JPH10271651A - Method of locating faulty point of compressed gas insulated transmission line - Google Patents

Method of locating faulty point of compressed gas insulated transmission line

Info

Publication number
JPH10271651A
JPH10271651A JP7006697A JP7006697A JPH10271651A JP H10271651 A JPH10271651 A JP H10271651A JP 7006697 A JP7006697 A JP 7006697A JP 7006697 A JP7006697 A JP 7006697A JP H10271651 A JPH10271651 A JP H10271651A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
gas
sensor
faulty
judgment
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7006697A
Other languages
Japanese (ja)
Inventor
Hirokazu Ito
弘和 伊藤
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To locate the faulty point of a compressed gas insulated transmission line, by sending the measurement data on from a faulty point locating sensor to a faulty judgment controller, and performing the judgment in every gas block with a fault judgment controller.
SOLUTION: A temperature and pressure sensor 10 measures the temperature and pressure of a gas block, and a current sensor 11 measures the current of an earth line 7 connected to a metallic container 1. A data converter 12 receives measurement data from the sensors 10 and 11, converts them into signal form, sends out the signals periodically to an optical fiber 13 and a telephone circuit in the city, and the signal from the data converter 12 to a fault judgment controller 17. By this way, since the temperature and pressure sensor 10 and the current sensor 11 measure and detect the change of temperature and pressure and the change of the current of the grounding line separately for each gas block, so the fault judgment controller 17 can judge the fault separately for each gas block, and the faulty point can be located with high accuracy.
COPYRIGHT: (C)1998,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、地中送電線路の故障点を標定する方法に関するものであり、特に大容量送電が可能なガス絶縁管路気中送電線路の故障点標定方法に関する。 The present invention relates to relates to a method for locating a fault point of the underground transmission lines, and more particularly to fault point locating method of large-capacity power transmission capable of gas-insulated pipe Michiki during power transmission line.

【0002】 [0002]

【従来の技術】一般に、地中送電線路としては架橋ポリエチレンケーブル(CV)などを使用しているが、このような地中送電線路は架空送電線路に比べて熱放散性能が低く、送電容量が小さい。 In general, the use of the such cross-linked polyethylene cable (CV) as the underground transmission lines, such underground transmission line heat dissipation performance is lower than that of the overhead power transmission line, the transmission capacity small. そのため、地中送電線路によって架空送電線路と同一容量の送電を行うには、地中送電線路を多回線化しなくてはならなかった。 Therefore, in order to perform transmission with the same capacity and overhead power transmission line by underground transmission lines, it had to multi-circuit the underground transmission lines. しかし、 But,
送電線路の多回線化は引き出し変電設備の複雑化し、コストの増大を招くことになる。 Multi-circuit of the power transmission line is complicated drawers substation equipment, thereby causing an increase in cost. そこで近年では、地中送電線路でありながら架空送電線路と同様な送電容量が可能なガス絶縁管路気中送電線路が採用され始めている。 Therefore, in recent years, underground transmission lines, yet the overhead power transmission line similar transmission capacity is available a gas insulated pipe Michiki in transmission line is beginning to be adopted.

【0003】ここで図4および図5を参照して、従来のガス絶縁管路気中送電線路について、具体的に説明する。 [0003] Referring now to FIGS. 4 and 5, a conventional gas insulated pipe Michiki in the transmission line will be specifically described. 図4は管路気中送電線路の長手方向の構造を示した構造図、図5の(A)は管路気中送電線路の側面断面図、(B)は同正面断面図である。 Figure 4 is the structure diagram showing a longitudinal structure of Kanroki in the transmission line, (A) in FIG. 5 is a side sectional view of Kanroki in the transmission line, (B) are the same front cross-sectional view. なお、図4、5は単相導体での構成を示すが、三相構成でも三相導体が配置されている以外は基本的には同等な構造である。 Incidentally, FIG. 4 and 5 show the structure of a single-phase conductor, except that the three-phase conductors in a three-phase configuration are arranged is basically the equivalent structures.

【0004】図4、図5に示すように、ガス絶縁管路気中送電線路には金属容器1が設けられており、その内部には電気絶縁特性を有する絶縁ガス6が充填されている。 [0004] As shown in FIGS. 4 and 5, the gas insulated pipe Michiki in the transmission line is provided with a metal container 1, the insulating gas 6 having electrical insulation properties is filled therein. 金属容器1の一部には機械的および熱的変形を吸収するためのベローズ2が形成されている。 Some of the metal container 1 Bellows 2 for absorbing mechanical and thermal deformation are formed. また、金属容器1の中心部には電気送電用の主回路導体3が収納されている。 Further, in the center of the metal container 1 the main circuit conductor 3 for electric power transmission it is housed.

【0005】さらに、金属容器1には所定の間隔ごとにガス区分スペーサとしてコーンスペーサ4が設置されており、このコーンスペーサ4によって金属容器1内の空間が複数のガス区分に仕切られている。 Furthermore, the metal container 1 are cone spacers 4 placed as a gas partition spacer at predetermined intervals, the space inside the metal container 1 is partitioned into a plurality of gas divided by the cone spacer 4. なお、導体3には金属容器1の軸線に対して垂直な柱状スペーサ5が取付けられている。 Incidentally, it mounted columnar spacers 5 perpendicular to the axis of the metallic container 1 in the conductor 3. 柱状スペーサ5は導体3を金属容器1 Columnar spacers 5 the conductor 3 metal container 1
内に支持するためのものである。 It is intended to support within. このようなガス絶縁管路気中送電線路では金属容器1内に収納した導体3を絶縁ガス6によって絶縁しているため、コンパクトな構造をとることができ、且つ大容量の送電を行うことができる。 Since such a gas insulated pipe Michiki in power transmission line insulates conductor 3 which is housed in the metallic container 1 by an insulating gas 6 can take a compact structure, and can perform transmission of large it can.

【0006】また、以上の管路気中送電線路は、輸送条件と現地での据付作業性を考慮して基本ユニット長が決められ、現地でこれらの基本ユニットを接続して管路気中送電線路が組立てられる。 Further, more conduits aerial power transmission line, the basic unit length is determined in consideration of installation work of the transport conditions and local, connected conduit airborne by transmitting these basic units on site line is assembled. その際、管路気中送電線路は長距離にわたって布設されるので、絶縁ガス管理のためにガス区分スペーサにて50m程ごとに各ガス区分が形成されるのが一般的である。 At that time, Kanroki in transmission line is because it is laid over a long distance, it is common to each gas classified by degree 50m by gas partition spacers are formed for insulation gas management. 1つのガス区分の容積は、ガス区分スペーサの間隔が50m程もあるため、標準的なガス絶縁開閉装置におけるガス絶縁空間の容積に比べると、非常に大きいといえる。 The volume of one gas segment, the interval of the gas division spacer is also about 50m, as compared to the volume of the gas-insulated space in a standard gas-insulated switchgear, it said to be quite large.

【0007】ところで、管路気中送電線路において万が一故障が発生した場合、空気絶縁の送電線路と同じく、 By the way, if by any chance failure occurs in Kanroki during power transmission line, as in the transmission line of the air-insulated,
故障点を標定することが重要である。 It is important to locating the fault point. つまり、地絡故障などの異常現象が発生した地点を正確に特定することにより、その復旧を迅速に行う必要がある。 That is, by abnormal phenomenon, such as ground fault to pinpoint spot generated, it is necessary to perform the quick recovery. 故障点を標定する従来例としては、従来の送電線に用いているインピーダンス演算方法やサージ受信方法などが知られている。 As a conventional example of locating a fault point, such as the impedance calculation method and a surge receiving method used in a conventional power transmission line is known. また、ガス絶縁開閉装置に用いる故障点標定方法として、アーク故障発生時にガス空間の圧力が急激に上昇することを利用して、その衝撃波を捕らえて故障点を標定する方法が存在する。 Further, as the failure point locating method for use in a gas insulated switchgear, by utilizing the fact that when the arc fault pressure generated by the gas space increases rapidly, there is a method of locating a fault point caught the shock wave.

【0008】 [0008]

【発明が解決しようとする課題】しかしながら、以上のような故障点標定方法を管路気中送電線路に適用する場合、次のような問題点があった。 The object of the invention is to be Solved However, in the case of applying the fault point locating method described above in the pipeline aerial power transmission line, there is a problem such as the following. すなわち、従来の送電線に用いているインピーダンス演算方法やサージ受信方法の標定精度は±1km程度である。 That is, orientation accuracy of the impedance calculation method and a surge receiving method used in a conventional transmission line is about ± 1km. これに対して、管路気中送電線路における故障点標定は、従来の送電線路よりも格段に厳しい標定精度が要求されている。 In contrast, fault point locating in Kanroki in power transmission line, it remarkably tight orientation accuracy is required than the conventional power transmission line. これは、管路気中送電線路が密閉構造をとっており、外部からは故障箇所が発見し難いため、故障点標定の精度に依存するほかないからである。 This Kanroki during power transmission line has taken sealed structure, since it is difficult to discover the fault location from the outside, there is no other which depends on the point of failure locating accuracy.

【0009】また上述した通り、管路気中送電線路におけるガス区分の容積は、ガス絶縁開閉装置のガス絶縁空間に比べると、非常に大きく設定されている。 [0009] As described above, the volume of gas divided in Kanroki in power transmission line, as compared to the gas-insulated space of the gas insulated switchgear is set very large. そのため、前記のガス絶縁開閉装置の故障点標定方法を管路気中送電線路に採用しても、管路気中送電線路ではアーク故障発生してもガス圧が大きく上昇することがなく、故障点を発見できないおそれがあった。 Therefore, employing the fault point locating method of the gas-insulated switchgear to pipeline aerial power transmission line, without the gas pressure rises larger and arc fault occurs in Kanroki in power transmission line, the fault there is a possibility that can not be found the point.

【0010】さらに、送電容量の増大によりガス絶縁管路気中送電線路が普及しつつある現在、将来的に故障にまで発展するおそれのある現象を捕えて故障を事前に予測するといった、より高性能な故障点標定方法が求められている。 Furthermore, currently the gas insulated pipe Michiki in transmission line are becoming widespread due to the increase in transmission capacity, such as to predict the failure in advance catching phenomenon that could develop to a future failure, higher performance failure point orientation methods are being sought. また、管路気中送電線路の普及に伴って、管路気中送電線路は長大化する傾向にある。 Moreover, with the spread of Kanroki in power transmission line, Kanroki in transmission lines tend to lengthening. そのため、長大化する管路気中送電線路が対して、多額のコストをかけることなく、簡単な設備で故障点の標定を行うことができる故障点標定方法の開発が期待されている。 Therefore, for that conduit aerial power transmission line for lengthening without imposing a significant cost, the development of fault point locating method capable of performing orientation point of failure in simple equipment is expected.

【0011】本発明は、上記のような問題点を解決するために提案されたものであり、管路気中送電線路の故障点を高精度で標定することが可能な管路気中送電線路の故障点標定方法を提供することを主たる目的とするものである。 [0011] The present invention has been proposed in order to solve the above problems, capable Kanroki in power transmission line to locating a fault point in the power transmission line Kanroki accurately it is an object of the present invention to provide a failure point locating method.

【0012】また、本発明の他の目的は、故障を予測し十分な余裕を持って管路気中送電線路の保全を行うことにより、送電線路の信頼性向上に貢献する管路気中送電線路の故障点標定方法を提供することである。 [0012] Another object of the present invention, by performing integrity of predicted sufficient margin to bring in line the aerial power transmission line fault, line aerial to increase the reliability of the transmission line power transmission to provide a fault point locating method of the line.

【0013】さらに、本発明の他の目的は、簡単な設備で故障点の標定を行うことが可能な経済性の高い管路気中送電線路の故障点標定方法を提供することである。 Furthermore, another object of the present invention is to provide a fault point locating method of highly economical capable of performing orientation point of failure conduit aerial power transmission line with a simple equipment.

【0014】 [0014]

【課題を解決するための手段】上記目的を達成するために、請求項1の発明は、金属容器内の所定の間隔ごとにスペーサを配置し、このスペーサにより仕切られたガス区分を有する管路気中送電線路において、その故障点を標定する方法であって、前記ガス区分に故障点標定センサを設置して当該ガス区分の温度、圧力および接地線電流の少なくとも1つを測定し、前記管路気中送電線路の電気所には故障判定制御部を設置し、前記故障点標定センサからの測定データを前記故障判定制御部に送信して、前記故障判定制御部が前記ガス区分ごとに故障の判定を行うことを特徴としている。 To achieve the above object of the Invention The invention of Claim 1, the spacer is arranged at predetermined intervals in the metal container, the conduit having a gas segment partitioned by the spacer in aerial power transmission line, a method for locating the fault point, measuring at least one of the established a fault point locating sensors in the gas division temperature of the gas segment, the pressure and the ground line current, said tube the substation in the transmission line Michiki established a failure determination control unit transmits the measured data from the fault point orientation sensor to the failure determination control unit, the failure the failure determination control unit for each of the gas segment It is characterized by a determination of.

【0015】このような請求項1の発明によれば、故障点標定センサが各ガス区間ごとに温度、圧力および接地線電流のうち少なくとも1つの要因に関してその変化を検出し、その測定データを故障判定制御部に送信する。 According to the invention of such claim 1, to detect the change with respect to at least one factor of the fault point locating sensor temperature for each gas section, the pressure and the ground line current, malfunction of the measurement data and it transmits to the determination control unit.
したがって、故障判定制御部は各ガス区分ごとに故障の判定を行うことができ、高精度で故障点を標定することができる。 Therefore, the failure determination control unit can make a determination of failure for each gas division, it is possible to locating a fault point accurately. これにより、管路気中送電線路内で発生する地絡故障点を確定でき、迅速な故障復旧が可能となる。 This can determine the ground fault point occurring in Kanroki in the power transmission line, quick fault recovery is possible.

【0016】請求項2の発明は、請求項1記載の管路気中送電線路の故障点標定方法において、前記故障点標定センサは測定データを定期的に前記故障判定制御部へ送信し、前記故障判定制御部は定期的に送られた測定データに基づいて予測保全処理を行うことを特徴としている。 The invention of claim 2 is, in the fault point locating method of the conduit aerial power transmission line according to claim 1, wherein the fault point orientation sensor transmits the measured data to periodically said failure judgment control unit, wherein failure determination control unit is characterized by performing the prediction preservation process based on the measurement data transmitted periodically.

【0017】このような請求項2の発明によれば、故障判定制御部が定期的に送られた測定データに基づいて予測保全処理を行うため、将来的に故障にまで発展するおそれのある現象を早期に発見して、十分な余裕を持って管路気中送電線路の保全を行うことができる。 According to the invention of such claim 2, since the failure determination control unit performs prediction preservation process based on the measurement data transmitted periodically, a possibility of developing to a future failure events the discovered at an early stage, it is possible to carry out the conservation of the conduit aerial power transmission line with a sufficient margin.

【0018】請求項3の発明は、請求項1または2記載の管路気中送電線路の故障点標定方法において、前記故障点標定センサから前記故障判定制御部への測定データを、光ファイバーケーブルにより送信することを特徴としている。 [0018] A third aspect of the present invention, in the fault point locating method according to claim 1 or 2, wherein the conduit aerial power transmission line, the measured data to the failure determination control unit from the fault point locating sensors, a fiber optic cable It is characterized by transmitting.

【0019】請求項4の発明は、請求項1、2または3 [0019] The invention of claim 4, claim 1, 2 or 3
記載の管路気中送電線路の故障点標定方法において、前記故障点標定センサから前記故障判定制御部への測定データを、市中電話回線により送信することを特徴としている。 In fault point locating method of the conduit aerial power transmission line according the measured data to the failure determination control unit from the fault point locating sensors, it is characterized by transmitting the commercial telephone line.

【0020】以上のような請求項3または4の発明によれば、通信網として特に都市部で発達している光ファイバーケーブルまたは市中電話回線を、故障点標定センサから故障判定制御部への測定データ送信手段として利用するので、比較的簡単な設備で故障点の標定を行うことが可能となり、故障点標定にかかるコストを抑えることができる。 According to the above-described invention of claim 3 or 4, in particular the measurement of the optical fiber cable or community telephone line are developed in urban areas, the failure determination control unit from the fault point locating sensor as a communication network since use as a data transmission means, it is possible to perform the orientation of the fault point in a relatively simple equipment, it is possible to suppress the cost of the fault point locating.

【0021】 [0021]

【発明の実施の形態】以下、本発明の実施の形態の一例を図面に基づいて具体的に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, will be described in detail with reference to an embodiment of the present invention with reference to the drawings. なお、以下の説明中、図4および図5に示した管路気中送電線路と同一の部材に関しては、同一符号を付し、説明は省略する。 Regarding the following in the description, line aerial power transmission line and the same members shown in FIGS. 4 and 5, the same reference numerals, and description thereof is omitted.

【0022】(1)本実施の形態 図1の構成図に示すように、本実施の形態では、金属容器1に形成されたガス区分ごとに、故障点標定センサとして温度・圧力センサ10および電流センサ11を設置すると共に、前記センサ10,11に対応するデータ変換部12を設けている。 [0022] (1) As shown in block diagram form Figure 1 of the present embodiment, in the present embodiment, each gas segment formed in the metal container 1, the temperature and pressure sensor 10 and current as a fault point locating sensors with installing the sensor 11 is provided with a data converting unit 12 corresponding to the sensors 10 and 11. 一方、管路気中送電線路の電気所には故障判定制御部17を設置し、この故障判定制御部17と前記データ変換部12とを光ファイバ13および市中電話回線14によって接続している。 On the other hand, the substation in the transmission line Kanroki established a failure determination control unit 17, and connects with the failure determination control unit 17 and the data conversion unit 12 by the optical fiber 13 and community telephone line 14 .

【0023】さらに、図2を参照してデータ変換部12 Furthermore, the data conversion unit 12 with reference to FIG. 2
および故障判定制御部17の詳しい構成について説明する。 And detailed configuration of the failure determination control unit 17 will be described. データ変換部12は受信ユニット20、データ処理伝送装置21、光モデム22を備えている。 Data conversion section 12 is a receiving unit 20, the data processing transmission apparatus 21 includes an optical modem 22. また、故障判定制御部17はデータ処理演算装置23、表示装置2 Further, the failure judgment control unit 17 data processing operation apparatus 23, the display apparatus 2
4および予測保全処理装置25を備えている。 4 and a prediction integrity processing unit 25.

【0024】このような本実施の形態では、温度・圧力センサ10が当該ガス区分の温度、圧力を測定し、電流センサ11が金属容器1に接続された接地線7の電流を測定する。 [0024] In such an embodiment, the temperature and pressure sensor 10 are temperature, pressure was measured in the gas segment, the current sensor 11 measures the current in the ground line 7 connected to the metal container 1. データ変換部12はセンサ10,11から測定データを受取り、内部の受信ユニット20、データ処理伝送装置21および光モデム22を経由して、測定データを送信するのに最適な信号形態に変換し(ここでは光バス形伝送で標準通信プロトコルを採用して)、その信号を光ファイバ13および市中電話回線14に定期的に送り出す。 Data converting section 12 receives the measurement data from the sensors 10 and 11, the interior of the receiving unit 20 via the data processing transfer unit 21 and the optical modem 22, converts the best signal form for transmitting measurement data ( here employ standard communication protocol optical bus type transmission) periodically sends the signal to the optical fiber 13 and community telephone line 14. 光ファイバ13および市中電話回線14はデータ変換部12からの信号を故障判定制御部17まで送信する。 Optical fibers 13 and community telephone line 14 transmits signals from the data conversion unit 12 to the failure determination control unit 17.

【0025】故障判定制御部17はデータ変換部12からサイクリックに送られてくる信号をデータ処理演算装置23にて処理し、金属容器1のガス区分ごとに故障の有無を判定する。 The failure determination control unit 17 processes the signal sent cyclically from the data converter 12 by the data processing operation apparatus 23 determines whether or not there is a fault in each gas section of the metal container 1. そして、異常を判定した場合には異常発生部位を特定する演算処理を行うと同時に、表示装置24にて異常発生部位を表示し、警報を発する。 When it is judged abnormal at the same time it performs arithmetic processing for specifying the abnormal condition occurrence part, displays the abnormal condition occurrence part on the display device 24 issues an alarm. さらに、故障判定制御部17の予測保全処理装置25は各測定データのトレンド管理を行い、予測保全処理を行っている。 Furthermore, predicting maintenance processor 25 of the failure determination control unit 17 performs a trend management of measurement data, is performed prediction preservation process.

【0026】このような本実施の形態によれば、温度・ [0026] According to the present embodiment, the temperature and
圧力センサ10および電流センサ11が各ガス区間ごとに温度や圧力の変化および接地線電流の変化を測定、検出しているので、故障判定制御部17は各ガス区分ごとに故障を判定でき、高精度で故障点を標定することができる。 Measuring a change in pressure sensor 10 and a current sensor 11 is changed and the ground line current temperature and pressure in each gas section, since the detection, the failure judgment control unit 17 can determine the fault for each gas division, high it can be locating a fault point accuracy. その結果、管路気中送電線路内で発生する地絡故障点を正確に特定でき、迅速な故障復旧が可能となる。 As a result, accurately identify the ground fault point occurring in Kanroki in the power transmission line, quick fault recovery is possible.

【0027】また、故障判定制御部17の予測保全処理装置25が予測保全処理を行うので、将来的に故障にまで発展するおそれのある現象を早期に発見して故障を予測し、故障を未然に防ぐことができる。 Further, since the predictive maintenance processor 25 of the failure determination control unit 17 performs the prediction preservation process, and predict failure to discover phenomena which may develop to a future failure early forestall failure it is possible to prevent in. しかも、十分な余裕を持って管路気中送電線路の保全を行うことが可能なので、管路気中送電線路の信頼性を向上させることができる。 Moreover, Since it is possible to perform maintenance of with a sufficient margin line aerial power transmission lines, it is possible to improve the reliability in the power transmission line Kanroki.

【0028】さらに、本実施の形態では、通信網として都市部で発達している光ファイバ13または市中電話回線14を、センサ10,11から故障判定制御部17へのデータ送信手段として利用している。 Furthermore, in this embodiment, using an optical fiber 13 or commercial telephone line 14 are developed in urban areas, as a data transmission unit from the sensors 10 and 11 to the failure determination control unit 17 as a communication network ing. そのため、比較的簡単な設備で故障点の標定を行うことができる。 Therefore, it is possible to perform the orientation of the fault point in a relatively simple equipment. したがって、管路気中送電線路が長大化しても故障点標定にかかるコストを低く抑えることができ、経済的にも極めて有利である。 Therefore, even if it lengthening in transmission line Kanroki can be suppressed to be low cost for the fault point locating, it is economically very advantageous.

【0029】(2)他の実施の形態 なお、本発明は異常のような実施の形態に限定されるものではなく、例えば、図3に示すよう実施の形態も包含する。 [0029] (2) Other Embodiments The present invention is not limited to the embodiment as abnormal, for example, also encompasses an embodiment as shown in FIG. この実施の形態は、近年急速に発達した市中無線デジタル電話回線を利用して、データ変換部12から故障判定制御部17までのデータ伝送を行うことを特徴としている。 This embodiment is rapidly using the commercial wireless digital telephone line developed in recent years, is characterized by transmitting data from the data conversion unit 12 to the failure determination control unit 17.

【0030】すなわち、データ変換部12および故障判定制御部17は送受信用通信装置27を備えており、データ変換部12が変換した測定データに基づく信号あるいは故障判定制御部17が処理した信号を、無線通信で電話会社の基地局26を経由しながら、2つの送受信用通信装置27間で送受信することができる。 [0030] That is, the data conversion unit 12 and the failure determination control unit 17 includes a transmitting and receiving communication device 27, a signal signal or the failure judgment control unit 17 based on the measurement data that the data conversion unit 12 converts the processed, while via the base station 26 of the telephone company in the wireless communication can be received between the two transmitting and receiving communication device 27.

【0031】 [0031]

【発明の効果】以上述べたように、本発明によれば、管路気中送電線路のガス区分ごとに故障点標定センサを設置して当該ガス区分の温度、圧力および接地線電流の少なくとも1つを測定し、管路気中送電線路の電気所に設置した故障判定制御部に故障点標定センサからの測定データを送信して、故障判定制御部がガス区分ごとに故障の判定を行うため、管路気中送電線路の故障点を高精度で標定することができる。 As described above, according to the present invention, according to the present invention, the temperature of the gas divided by installing the fault point locating sensors for each gas section of Kanroki in power transmission line, at least one of the pressure and the ground line current One was measured, and transmits the measurement data from the fault point locating sensor failure determination control unit installed in the substation in the transmission line Kanroki, the failure determination control unit for performing the failure determination for each gas segment , it can be locating a fault point in the power transmission line Kanroki accurately.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明における実施の形態の構成図。 Diagram of the embodiment of the present invention; FIG.

【図2】本実施の形態におけるデータ変換部12および故障判定制御部17の内部構成を示した構成図。 Diagram illustrating an internal configuration of the data conversion unit 12 and the failure judgment control unit 17 in FIG. 2 embodiment.

【図3】本発明における他の実施の形態の構成図。 Block diagram of another embodiment of the present invention; FIG.

【図4】従来のガス絶縁管路気中送電線路における長手方向の構造を示した構造図。 [4] structural diagram showing a longitudinal structure of a conventional gas insulated pipe Michiki during power transmission line.

【図5】(A)は従来のガス管路気中送電線路の側面断面図、(B)は同正面断面図。 [5] (A) is a side sectional view of a conventional gas tube Michiki in the transmission line, (B) is the front sectional view.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…金属容器 2…ベローズ 3…導体 4…コーンスペーサ 5…柱状スペーサ 6…絶縁ガス 7…接地線 10…温度・圧力センサ 11…電流センサ 12…データ変換部 13…光ファイバ 14…市中電話回線 17…故障判定制御部 20…受信ユニット 21…データ処理伝送装置 22…光モデム 23…データ処理演算装置 24…表示装置 25…予測保全処理装置 26…電話会社の基地局 27…送受信通信装置 1 ... metal casing 2 ... bellows 3 ... conductor 4 ... cone spacer 5 ... columnar spacer 6 ... insulating gas 7 ... ground line 10 ... temperature and pressure sensor 11 ... current sensor 12 ... data conversion unit 13 ... optical fiber 14 ... commercial telephone line 17 ... failure determination control unit 20 ... receiving unit 21 ... data processing transmission apparatus 22 ... optical modem 23 ... data processing operation apparatus 24 ... display 25 ... prediction preservation processing device 26 ... telephone company base station 27 ... transceiver communication device

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 金属容器内の所定の間隔ごとにスペーサを配置し、このスペーサにより仕切られたガス区分を有する管路気中送電線路において、その故障点を標定する方法であって、 前記ガス区分に故障点標定センサを設置して当該ガス区分の温度、圧力および接地線電流の少なくとも1つを測定し、 前記管路気中送電線路の電気所には故障判定制御部を設置し、 前記故障点標定センサからの測定データを前記故障判定制御部に送信して、前記故障判定制御部が前記ガス区分ごとに故障の判定を行うことを特徴とする管路気中送電線路の故障点標定方法。 1. A spacer disposed at predetermined intervals in the metal container, the conduit aerial power transmission line having a gas sections partitioned by the spacer, a method for locating the fault point, the gas established a fault point locating sensors division temperature of the gas segment, measuring at least one of pressure and the ground line current, the substation of the tube Michiki in transmission line established the failure determination control unit, wherein the measurement data from the fault point locating sensors and transmitted to the failure determination control unit, the failure determination control unit fault point locating conduits aerial power transmission line, characterized in that a determination of failure for each of the gas segment Method.
  2. 【請求項2】 前記故障点標定センサは測定データを定期的に前記故障判定制御部へ送信し、 前記故障判定制御部は定期的に送られた測定データに基づいて予測保全処理を行うことを特徴とする請求項1記載の管路気中送電線路の故障点標定方法。 Wherein said fault point orientation sensor transmits the measured data to periodically said failure judgment control unit, said failure determination control unit performs prediction preservation process based on the measurement data transmitted periodically fault point locating method of claim 1 wherein the conduit aerial power transmission line, characterized.
  3. 【請求項3】 前記故障点標定センサから前記故障判定制御部への測定データを、光ファイバーケーブルにより送信することを特徴とする請求項1または2記載の管路気中送電線路の故障点標定方法。 The wherein the measurement data from the fault point orientation sensor to the failure determination control unit, an optical fiber fault point locating method according to claim 1 or 2, wherein the conduit aerial power transmission line and transmits the cable .
  4. 【請求項4】 前記故障点標定センサから前記故障判定制御部への測定データを、市中電話回線により送信することを特徴とする請求項1、2または3記載の管路気中送電線路の故障点標定方法。 The 4. A measurement data from the fault point orientation sensor to the failure determination control unit, according to claim 1, wherein the conduit aerial power transmission line and transmits the commercial telephone line fault point locating method.
JP7006697A 1997-03-24 1997-03-24 Method of locating faulty point of compressed gas insulated transmission line Granted JPH10271651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7006697A JPH10271651A (en) 1997-03-24 1997-03-24 Method of locating faulty point of compressed gas insulated transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7006697A JPH10271651A (en) 1997-03-24 1997-03-24 Method of locating faulty point of compressed gas insulated transmission line

Publications (1)

Publication Number Publication Date
JPH10271651A true true JPH10271651A (en) 1998-10-09

Family

ID=13420801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7006697A Granted JPH10271651A (en) 1997-03-24 1997-03-24 Method of locating faulty point of compressed gas insulated transmission line

Country Status (1)

Country Link
JP (1) JPH10271651A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167940A1 (en) * 2000-06-27 2002-01-02 ABB Hochspannungstechnik AG Procedure for measuring density and density monitor
WO2003044546A1 (en) * 2001-11-19 2003-05-30 Alstom Technology Ltd Short-to-ground detector for windings
JP2009530723A (en) * 2006-03-16 2009-08-27 パワー・モニターズ・インコーポレーテッド Underground monitoring system and method
US9202383B2 (en) 2008-03-04 2015-12-01 Power Monitors, Inc. Method and apparatus for a voice-prompted electrical hookup
US9404943B2 (en) 2009-11-10 2016-08-02 Power Monitors, Inc. System, method, and apparatus for a safe powerline communications instrumentation front-end
US9519559B2 (en) 2010-07-29 2016-12-13 Power Monitors, Inc. Method and apparatus for a demand management monitoring system
DE102015216968A1 (en) * 2015-09-04 2017-03-09 Siemens Aktiengesellschaft Gas-insulated electric device
US9595825B2 (en) 2007-01-09 2017-03-14 Power Monitors, Inc. Method and apparatus for smart circuit breaker

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167940A1 (en) * 2000-06-27 2002-01-02 ABB Hochspannungstechnik AG Procedure for measuring density and density monitor
WO2003044546A1 (en) * 2001-11-19 2003-05-30 Alstom Technology Ltd Short-to-ground detector for windings
US7142403B2 (en) 2001-11-19 2006-11-28 Alstom Technology Ltd. Method for detection of a ground fault, which occurs in the vicinity of a neutral point in an electrical device, as well as an apparatus for carrying out the method
JP2009530723A (en) * 2006-03-16 2009-08-27 パワー・モニターズ・インコーポレーテッド Underground monitoring system and method
US9595825B2 (en) 2007-01-09 2017-03-14 Power Monitors, Inc. Method and apparatus for smart circuit breaker
US9202383B2 (en) 2008-03-04 2015-12-01 Power Monitors, Inc. Method and apparatus for a voice-prompted electrical hookup
US9404943B2 (en) 2009-11-10 2016-08-02 Power Monitors, Inc. System, method, and apparatus for a safe powerline communications instrumentation front-end
US9519559B2 (en) 2010-07-29 2016-12-13 Power Monitors, Inc. Method and apparatus for a demand management monitoring system
DE102015216968A1 (en) * 2015-09-04 2017-03-09 Siemens Aktiengesellschaft Gas-insulated electric device

Similar Documents

Publication Publication Date Title
US8212635B2 (en) Surface wave coupler
US4829298A (en) Electrical power line monitoring systems, including harmonic value measurements and relaying communications
US7733094B2 (en) Electrical instrument platform for mounting on and removal from an energized high voltage power conductor
US4799005A (en) Electrical power line parameter measurement apparatus and systems, including compact, line-mounted modules
US7714592B2 (en) System and method for determining the impedance of a medium voltage power line
US20070249319A1 (en) Power distribution communication system employing gateway including wired and wireless communication interfaces
US20110132658A1 (en) Using surface wave propagation to communicate an information-bearing signal through a barrier
US20090289637A1 (en) System and Method for Determining the Impedance of a Medium Voltage Power Line
US5146170A (en) Method and apparatus for locating an abnormality in a gas-insulated electric device
US20100007354A1 (en) System and Method for Predicting a Fault in a Power Line
US5859590A (en) Abnormality detection apparatus and abnormality detection method
CN102055243A (en) High-voltage transmission line/ tower long-distance video on-line monitoring system
CN101603850A (en) Extra high voltage transmission line online monitoring system
US7043381B2 (en) Substation system
US6522247B2 (en) Apparatus monitoring system and apparatus monitoring method
US20110218790A1 (en) System and method for determining characteristics of power cables using distributed temperature sensing systems
JP2002233082A (en) Power line carrying control system and control equipment
Goto et al. On-line monitoring and diagnostics of gas circuit breakers
US3610807A (en) Electric power transmission system including pressurized pipe having central conductor and providing an expansion joint and gas-barrier construction
JP2006032186A (en) Dc superconductive power transmission cable and power transmission system
US20120306510A1 (en) Method and System for Assessing Insulation Deterioration in Live Underground Power Cables
KR20010106042A (en) A Corrosion Prediction System of Underground Metallic Structures and it's Analysis Method
EP0314850A1 (en) Electrical power line parameter measurement apparatus and systems, including compact, line-mounted modules
CN201185036Y (en) Transmission electricity on-line monitoring device base on wireless sensing technology
US6752657B2 (en) Cable and connector system for optical and electrical signals