insulation properties. A bellows 2 for absorbing mechanical and thermal deformation is formed in a part of the metal container 1. A main circuit conductor 3 for electric power transmission is housed in the center of the metal container 1.

【0005】さらに、金属容器1には所定の間隔ごとに
ガス区分スペーサとしてコーンスペーサ4が設置されて
おり、このコーンスペーサ4によって金属容器1内の空
間が複数のガス区分に仕切られている。なお、導体3に
は金属容器1の軸線に対して垂直な柱状スペーサ5が取
付けられている。柱状スペーサ5は導体3を金属容器1
内に支持するためのものである。このようなガス絶縁管
路気中送電線路では金属容器1内に収納した導体3を絶
縁ガス6によって絶縁しているため、コンパクトな構造
をとることができ、且つ大容量の送電を行うことができ
る。
Further, a cone spacer 4 is provided as a gas dividing spacer at predetermined intervals in the metal container 1, and the space in the metal container 1 is partitioned into a plurality of gas sections by the cone spacer 4. A columnar spacer 5 perpendicular to the axis of the metal container 1 is attached to the conductor 3. The columnar spacer 5 connects the conductor 3 to the metal container 1.
It is for supporting inside. In such a gas insulated conduit air transmission line, the conductor 3 housed in the metal container 1 is insulated by the insulating gas 6, so that a compact structure can be obtained and large-capacity power transmission can be performed. it can.

【0006】また、以上の管路気中送電線路は、輸送条
件と現地での据付作業性を考慮して基本ユニット長が決
められ、現地でこれらの基本ユニットを接続して管路気
中送電線路が組立てられる。その際、管路気中送電線路
は長距離にわたって布設されるので、絶縁ガス管理のた
めにガス区分スペーサにて50m程ごとに各ガス区分が
形成されるのが一般的である。1つのガス区分の容積
は、ガス区分スペーサの間隔が50m程もあるため、標
準的なガス絶縁開閉装置におけるガス絶縁空間の容積に
比べると、非常に大きいといえる。
[0006] In addition, the basic unit length of the above pipeline air transmission line is determined in consideration of transportation conditions and on-site installation workability. The track is assembled. At this time, since the pipeline air transmission line is laid over a long distance, each gas section is generally formed about every 50 m by a gas section spacer for insulating gas management. The volume of one gas section is very large as compared with the volume of a gas-insulated space in a standard gas-insulated switchgear because the space between the gas section spacers is about 50 m.

【0007】ところで、管路気中送電線路において万が
一故障が発生した場合、空気絶縁の送電線路と同じく、
故障点を標定することが重要である。つまり、地絡故障
などの異常現象が発生した地点を正確に特定することに
より、その復旧を迅速に行う必要がある。故障点を標定
する従来例としては、従来の送電線に用いているインピ
ーダンス演算方法やサージ受信方法などが知られてい
る。また、ガス絶縁開閉装置に用いる故障点標定方法と
して、アーク故障発生時にガス空間の圧力が急激に上昇
することを利用して、その衝撃波を捕らえて故障点を標
定する方法が存在する。
[0007] By the way, in the event that a failure occurs in the pipeline air transmission line, like the air-insulated transmission line,
It is important to locate the point of failure. In other words, it is necessary to quickly identify a point where an abnormal phenomenon such as a ground fault has occurred, and to promptly recover the point. As a conventional example of locating a fault point, there are known an impedance calculation method and a surge receiving method used for a conventional transmission line. Further, as a method of locating a failure point used in the gas insulated switchgear, there is a method of locating a failure point by capturing a shock wave thereof by utilizing a sudden rise in pressure in a gas space when an arc failure occurs.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、以上の
ような故障点標定方法を管路気中送電線路に適用する場
合、次のような問題点があった。すなわち、従来の送電
線に用いているインピーダンス演算方法やサージ受信方
法の標定精度は±1km程度である。これに対して、管
路気中送電線路における故障点標定は、従来の送電線路
よりも格段に厳しい標定精度が要求されている。これ
は、管路気中送電線路が密閉構造をとっており、外部か
らは故障箇所が発見し難いため、故障点標定の精度に依
存するほかないからである。
However, when the above-described fault point locating method is applied to a pipeline air transmission line, there are the following problems. That is, the positioning accuracy of the impedance calculation method and the surge receiving method used for the conventional transmission line is about ± 1 km. On the other hand, the fault location in a pipeline air transmission line requires much more severe location accuracy than the conventional transmission line. This is because the pipeline air transmission line has a hermetic structure, and it is difficult to find a fault location from the outside, so it depends only on the accuracy of fault point location.

【0009】また上述した通り、管路気中送電線路にお
けるガス区分の容積は、ガス絶縁開閉装置のガス絶縁空
間に比べると、非常に大きく設定されている。そのた
め、前記のガス絶縁開閉装置の故障点標定方法を管路気
中送電線路に採用しても、管路気中送電線路ではアーク
故障発生してもガス圧が大きく上昇することがなく、故
障点を発見できないおそれがあった。
Further, as described above, the volume of the gas section in the pipeline air transmission line is set to be much larger than the gas insulated space of the gas insulated switchgear. Therefore, even if the method for locating the failure point of the gas insulated switchgear is adopted for the pipeline air transmission line, even if an arc failure occurs in the pipeline air transmission line, the gas pressure does not greatly increase, and There was a risk that the point could not be found.

【0010】さらに、送電容量の増大によりガス絶縁管
路気中送電線路が普及しつつある現在、将来的に故障に
まで発展するおそれのある現象を捕えて故障を事前に予
測するといった、より高性能な故障点標定方法が求めら
れている。また、管路気中送電線路の普及に伴って、管
路気中送電線路は長大化する傾向にある。そのため、長
大化する管路気中送電線路が対して、多額のコストをか
けることなく、簡単な設備で故障点の標定を行うことが
できる故障点標定方法の開発が期待されている。
[0010] Furthermore, at present, as gas-insulated pipelines and air-borne power transmission lines are becoming widespread due to the increase in power transmission capacity, failures may be predicted in advance by capturing phenomena that may develop into failures in the future. There is a need for a high-performance fault location method. Also, with the spread of pipeline air transmission lines, the pipeline air transmission lines tend to be longer. Therefore, development of a fault point locating method capable of locating a fault point with simple equipment without increasing a large amount of cost for a long-sized pipeline air transmission line is expected.

【0011】本発明は、上記のような問題点を解決する
ために提案されたものであり、管路気中送電線路の故障
点を高精度で標定することが可能な管路気中送電線路の
故障点標定方法を提供することを主たる目的とするもの
である。
SUMMARY OF THE INVENTION The present invention has been proposed to solve the above-described problems, and has a pipeline air transmission line capable of locating a failure point of a pipeline air transmission line with high accuracy. The main object of the present invention is to provide a method for locating a failure point.

【0012】また、本発明の他の目的は、故障を予測し
十分な余裕を持って管路気中送電線路の保全を行うこと
により、送電線路の信頼性向上に貢献する管路気中送電
線路の故障点標定方法を提供することである。
Another object of the present invention is to provide a pipeline air transmission system that contributes to improving the reliability of a transmission line by predicting a failure and maintaining the pipeline air transmission line with a sufficient margin. It is an object of the present invention to provide a method for locating a fault on a track.

【0013】さらに、本発明の他の目的は、簡単な設備
で故障点の標定を行うことが可能な経済性の高い管路気
中送電線路の故障点標定方法を提供することである。
Still another object of the present invention is to provide a highly economical method for locating a fault in a pipeline air transmission line, which is capable of locating a fault with simple equipment.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、金属容器内の所定の間隔ごとに
スペーサを配置し、このスペーサにより仕切られたガス
区分を有する管路気中送電線路において、その故障点を
標定する方法であって、前記ガス区分に故障点標定セン
サを設置して当該ガス区分の温度、圧力および接地線電
流の少なくとも1つを測定し、前記管路気中送電線路の
電気所には故障判定制御部を設置し、前記故障点標定セ
ンサからの測定データを前記故障判定制御部に送信し
て、前記故障判定制御部が前記ガス区分ごとに故障の判
定を行うことを特徴としている。
To achieve the above object, according to the first aspect of the present invention, there is provided a pipeline having spacers arranged at predetermined intervals in a metal container and having gas sections partitioned by the spacers. A method for locating a failure point in an air transmission line, comprising: installing a failure point locating sensor in the gas section, measuring at least one of temperature, pressure, and ground line current of the gas section; A failure determination control unit is installed at an electric station of the underground transmission line, and measurement data from the failure point locating sensor is transmitted to the failure determination control unit. Is determined.

【0015】このような請求項1の発明によれば、故障
点標定センサが各ガス区間ごとに温度、圧力および接地
線電流のうち少なくとも1つの要因に関してその変化を
検出し、その測定データを故障判定制御部に送信する。
したがって、故障判定制御部は各ガス区分ごとに故障の
判定を行うことができ、高精度で故障点を標定すること
ができる。これにより、管路気中送電線路内で発生する
地絡故障点を確定でき、迅速な故障復旧が可能となる。
According to the first aspect of the present invention, the failure point locating sensor detects a change in at least one of temperature, pressure, and ground line current for each gas section, and converts the measured data into a failure. Transmit to the judgment control unit.
Therefore, the failure determination control unit can determine a failure for each gas section, and can locate a failure point with high accuracy. As a result, a ground fault point occurring in the pipeline airborne transmission line can be determined, and quick failure recovery becomes possible.

【0016】請求項2の発明は、請求項1記載の管路気
中送電線路の故障点標定方法において、前記故障点標定
センサは測定データを定期的に前記故障判定制御部へ送
信し、前記故障判定制御部は定期的に送られた測定デー
タに基づいて予測保全処理を行うことを特徴としてい
る。
According to a second aspect of the present invention, in the method for locating a fault in a pipeline air transmission line according to the first aspect, the fault locating sensor periodically transmits measurement data to the fault determination control unit. The failure determination control unit performs a predictive maintenance process based on measurement data sent periodically.

【0017】このような請求項2の発明によれば、故障
判定制御部が定期的に送られた測定データに基づいて予
測保全処理を行うため、将来的に故障にまで発展するお
それのある現象を早期に発見して、十分な余裕を持って
管路気中送電線路の保全を行うことができる。
According to the second aspect of the present invention, since the failure determination control unit performs the predictive maintenance processing based on the periodically transmitted measurement data, there is a possibility that the failure may develop into a failure in the future. Can be detected early, and the pipeline air transmission line can be maintained with a sufficient margin.

【0018】請求項3の発明は、請求項1または2記載
の管路気中送電線路の故障点標定方法において、前記故
障点標定センサから前記故障判定制御部への測定データ
を、光ファイバーケーブルにより送信することを特徴と
している。
According to a third aspect of the present invention, in the method for locating a fault in a pipeline air transmission line according to the first or second aspect, the measurement data from the fault locating sensor to the failure determination control unit is transmitted by an optical fiber cable. It is characterized by transmission.

【0019】請求項4の発明は、請求項1、2または3
記載の管路気中送電線路の故障点標定方法において、前
記故障点標定センサから前記故障判定制御部への測定デ
ータを、市中電話回線により送信することを特徴として
いる。
The invention according to claim 4 is the invention according to claim 1, 2 or 3.
In the method for locating a fault in a pipeline air transmission line described above, the measurement data from the fault locating sensor to the failure determination control unit is transmitted via a city telephone line.

【0020】以上のような請求項3または4の発明によ
れば、通信網として特に都市部で発達している光ファイ
バーケーブルまたは市中電話回線を、故障点標定センサ
から故障判定制御部への測定データ送信手段として利用
するので、比較的簡単な設備で故障点の標定を行うこと
が可能となり、故障点標定にかかるコストを抑えること
ができる。
According to the third or fourth aspect of the present invention, an optical fiber cable or a commercial telephone line developed especially in an urban area as a communication network is measured from a fault point locating sensor to a fault determination control unit. Since it is used as data transmission means, it is possible to locate a fault point with relatively simple equipment, and it is possible to suppress the cost required for fault point location.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態の一例
を図面に基づいて具体的に説明する。なお、以下の説明
中、図4および図5に示した管路気中送電線路と同一の
部材に関しては、同一符号を付し、説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to the drawings. In the following description, the same members as those of the pipeline air transmission line shown in FIGS. 4 and 5 are denoted by the same reference numerals, and description thereof will be omitted.

【0022】(1)本実施の形態 図1の構成図に示すように、本実施の形態では、金属容
器1に形成されたガス区分ごとに、故障点標定センサと
して温度・圧力センサ10および電流センサ11を設置
すると共に、前記センサ10,11に対応するデータ変
換部12を設けている。一方、管路気中送電線路の電気
所には故障判定制御部17を設置し、この故障判定制御
部17と前記データ変換部12とを光ファイバ13およ
び市中電話回線14によって接続している。
(1) This Embodiment As shown in the configuration diagram of FIG. 1, in this embodiment, a temperature / pressure sensor 10 and a current as a failure point locating sensor are provided for each gas section formed in the metal container 1. A sensor 11 is provided, and a data converter 12 corresponding to the sensors 10 and 11 is provided. On the other hand, a failure determination control unit 17 is installed at an electric station of the pipeline air transmission line, and the failure determination control unit 17 and the data conversion unit 12 are connected by the optical fiber 13 and the public telephone line 14. .

【0023】さらに、図2を参照してデータ変換部12
および故障判定制御部17の詳しい構成について説明す
る。データ変換部12は受信ユニット20、データ処理
伝送装置21、光モデム22を備えている。また、故障
判定制御部17はデータ処理演算装置23、表示装置2
4および予測保全処理装置25を備えている。
Further, referring to FIG.
The detailed configuration of the failure determination control unit 17 will be described. The data converter 12 includes a receiving unit 20, a data processing transmission device 21, and an optical modem 22. Further, the failure determination control unit 17 includes the data processing arithmetic unit 23, the display device 2
4 and a predictive maintenance processing device 25.

【0024】このような本実施の形態では、温度・圧力
センサ10が当該ガス区分の温度、圧力を測定し、電流
センサ11が金属容器1に接続された接地線7の電流を
測定する。データ変換部12はセンサ10,11から測
定データを受取り、内部の受信ユニット20、データ処
理伝送装置21および光モデム22を経由して、測定デ
ータを送信するのに最適な信号形態に変換し(ここでは
光バス形伝送で標準通信プロトコルを採用して)、その
信号を光ファイバ13および市中電話回線14に定期的
に送り出す。光ファイバ13および市中電話回線14は
データ変換部12からの信号を故障判定制御部17まで
送信する。
In the present embodiment, the temperature / pressure sensor 10 measures the temperature and pressure of the gas section, and the current sensor 11 measures the current of the ground wire 7 connected to the metal container 1. The data converter 12 receives the measurement data from the sensors 10 and 11, and converts the measurement data into an optimal signal form for transmitting the measurement data via the internal receiving unit 20, the data processing transmission device 21, and the optical modem 22 ( Here, a standard communication protocol is adopted in the optical bus type transmission), and the signal is periodically sent to the optical fiber 13 and the public telephone line 14. The optical fiber 13 and the public telephone line 14 transmit a signal from the data converter 12 to the failure determination controller 17.

【0025】故障判定制御部17はデータ変換部12か
らサイクリックに送られてくる信号をデータ処理演算装
置23にて処理し、金属容器1のガス区分ごとに故障の
有無を判定する。そして、異常を判定した場合には異常
発生部位を特定する演算処理を行うと同時に、表示装置
24にて異常発生部位を表示し、警報を発する。さら
に、故障判定制御部17の予測保全処理装置25は各測
定データのトレンド管理を行い、予測保全処理を行って
いる。
The failure determination control unit 17 processes the signal sent cyclically from the data conversion unit 12 in the data processing arithmetic unit 23, and determines the presence or absence of a failure for each gas classification of the metal container 1. Then, when an abnormality is determined, the arithmetic processing for specifying the abnormality occurrence part is performed, and at the same time, the abnormality occurrence part is displayed on the display device 24 and an alarm is issued. Further, the predictive maintenance processing device 25 of the failure determination control unit 17 performs trend management of each measurement data and performs predictive maintenance processing.

【0026】このような本実施の形態によれば、温度・
圧力センサ10および電流センサ11が各ガス区間ごと
に温度や圧力の変化および接地線電流の変化を測定、検
出しているので、故障判定制御部17は各ガス区分ごと
に故障を判定でき、高精度で故障点を標定することがで
きる。その結果、管路気中送電線路内で発生する地絡故
障点を正確に特定でき、迅速な故障復旧が可能となる。
According to the embodiment, the temperature and the temperature
Since the pressure sensor 10 and the current sensor 11 measure and detect a change in temperature and pressure and a change in ground line current for each gas section, the failure determination control unit 17 can determine a failure for each gas section. Failure points can be located with high accuracy. As a result, a ground fault point occurring in the pipeline airborne transmission line can be accurately specified, and quick failure recovery becomes possible.

【0027】また、故障判定制御部17の予測保全処理
装置25が予測保全処理を行うので、将来的に故障にま
で発展するおそれのある現象を早期に発見して故障を予
測し、故障を未然に防ぐことができる。しかも、十分な
余裕を持って管路気中送電線路の保全を行うことが可能
なので、管路気中送電線路の信頼性を向上させることが
できる。
Further, since the predictive maintenance processing device 25 of the failure determination control unit 17 performs predictive maintenance processing, a phenomenon which may develop into a failure in the future is discovered at an early stage, and a failure is predicted. Can be prevented. In addition, since the maintenance of the pipeline air transmission line can be performed with a sufficient margin, the reliability of the pipeline air transmission line can be improved.

【0028】さらに、本実施の形態では、通信網として
都市部で発達している光ファイバ13または市中電話回
線14を、センサ10,11から故障判定制御部17へ
のデータ送信手段として利用している。そのため、比較
的簡単な設備で故障点の標定を行うことができる。した
がって、管路気中送電線路が長大化しても故障点標定に
かかるコストを低く抑えることができ、経済的にも極め
て有利である。
Further, in the present embodiment, an optical fiber 13 or a public telephone line 14 developed in an urban area as a communication network is used as data transmission means from the sensors 10 and 11 to the failure determination control unit 17. ing. Therefore, the fault point can be located with relatively simple equipment. Therefore, even if the length of the pipeline air transmission line becomes long, the cost for fault location can be kept low, which is extremely economically advantageous.

【0029】(2)他の実施の形態 なお、本発明は異常のような実施の形態に限定されるも
のではなく、例えば、図3に示すよう実施の形態も包含
する。この実施の形態は、近年急速に発達した市中無線
デジタル電話回線を利用して、データ変換部12から故
障判定制御部17までのデータ伝送を行うことを特徴と
している。
(2) Other Embodiments The present invention is not limited to the embodiment having an abnormal condition, but includes, for example, an embodiment as shown in FIG. This embodiment is characterized in that data transmission from the data conversion unit 12 to the failure determination control unit 17 is performed using a commercial wireless digital telephone line that has been rapidly developed in recent years.

【0030】すなわち、データ変換部12および故障判
定制御部17は送受信用通信装置27を備えており、デ
ータ変換部12が変換した測定データに基づく信号ある
いは故障判定制御部17が処理した信号を、無線通信で
電話会社の基地局26を経由しながら、2つの送受信用
通信装置27間で送受信することができる。
That is, the data conversion unit 12 and the failure determination control unit 17 include a transmission / reception communication device 27, and transmit a signal based on the measurement data converted by the data conversion unit 12 or a signal processed by the failure determination control unit 17. It is possible to transmit and receive between the two transmitting and receiving communication devices 27 while passing through the base station 26 of the telephone company by wireless communication.

【0031】[0031]

【発明の効果】以上述べたように、本発明によれば、管
路気中送電線路のガス区分ごとに故障点標定センサを設
置して当該ガス区分の温度、圧力および接地線電流の少
なくとも1つを測定し、管路気中送電線路の電気所に設
置した故障判定制御部に故障点標定センサからの測定デ
ータを送信して、故障判定制御部がガス区分ごとに故障
の判定を行うため、管路気中送電線路の故障点を高精度
で標定することができる。
As described above, according to the present invention, a fault point locating sensor is installed for each gas section of the pipeline air transmission line, and at least one of the temperature, pressure and ground line current of the gas section is installed. Measurement, and sends the measurement data from the fault point locating sensor to the fault determination control unit installed at the electrical substation in the pipeline air transmission line, so that the failure determination control unit determines failure for each gas classification In addition, it is possible to accurately locate a fault point in a pipeline air transmission line.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における実施の形態の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本実施の形態におけるデータ変換部12および
故障判定制御部17の内部構成を示した構成図。
FIG. 2 is a configuration diagram showing an internal configuration of a data conversion unit 12 and a failure determination control unit 17 in the present embodiment.

【図3】本発明における他の実施の形態の構成図。FIG. 3 is a configuration diagram of another embodiment of the present invention.

【図4】従来のガス絶縁管路気中送電線路における長手
方向の構造を示した構造図。
FIG. 4 is a structural diagram showing a longitudinal structure of a conventional gas-insulated conduit air transmission line.

【図5】(A)は従来のガス管路気中送電線路の側面断
面図、(B)は同正面断面図。
FIG. 5A is a side sectional view of a conventional gas pipeline air transmission line, and FIG. 5B is a front sectional view thereof.

【符号の説明】[Explanation of symbols]

1…金属容器 2…ベローズ 3…導体 4…コーンスペーサ 5…柱状スペーサ 6…絶縁ガス 7…接地線 10…温度・圧力センサ 11…電流センサ 12…データ変換部 13…光ファイバ 14…市中電話回線 17…故障判定制御部 20…受信ユニット 21…データ処理伝送装置 22…光モデム 23…データ処理演算装置 24…表示装置 25…予測保全処理装置 26…電話会社の基地局 27…送受信通信装置 DESCRIPTION OF SYMBOLS 1 ... Metal container 2 ... Bellows 3 ... Conductor 4 ... Cone spacer 5 ... Column spacer 6 ... Insulating gas 7 ... Grounding wire 10 ... Temperature / pressure sensor 11 ... Current sensor 12 ... Data conversion part 13 ... Optical fiber 14 ... City telephone Line 17: Failure determination control unit 20: Receiving unit 21: Data processing transmission device 22: Optical modem 23: Data processing operation device 24: Display device 25: Predictive maintenance processing device 26: Telephone company base station 27: Transmission / reception communication device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属容器内の所定の間隔ごとにスペーサ
を配置し、このスペーサにより仕切られたガス区分を有
する管路気中送電線路において、その故障点を標定する
方法であって、 前記ガス区分に故障点標定センサを設置して当該ガス区
分の温度、圧力および接地線電流の少なくとも1つを測
定し、 前記管路気中送電線路の電気所には故障判定制御部を設
置し、 前記故障点標定センサからの測定データを前記故障判定
制御部に送信して、前記故障判定制御部が前記ガス区分
ごとに故障の判定を行うことを特徴とする管路気中送電
線路の故障点標定方法。
1. A method for locating a failure point in a pipeline air transmission line having gas sections partitioned by spacers at predetermined intervals in a metal container, the method comprising: Installing a failure point locating sensor in the section and measuring at least one of the temperature, pressure and ground line current of the gas section; installing a failure determination control unit in an electric station of the pipeline air transmission line; A failure point locating method for a pipeline air transmission line, wherein measurement data from a failure point locating sensor is transmitted to the failure determination control unit, and the failure determination control unit determines a failure for each of the gas sections. Method.
【請求項2】 前記故障点標定センサは測定データを定
期的に前記故障判定制御部へ送信し、 前記故障判定制御部は定期的に送られた測定データに基
づいて予測保全処理を行うことを特徴とする請求項1記
載の管路気中送電線路の故障点標定方法。
2. The failure point locating sensor periodically transmits measurement data to the failure determination control unit, and the failure determination control unit performs predictive maintenance processing based on the periodically transmitted measurement data. The method for locating a fault in a pipeline air transmission line according to claim 1, wherein:
【請求項3】 前記故障点標定センサから前記故障判定
制御部への測定データを、光ファイバーケーブルにより
送信することを特徴とする請求項1または2記載の管路
気中送電線路の故障点標定方法。
3. The method according to claim 1, wherein the measurement data from the failure point location sensor to the failure determination control unit is transmitted by an optical fiber cable. .
【請求項4】 前記故障点標定センサから前記故障判定
制御部への測定データを、市中電話回線により送信する
ことを特徴とする請求項1、2または3記載の管路気中
送電線路の故障点標定方法。
4. The pipeline air transmission line according to claim 1, wherein the measurement data from the failure point locating sensor to the failure determination control unit is transmitted through a public telephone line. Failure point location method.
JP9070066A 1997-03-24 1997-03-24 Method of locating faulty point of compressed gas insulated transmission line Pending JPH10271651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9070066A JPH10271651A (en) 1997-03-24 1997-03-24 Method of locating faulty point of compressed gas insulated transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9070066A JPH10271651A (en) 1997-03-24 1997-03-24 Method of locating faulty point of compressed gas insulated transmission line

Publications (1)

Publication Number Publication Date
JPH10271651A true JPH10271651A (en) 1998-10-09

Family

ID=13420801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9070066A Pending JPH10271651A (en) 1997-03-24 1997-03-24 Method of locating faulty point of compressed gas insulated transmission line

Country Status (1)

Country Link
JP (1) JPH10271651A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167940A1 (en) * 2000-06-27 2002-01-02 ABB Hochspannungstechnik AG Procedure for measuring density and density monitor
WO2003044546A1 (en) * 2001-11-19 2003-05-30 Alstom Technology Ltd Short-to-ground detector for windings
JP2009530723A (en) * 2006-03-16 2009-08-27 パワー・モニターズ・インコーポレーテッド Underground monitoring system and method
US9202383B2 (en) 2008-03-04 2015-12-01 Power Monitors, Inc. Method and apparatus for a voice-prompted electrical hookup
US9404943B2 (en) 2009-11-10 2016-08-02 Power Monitors, Inc. System, method, and apparatus for a safe powerline communications instrumentation front-end
US9519559B2 (en) 2010-07-29 2016-12-13 Power Monitors, Inc. Method and apparatus for a demand management monitoring system
DE102015216968A1 (en) * 2015-09-04 2017-03-09 Siemens Aktiengesellschaft Gas-insulated electrical device
US9595825B2 (en) 2007-01-09 2017-03-14 Power Monitors, Inc. Method and apparatus for smart circuit breaker
US10060957B2 (en) 2010-07-29 2018-08-28 Power Monitors, Inc. Method and apparatus for a cloud-based power quality monitor
CN109342879A (en) * 2018-09-30 2019-02-15 国网浙江慈溪市供电有限公司 A kind of distribution line on-line monitoring of cable system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167940A1 (en) * 2000-06-27 2002-01-02 ABB Hochspannungstechnik AG Procedure for measuring density and density monitor
WO2003044546A1 (en) * 2001-11-19 2003-05-30 Alstom Technology Ltd Short-to-ground detector for windings
US7142403B2 (en) 2001-11-19 2006-11-28 Alstom Technology Ltd. Method for detection of a ground fault, which occurs in the vicinity of a neutral point in an electrical device, as well as an apparatus for carrying out the method
JP2009530723A (en) * 2006-03-16 2009-08-27 パワー・モニターズ・インコーポレーテッド Underground monitoring system and method
US9595825B2 (en) 2007-01-09 2017-03-14 Power Monitors, Inc. Method and apparatus for smart circuit breaker
US9202383B2 (en) 2008-03-04 2015-12-01 Power Monitors, Inc. Method and apparatus for a voice-prompted electrical hookup
US9404943B2 (en) 2009-11-10 2016-08-02 Power Monitors, Inc. System, method, and apparatus for a safe powerline communications instrumentation front-end
US9519559B2 (en) 2010-07-29 2016-12-13 Power Monitors, Inc. Method and apparatus for a demand management monitoring system
US10060957B2 (en) 2010-07-29 2018-08-28 Power Monitors, Inc. Method and apparatus for a cloud-based power quality monitor
DE102015216968A1 (en) * 2015-09-04 2017-03-09 Siemens Aktiengesellschaft Gas-insulated electrical device
CN109342879A (en) * 2018-09-30 2019-02-15 国网浙江慈溪市供电有限公司 A kind of distribution line on-line monitoring of cable system

Similar Documents

Publication Publication Date Title
CN107884681B (en) GIL pipeline internal fault monitoring and positioning system and method
JPH10271651A (en) Method of locating faulty point of compressed gas insulated transmission line
US20120299603A1 (en) On-line monitoring system of insulation losses for underground power cables
US5124687A (en) Power apparatus, power transmission/distribution unit, and tripping method therefor
CN113064033B (en) Gas insulated switchgear and fault monitoring device thereof
JP4641262B2 (en) Fault location device and method for gas insulated switchgear
JPH10148655A (en) Compressed gas-insulated transmission line, and its fault point-locating system and method therefor
JP3400170B2 (en) Gas pressure monitoring equipment for gas insulation equipment
JP3321480B2 (en) Fault location system
CN216348533U (en) GIS tubular bus deformation monitoring device
CN217332688U (en) Fault detection device and system
JP2023124414A (en) Electric power facility
JPH02181668A (en) Abnormality detecting device for gas insulation electric equipment
KR102095185B1 (en) Remote diagnostic system with multiple wireless communication devices and method therefor
JPH07241009A (en) Gas pressure monitor of gas insulated apparatus
JP3186853B2 (en) Fault location system
JPH01234016A (en) System for determining position of abnormality of gas insulated apparatus
CN104165703A (en) Substation equipment contact state on-line monitoring star network platform
JP2508391B2 (en) Gas insulation switchgear fault location method
Kobayashi et al. Application of the world's longest gas insulated transmission line (GIL)
JP3458658B2 (en) Electrical equipment connection device
JPH09127180A (en) Failure point locating system
JPH0965527A (en) Fault point locating system
JPH0526750A (en) Device for monitoring gas pressure within pipe of ductwork transmission line
JPH08149633A (en) Device for detecting ground fault position in gas-insulated switchgear