JP4641262B2 - Fault location device and method for gas insulated switchgear - Google Patents

Fault location device and method for gas insulated switchgear Download PDF

Info

Publication number
JP4641262B2
JP4641262B2 JP2006000321A JP2006000321A JP4641262B2 JP 4641262 B2 JP4641262 B2 JP 4641262B2 JP 2006000321 A JP2006000321 A JP 2006000321A JP 2006000321 A JP2006000321 A JP 2006000321A JP 4641262 B2 JP4641262 B2 JP 4641262B2
Authority
JP
Japan
Prior art keywords
index
pressure
failure
gas
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006000321A
Other languages
Japanese (ja)
Other versions
JP2007185011A (en
Inventor
修 本田
公一 小山
輝久 安
Original Assignee
株式会社日立製作所
株式会社日本Aeパワーシステムズ
日立エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 株式会社日本Aeパワーシステムズ, 日立エンジニアリング株式会社 filed Critical 株式会社日立製作所
Priority to JP2006000321A priority Critical patent/JP4641262B2/en
Publication of JP2007185011A publication Critical patent/JP2007185011A/en
Application granted granted Critical
Publication of JP4641262B2 publication Critical patent/JP4641262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、SF6ガス等を絶縁媒体とするガス絶縁開閉装置(以下、GISと称す)内での地絡、短絡故障区画を特定する故障点標定装置及び方法に関する。 The present invention relates to a fault location apparatus and method for identifying a ground fault and a short-circuit fault section in a gas insulated switchgear (hereinafter referred to as GIS) using SF 6 gas or the like as an insulating medium.
変電所等で使用される高電圧用開閉機器は、接地容器内を複数のガス区画に分割し、SF6ガス等のガスを充填し、固体絶縁物により高電圧課電導体部分や開閉機器類を機械的に保持するGISが主流となっている。GISは密閉構造となるため信頼性が高い。しかし、万一内部で地絡、短絡などの故障が発生しても、故障電流の大きさによっては外観から部位を特定することが困難である。通常は、保護リレーの情報から大まかに故障範囲を予想し、予想された範囲にあるガス区画に対し、ガスチェッカーなどにより内部ガスを抽出して、故障電流のエネルギーにより分解するガス生成物の有無で故障点を判定している。このため、故障区画を特定するのに時間がかかり、特に変電所の母線事故のように対象となる範囲が広い場合、故障区画を特定するまでに多大の時間を要し、迅速な復旧の妨げになっている。 High voltage switchgears used in substations, etc., divide the inside of the ground container into multiple gas compartments, fill with gas such as SF 6 gas, etc. The mainstream is GIS that mechanically holds the. Since GIS has a sealed structure, it has high reliability. However, even if a fault such as a ground fault or a short circuit occurs inside, it is difficult to specify the site from the appearance depending on the magnitude of the fault current. Usually, the failure range is roughly predicted from the information of the protection relay, and the gas product in the expected range is extracted by the gas checker etc. The failure point is determined by. For this reason, it takes time to identify the faulty section, and it takes a lot of time to identify the faulty section, especially when the target range is wide, such as a bus accident at a substation. It has become.
図8にGISの典型的な回線構成例を示す。母線1の内、1a側を甲母線、1b側を乙母線と称したとき、断路器31がON、断路器32がOFFの場合、当該回線は甲母線運転中となる。即ち、当該回線で母線を充電中の場合、図示されない送電線からの電流が導体4eから遮断器30を通り導体4d、4c、断路器31を介して導体4aの両側に流れ、甲母線に接続されている他の回線(図示されない)に供給される。   FIG. 8 shows a typical line configuration example of GIS. When the 1a side of the bus 1 is referred to as the Koba bus and the 1b side is referred to as the Oto bus, if the disconnector 31 is ON and the disconnector 32 is OFF, the line is in operation. That is, when the bus line is being charged on the line, a current from a transmission line (not shown) flows from the conductor 4e through the circuit breaker 30 to both sides of the conductor 4a via the conductors 4d and 4c and the disconnector 31, and is connected to the bus line. To other connected lines (not shown).
いま、故障点50で地絡または短絡事故が生じた場合、変流器33を含む当該母線全体の母線保護用変流器の電流情報を基に、図示されない母線保護リレー装置が甲母線1aでの故障発生と判定する。そして、甲母線1aに接続されている全ての回線の遮断器にトリップ指令が出され、甲母線停止となる。   Now, when a ground fault or short circuit accident occurs at the fault point 50, a bus protection relay device (not shown) is connected to the bus 1a based on the current information of the current protection current transformer for the entire bus including the current transformer 33. It is determined that a failure has occurred. Then, a trip command is issued to the circuit breakers of all lines connected to the bus line 1a, and the bus line is stopped.
しかしながら、複数の回線が甲母線で運転中である場合、どこの回線のどの区画で故障が発生したのかを直ちに特定するのは困難である。故障区画を瞬時に特定できれば、その回線を切り離すことで母線の復旧を早め、片母線での運転状態を短縮でき、電力供給信頼性を維持することができる。   However, when a plurality of lines are operating on the bus line, it is difficult to immediately identify in which section of which line the failure has occurred. If the failure section can be identified instantaneously, disconnection of the line speeds up the restoration of the bus, shortens the operating state of one bus, and maintains power supply reliability.
また、本故障点50の例では、保護リレーでは甲母線故障として動作するが、実際にダメージを受けた部分は、GISの構造上は乙母線区画になっている。このため、運用としては断路器31をOFFとして当該回線を甲母線から切り離すとともに、現在乙母線で運転中の回線を全て甲母線側に切り替え、甲母線による運転に切り替える。とともに、当該回線の乙母線側の復旧を促進する必要がある。これらの操作は、故障部位が確定して初めて実施されるため、故障部位探査の時間の短縮が故障時の迅速な復旧のためには最も重要である。   Further, in the example of this fault point 50, the protection relay operates as a faulty busbar, but the actually damaged part is an Otsubar section because of the GIS structure. For this reason, as the operation, the disconnector 31 is turned off to disconnect the line from the bus line, and all the lines currently operating on the Oto bus line are switched to the bus line side, and the operation is switched to the bus line. At the same time, it is necessary to promote restoration of the Otomo Line side of the line. Since these operations are carried out only after the failure site is determined, shortening the failure site search time is most important for quick recovery at the time of failure.
これを少しでも改善するため、圧力センサによる故障区画自動判定装置が重要な変電所に適用されており、故障電流の大きな系統では、復旧の迅速化に寄与している。この従来技術として半導体圧力センサを用いた特許文献1の記載がある。   In order to improve this as much as possible, a fault zone automatic determination device using a pressure sensor is applied to an important substation, which contributes to quick recovery in a system with a large fault current. As this prior art, there is a description of Patent Document 1 using a semiconductor pressure sensor.
即ち、常時圧力センサの信号変動を取り込み、あらかじめ設定した時間幅(Δt)間の圧力上昇量(ΔP)を演算する。上昇量が設定値を超過してあらかじめ定めた時間以上に継続した場合に、当該区画で圧力上昇が発生、即ち当該ガス区画での故障発生と判定するものである。この方法は、故障による圧力上昇が比較的大きい場合に安定した検出機能を発揮し、実際に多くの装置が運用に供されている。   That is, the signal fluctuation of the pressure sensor is always taken in, and the pressure increase amount (ΔP) during the preset time width (Δt) is calculated. When the amount of increase exceeds the set value and continues for a predetermined time or more, it is determined that a pressure increase has occurred in the section, that is, a failure has occurred in the gas section. This method exhibits a stable detection function when a pressure increase due to a failure is relatively large, and many devices are actually in operation.
特公平6−91701号公報。Japanese Examined Patent Publication No. 6-91701.
従来の技術による故障点標定装置では、故障時の圧力上昇値が小さな系統に対しては誤動作・誤不動作要因が多い。すなわち、非有効接地系統での一線地絡事故のように故障電流が小さく、圧力上昇が小さい対象においては適用が困難である。   The failure point locating device according to the prior art has many malfunction / malfunction factors for a system with a small pressure increase at the time of failure. That is, it is difficult to apply to an object with a small fault current and a small pressure rise, such as a one-line ground fault in an ineffective grounding system.
たとえば、非有効接地系での一線地絡故障電流は、100A程度であり、これが約200ms流れて遮断されるとすると、圧力上昇は式(1)で示される。
ΔP=C・I・t/(V×9,800) …(1)
ただし、ΔP:圧力上昇値(MPa)、C:構造係数、I:故障電流(kA)、t:故障電流継続時間(ms)、V:故障区画の容積(m)。
For example, if the one-line ground fault current in the non-effective grounding system is about 100 A, and this is interrupted after flowing for about 200 ms, the pressure rise is expressed by equation (1).
ΔP = C ・ I ・ t / (V × 9,800) (1)
Where ΔP: pressure increase value (MPa), C: structure coefficient, I: fault current (kA), t: fault current duration (ms), V: volume of the fault section (m 3 ).
ここで、故障電流は系統構成における変電所の設置場所と設置方式で決まり、基幹系統と称する変電所では直接接地系統になり最小故障電流が数kA程度となる。一方、市内導入系統となる変電所では、非接地系統になり一線地絡時の最小故障電流は、通常100A程度にしかならない。   Here, the fault current is determined by the installation location and installation method of the substation in the system configuration, and the substation called a backbone system is a direct grounding system, and the minimum fault current is about several kA. On the other hand, in substations that are installed in the city, they are ungrounded systems, and the minimum fault current during a single-line ground fault is usually only about 100A.
市内導入系統用のGISではC=0.2程度であり、故障区画の容積をV=2m、故障電流継続時間t=220msとすると、式(1)から、ΔPは0.0002MPa程度となる。通常のガス区画の圧力は、絶縁特性維持の面から0.4MPa程度になっており、0.0002MPaの変化分は0.05%に相当し、これを検出するには困難を伴う。 In the GIS for the city introduction system, C = about 0.2, and assuming that the volume of the failure section is V = 2 m 3 and the failure current duration t = 220 ms, ΔP is about 0.0002 MPa from equation (1). The pressure of the normal gas compartment is about 0.4 MPa from the standpoint of maintaining the insulation characteristics, and the change of 0.0002 MPa corresponds to 0.05%, which is difficult to detect.
故障時の圧力上昇を高めるためには、式(1)で判るようにガス区画の容積Vを小さくする方法がある。しかしながら、ガス区画を小さくするために区分用のスペーサが増大する。それと共に、独立したガス区画数の増加に対してそれぞれ圧力センサを設ける必要があり、コスト上昇に伴い経済性が低下するばかりか、センサ数の増加やガスシール面の増大などで、信頼性の低下を招くといった問題がある。   In order to increase the pressure rise at the time of failure, there is a method of reducing the volume V of the gas compartment as can be seen from equation (1). However, the partitioning spacers are increased to make the gas compartment smaller. At the same time, it is necessary to provide a pressure sensor for each increase in the number of independent gas sections. There is a problem of causing a decrease.
また、このような微小圧力の検出に対しては、通常の周囲温度変化や環境変化の影響も無視できない。即ち、ガスの圧力は、おおむね式(2)で示されるように温度の影響を受ける。
P(T)=P20×(1+α×(T−293)) …(2)
ただし、P(T):絶対温度T(k)における圧力(MPa)、P20:温度20℃における圧力(MPa)、α:ガスの温度係数(ガス圧力が0.4MPa付近では約0.00207)、T:ガスの温度(k)。
In addition, for the detection of such a minute pressure, the influence of normal ambient temperature change and environmental change cannot be ignored. That is, the gas pressure is affected by the temperature as generally indicated by equation (2).
P (T) = P 20 × (1 + α × (T−293)) (2)
Where P (T): pressure at absolute temperature T (k) (MPa), P 20 : pressure at 20 ° C (MPa), α: temperature coefficient of gas (approximately 0.00207 when gas pressure is around 0.4 MPa), T : Gas temperature (k).
即ち、ガスの温度係数αから、故障時の圧力上昇に等しい圧力(約200Pa前後)の変動は、SFガス自身の温度変動分で見ると高々0.2K程度であることがわかる。 That is, from the temperature coefficient α of the gas, it can be seen that the fluctuation of the pressure (about 200 Pa) equal to the pressure rise at the time of failure is at most about 0.2K when viewed from the temperature fluctuation of the SF 6 gas itself.
したがって、屋外に設置された変電所の場合、曇りの状態から急に晴れて日射が直接GISに当たったときや、逆に晴れの状態から急に降雨となってGISの表面が雨に濡れた場合など、内部のガス温度が著しく変化して圧力変動を呈する。特に、後者の条件では、急激な降雨と共に襲雷が伴うケースが想定され、雷サージの侵入による地絡事故の確率が高まり、このような気象条件下での故障点標定機能が必要とされる。   Therefore, in the case of a substation installed outdoors, when the sun suddenly hits the GIS from a cloudy state, or when the solar radiation hits the GIS directly, it suddenly rained from the sunny state and the surface of the GIS got wet. In some cases, the internal gas temperature changes significantly, resulting in pressure fluctuations. In particular, in the latter condition, it is assumed that there will be a lightning strike with a sudden rainfall, the probability of a ground fault due to the invasion of a lightning surge will increase, and a fault location function under such weather conditions is required .
以上のように、特許文献1のような従来技術を、市内導入系統の非接地系統のGISに適用した場合、運転状態での誤動作・誤不動作要因が高くなると言う問題がある。   As described above, when the conventional technology such as Patent Document 1 is applied to the GIS of the non-grounded system of the city introduction system, there is a problem that the malfunction / malfunction factor in the operation state increases.
本発明の目的は、上記従来技術の問題点を克服し、故障電流が小さく圧力上昇も低い小規模系統において、誤動作や誤不動作が無く復旧の迅速化に役立つガス絶縁開閉装置の故障点標定装置を提供することにある。   The object of the present invention is to overcome the above-mentioned problems of the prior art, and to determine the failure point of a gas-insulated switchgear that is useful for quick recovery without malfunction or malfunction in a small-scale system with a low failure current and a low pressure rise. To provide an apparatus.
上記目的を達成するための本発明は、ガス絶縁開閉装置に設けられた圧力センサにより内部のガス圧力を検出し、保護リレー情報と組み合わせて故障部位を標定する故障点標定装置において、現時点の圧力と所定時間前の圧力との差分(以下では、指標1と呼ぶ)と、圧力の微分量を用いた積算値の差分(以下では、指標2と呼ぶ)および圧力の微分量の急変率(以下では、指標3と呼ぶ)とを求め、前記指標1、2及び3は予め設定されている設定値を超えたとき判定成立とし、該判定成立または判定不成立の指標1、2及び3を前記保護リレー情報とを組み合わせて故障有無の判定を行うことを特徴とする。   In order to achieve the above object, the present invention provides a fault location device that detects the internal gas pressure using a pressure sensor provided in a gas-insulated switchgear and determines a fault location in combination with protection relay information. And the pressure before the predetermined time (hereinafter referred to as index 1), the difference between the integrated values using the pressure differential amount (hereinafter referred to as index 2), and the sudden change rate of the pressure differential amount (hereinafter referred to as index 2). In this case, the indicators 1, 2 and 3 are determined to be satisfied when a preset value is exceeded, and the indicators 1, 2 and 3 indicating that the determination is satisfied or not determined are protected. It is characterized by determining the presence or absence of a failure in combination with relay information.
前記指標2は、前記指標1の時間幅と同じ時間幅で差分を求める。前記指標3は、保護リレー動作時点の前後の圧力微分値を用いて生成する。   The index 2 obtains a difference with the same time width as the time width of the index 1. The index 3 is generated using pressure differential values before and after the protection relay operation time.
また、各指標の組み合わせによる故障点標定結果を、故障が確定したことを示す確定区画と故障の可能性を示す候補区画に判別して出力することを特徴とする。これにより、故障を明確に決定できるケースと、誤動作の可能性がありうるパターンとに分け、確定区画、候補区画として出力する。   Further, the failure point locating result based on the combination of each index is determined and output as a confirmed section indicating that the failure is confirmed and a candidate section indicating the possibility of the failure. As a result, it is divided into a case where a failure can be clearly determined and a pattern that may cause a malfunction, and the result is output as a confirmed section and a candidate section.
また、3個の指標のうち指標1と2または、指標1と3の判定成立による組み合わせは、故障点標定結果を確定区画と候補区画に判別して出力することを特徴とする。   In addition, among the three indices, the combination of the indices 1 and 2 or the determination of the indices 1 and 3 is determined, and the fault location result is determined and output as a confirmed section and a candidate section.
本発明の故障点標定装置によれば、故障時の圧力上昇が小さな場合においても、環境変動による微小な圧力変動と地絡故障による微小圧力上昇とを判別することができ、故障点標定装置の信頼性を向上し、可用性を高めることができる。   According to the failure point locating device of the present invention, even when the pressure rise at the time of failure is small, it is possible to discriminate between minute pressure fluctuation due to environmental fluctuation and minute pressure increase due to ground fault, Improve reliability and increase availability.
また、GISの地絡、短絡故障時には、確定または候補のガス区画を標定することができるので、一律に標定不能や誤不動作となる従来装置に比して現場での確認作業の省力化と、復旧の迅速化に貢献できる。   In addition, in the event of a GIS ground fault or short-circuit failure, it is possible to locate a fixed or candidate gas compartment, so labor savings in on-site confirmation work compared to conventional devices that cannot be standardized or malfunction. , Can contribute to speeding up recovery.
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、各図を通して同様の機能には同一の符号を付してある。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same function throughout each figure.
図1は本発明の一実施例による故障点標定装置20の構成図である。1は耐圧力性を有す金属容器で、1a、1b、1c・・・・のように断面が円筒形状からなる接地金属容器が組み合わされ、全体で密閉されたGISを形成する。容器1内には、電流の通路となる導体4が貫通し、その他図示されていない遮断器、断路器、変成器など必要な変電所系統構成機器が収納配置されている。さらに、直管形状や分岐形状の接地容器を組み合わせることにより所要の開閉装置が構成され、全体として図示されない架台上に設置される。   FIG. 1 is a configuration diagram of a fault location apparatus 20 according to an embodiment of the present invention. 1 is a metal container having pressure resistance, and a grounded metal container having a cylindrical cross section such as 1a, 1b, 1c,... Is combined to form a sealed GIS as a whole. A conductor 4 serving as a current path passes through the container 1, and other necessary substation system components such as a circuit breaker, a disconnector, and a transformer, which are not shown, are accommodated. Furthermore, a required opening / closing device is configured by combining a straight pipe-shaped or branched-shaped grounding container, and is installed on a gantry not shown as a whole.
絶縁スペーサ3は、3a、3b・・・・のように保守上の切り離し箇所や、開閉装置の構造上の必要な箇所に配置され、容器1内を複数のガス空間(区画)に分割するとともに、導体4の構造上の機械的強度と電気的な絶縁耐力とを保つ。各区画に封入されたSFなどの絶縁ガス25によって、各課電部と接地電位にある容器1との間の電気的絶縁が保たれ、これにより全体としてGISが構成される。 The insulating spacer 3 is arranged at maintenance-removed locations such as 3a, 3b,... And necessary locations in the structure of the switchgear, and the container 1 is divided into a plurality of gas spaces (compartments). The mechanical strength and electrical dielectric strength of the conductor 4 are maintained. The insulating gas 25 such as SF 6 enclosed in each section keeps electrical insulation between each charging section and the container 1 at the ground potential, thereby configuring the GIS as a whole.
各区画に封入された絶縁ガス25は、絶縁性能を維持するために圧力を管理する必要があり、このための圧力監視装置が必要である。たとえば5a、5b・・・のように各区画に対応してガス圧力センサ5が設置される。絶縁スペーサ3やガス圧力センサ5は、機密信頼性の面ならびに経済性の面から、極力必要最小限の箇所となるよう配慮されている。このため、図1の例では、配管6により両区画を連結し、一括してガス圧力センサ5dで監視するようになっており圧力センサの削減が図られている。   The insulating gas 25 sealed in each section needs to manage the pressure in order to maintain the insulating performance, and a pressure monitoring device for this purpose is required. For example, the gas pressure sensor 5 is installed corresponding to each section like 5a, 5b. The insulating spacer 3 and the gas pressure sensor 5 are considered to be as small as possible from the viewpoint of confidentiality reliability and economy. For this reason, in the example of FIG. 1, both sections are connected by the pipe 6, and the gas pressure sensor 5 d is collectively monitored, thereby reducing the pressure sensor.
各独立した区画に設けられたガス圧力センサ5a、5b・・・の出力信号は、センサ信号受信部7a、7b・・・を介してA/D変換部8に取り込まれディジタル量に変換される。センサ信号受信部7は、ローパスフイルタ機能により圧力センサ5の出力信号から高周波振動成分や外部ノイズの影響を除去し、サンプリングによる誤差が圧力上昇判定に影響を及ぼさないよう工夫されている。   The output signals of the gas pressure sensors 5a, 5b,... Provided in each independent section are taken into the A / D converter 8 through the sensor signal receivers 7a, 7b,. . The sensor signal receiving unit 7 is devised so as to remove the influence of high-frequency vibration components and external noise from the output signal of the pressure sensor 5 by a low-pass filter function so that an error due to sampling does not affect the pressure increase determination.
故障点標定部11は圧力データ加工部11a、指標演算部11b、故障点判定部11cのブロックで構成される。故障点標定部11は一般にCPUで構成され、常時図2に示す処理フローによって故障点標定機能を果たしている。   The failure point locating unit 11 includes a pressure data processing unit 11a, an index calculation unit 11b, and a failure point determination unit 11c. The failure point location unit 11 is generally composed of a CPU, and always performs the failure point location function by the processing flow shown in FIG.
また、12は保護リレー、13は保護リレー信号を取り込む無電圧接点、14は上位系と通信するための通信ユニット、15は上位系の支援システム、16は伝送路である。   Also, 12 is a protection relay, 13 is a non-voltage contact for taking in a protection relay signal, 14 is a communication unit for communicating with the host system, 15 is a support system for the host system, and 16 is a transmission path.
図2は一実施例による故障点標定処理のフローチャートである。まず、各センサから得られる圧力のディジタルデータを移動平均などの平均化処理し(s101)、圧力変動の傾向を抽出できるように編集される。次に、平均処理された圧力データが、常時上書きされながら所定時間分が保存され時系列のデータとして編集される(s102)。これらは現在と所定時間前の値との差分演算に利用される。s101,102が圧力データ加工部11aの機能となる。   FIG. 2 is a flowchart of a fault location process according to an embodiment. First, digital data of pressure obtained from each sensor is averaged such as moving average (s101), and edited so that the tendency of pressure fluctuation can be extracted. Next, the averaged pressure data is always overwritten and saved for a predetermined time, and edited as time-series data (s102). These are used to calculate the difference between the current value and the value before a predetermined time. s101 and 102 are functions of the pressure data processing unit 11a.
次にあらかじめ定義された方法により指標1、2、3を作成する(s103)。これは指標演算部11bの機能である。ここでは、時系列データを用いて圧力センサ毎に、図3に示すように定義の指標を求める。各圧力センサと故障点標定区画とは1対1で対応しており、指標の判定結果に応じて故障区画の確定、候補の区分に反映される。   Next, indices 1, 2, and 3 are created by a predefined method (s103). This is a function of the index calculation unit 11b. Here, the index of definition is calculated | required as shown in FIG. 3 for every pressure sensor using time series data. Each pressure sensor and the failure point location section have a one-to-one correspondence and are reflected in the determination of the failure section and the candidate classification according to the determination result of the index.
次に、保護リレー12の動作結果を取得し(s104)、指標演算部11bで求まる各指標の状態とを組み合わせて、後述する故障点判定処理を行い(s105)、その結果を表示部10に渡して表示する。s104,105が故障点判定部11cの機能である。なお、保護リレー12の動作結果は、一般に無電圧接点13のON/OFF状態変化として接点信号入力部9を介して取り込まれる。   Next, the operation result of the protection relay 12 is acquired (s104), and the state of each index obtained by the index calculation unit 11b is combined to perform a failure point determination process described later (s105), and the result is displayed on the display unit 10. Pass and display. s104 and 105 are functions of the failure point determination unit 11c. The operation result of the protection relay 12 is generally taken in via the contact signal input unit 9 as the ON / OFF state change of the non-voltage contact 13.
さらに必要な場合には、通信ユニット14を用いて、上位装置となる支援システム15などに伝送路16を介して伝送する。これらの機能は、故障点標定装置20として自立盤などの構造にまとめられ、変電所の機器の近傍や電気室に設置される。   Further, if necessary, the communication unit 14 is used for transmission via the transmission line 16 to the support system 15 serving as a host device. These functions are integrated into a structure such as a self-supporting panel as the failure point locating device 20, and are installed in the vicinity of equipment in the substation or in an electrical room.
図3は指標1、2、3の作成方法を示す概念図である。指標1は、時刻tにおける平均化処理された圧力データ(Pt)を基に、サンプリング毎に、設定された時間(Δt)前の圧力(PΔt)との差分量(ΔP=(Pt−PΔt)/Δt)を指標1とする。この指標1を圧力上昇判定設定値(ΔPL)と比較し、設定値超過の状態が所定時間(TL)以上継続した時点で指標1の判定成立とする。 FIG. 3 is a conceptual diagram showing a method for creating indices 1, 2, and 3. The index 1 is based on the pressure data (P t ) averaged at time t, and for each sampling, the difference amount (ΔP = (P t ) from the pressure (P Δt ) before the set time (Δt) −P Δt ) / Δt) is taken as index 1. The index 1 is compared with the pressure increase determination set value (ΔP L ), and the determination of the index 1 is established when the set value excess state continues for a predetermined time (T L ) or longer.
指標2は、取り込んだ圧力データ(Pt)の微分量(P't)を作成し、これを用いて現在からΔt時間前の間の積算値と、Δtから2×Δt時間前の積算値との差(AP')を指標2とする。指標2を圧力上昇判定設定値(ΔPL)と比較し、設定値超過の状態が所定時間(T)以上継続した時点で指標2の判定成立とする。なお、圧力データの微分量(P't)は、指標1を作成する時間幅Δtより小さい時間で求める必要があるが、平均化された圧力データを用いるので、Δtの1/10程度でもよい。 Index 2 creates the derivative (P ' t ) of the pressure data (P t ) that has been taken in, and uses this value to calculate the integrated value before Δt time from now and the integrated value 2 × Δt time before Δt The difference (AP ′) is taken as index 2. The index 2 is compared with the pressure increase determination set value (ΔP L ), and when the set value excess state continues for a predetermined time (T 2 ) or longer, the determination of the index 2 is established. The differential amount (P ′ t ) of the pressure data needs to be obtained in a time smaller than the time width Δt for creating the index 1, but may be about 1/10 of Δt because averaged pressure data is used. .
指標3は、故障に伴う圧力上昇の前後は圧力変動の微分量に大きな変化が現れる。これを検出するため、保護リレーの接点がONされた時点を中心に、その直前の微分量(P'(−))と直後の微分量(P'(+))との比率(ρ=P'(+)/P'(−))を指標3とする。この比率ρが設定値ρ L を超えた場合に、故障に伴う圧力変化有りを示す指標3の判定成立とする。なお、設定値ρ L は、定性的には故障時の圧力上昇の時定数と環境変動の影響による圧力変動の時定数の比率に係る値であり、GISの設置環境に応じてシミュレーションにより最適値を設定するのがよく、通常はρ=300%(3倍)程度とする。 In the index 3, a large change appears in the differential amount of the pressure fluctuation before and after the pressure increase due to the failure. In order to detect this, the ratio (ρ = P) between the immediately preceding derivative (P ′ (−) ) and the immediately following derivative (P ′ (+) ) centering on the point when the contact of the protective relay is turned on. ' (+) / P' (-) ) is index 3. When the ratio ρ exceeds the set value ρ L , the determination of the index 3 indicating that there is a pressure change accompanying a failure is established. The set value ρ L is qualitatively a value related to the ratio of the time constant of the pressure rise at the time of failure and the time constant of the pressure fluctuation due to the influence of the environmental fluctuation. Is usually set, and is usually about ρ = 300% (three times).
図4は各指標の関係を故障のタイミングとの関係で示すタイミングチャートである。G1は故障電流でありT0点で故障が発生し電流が流れる。保護リレー12がこれを検出してG2のタイミングで遮断器に対し開路指令を出し、G3で遮断器が開路することにより故障電流が遮断される。 FIG. 4 is a timing chart showing the relationship between each index in relation to the failure timing. G1 flows failure occurs current T 0 point is fault current. The protection relay 12 detects this, issues an opening command to the circuit breaker at the timing of G2, and the circuit breaker opens at G3, thereby interrupting the fault current.
故障の生じたガス区画では、故障電流のエネルギーによりG4のようにゆっくりとガス圧力(P)が上昇しT1点で飽和する。飽和期間を経てその後冷却によりT2点から圧力が降下するパターンとなる。ガス圧力(P)の微分量(P')は、圧力上昇開始で急激に変化し、圧力上昇速度が一定であればその間一定の値を保ち、圧力上昇が飽和する時点で再び急激に減少するためG5のように変化する。 The resulting gas compartment failure, slowly gas pressure as G4 by the energy of the fault current (P) is saturated at elevated T 1 point. Then through the saturation period pressure from T 2 points by cooling a pattern of drops. The differential amount (P ') of the gas pressure (P) changes rapidly at the start of the pressure rise. If the pressure rise speed is constant, it keeps a constant value during that time, and decreases rapidly again when the pressure rise saturates. Therefore, it changes like G5.
指標1は、G4に示すガス圧力(P)に対する差分変化量であり、差分時間は通常10秒程度を採用するためG6のように変化する。指標2は、G5に示すガス圧力の微分量(P')に対する面積差分量であり、差分時間を指標1と同じ時間にするとG7のように変化する。指標3は、G5の波形で示すP'(-)とP'(+)との比率であり、G8のように変化する。 The index 1 is a difference change amount with respect to the gas pressure (P) shown in G4, and the difference time usually changes to G6 because about 10 seconds is adopted. The index 2 is an area difference amount with respect to the differential amount (P ′) of the gas pressure shown in G5. When the difference time is set to the same time as the index 1, it changes as G7. The index 3 is a ratio of P ′ (−) and P ′ (+) indicated by the waveform of G5, and changes as G8.
図4の各指標と設定値(G6,G7のΔPLとG8のρL)との関係に示すように、指標1、2は故障発生後数秒経過して判定が成立するが、指標3はそれよりも早く傾向が現れる。したがって、通常指標3は、G5の波形において設定値t0に対し常時2×t0時間前との比率を求めて記憶しておき、指標1,2の判定が確立した時点で記録されているデータの中から、保護リレー動作点以降の指標3の値に対して設定値超過有無を判定する。 As shown in the relationship between each index in FIG. 4 and the set value (ΔP L of G6, G7 and ρ L of G8), the index 1 and 2 are judged after several seconds have elapsed since the failure occurred, but the index 3 is A trend appears earlier than that. Therefore, the normal index 3 is always obtained by storing the ratio of the set value t 0 with respect to the set value t 0 and 2 × t 0 hours before in the G5 waveform, and is recorded when the determination of the indices 1 and 2 is established. From the data, it is determined whether or not the set value is exceeded for the value of index 3 after the protection relay operating point.
図5は故障点判定部の判定ロジックを示す構成図である。各圧力センサの指標1から指標3の情報は、故障点判定部11cに渡される。故障点判定部11cは圧力変動判定表n30に示す8個の組み合わせパターン(n31〜n38)を構成し、これを用いて次のように動作する。圧力変動判定表n30で○は判定成立、×は判定不成立を表している。   FIG. 5 is a configuration diagram illustrating the determination logic of the failure point determination unit. Information of index 1 to index 3 of each pressure sensor is passed to the failure point determination unit 11c. The failure point determination unit 11c configures eight combination patterns (n31 to n38) shown in the pressure fluctuation determination table n30, and operates as follows using the combination patterns. In the pressure fluctuation determination table n30, ◯ indicates that the determination is satisfied, and × indicates that the determination is not satisfied.
n31〜n34はORゲートn1を介してANDゲートn3、n7に入力される。ANDゲートn3では、保護リレー12の動作信号n10との照合がとられ、成立すれば「当該区画を確定標定」n20の出力となる。ANDゲートn7では、直前のNOTゲートn6により保護リレー動作信号n10の反転信号との照合がとられ、成立すれば「センサ単独動作」n23の出力となる。即ち、保護リレーの動作が無い状態で、指標1〜3の内2個以上判定が成立するようなケースでは、想定以上にセンサの出力が変動していることを示すため、装置故障信号を出すことにより保守担当部署に対し早期の調査・点検を促すものである。   n31 to n34 are input to the AND gates n3 and n7 via the OR gate n1. The AND gate n3 collates with the operation signal n10 of the protection relay 12, and if it is established, the output of “determined relative location” n20 is obtained. In the AND gate n7, a comparison with the inverted signal of the protection relay operation signal n10 is performed by the immediately preceding NOT gate n6, and if it is established, the output of “sensor single operation” n23 is obtained. That is, in the case where the determination of two or more of the indicators 1 to 3 is established in the state where the protective relay is not operated, the device failure signal is output to indicate that the output of the sensor fluctuates more than expected. This encourages maintenance departments to conduct early investigations and inspections.
また、圧力上昇をより直接的に反映できる順として、指標間の優先度を、指標1>指標2>指標3として扱い、何れか2個の指標が成立した時、故障区画の標定確定となる。ただし、確定標定区画が複数となる場合には、独立した複数の区画で同時に故障が生じる確率はほとんど0のため、候補区画として扱うのがよい。   In addition, the priority between indices is treated as index 1> index 2> index 3 as an order in which the pressure increase can be more directly reflected, and when any two of the indices are established, the fault zone is determined. . However, when there are a plurality of fixed orientation sections, the probability that a failure will occur simultaneously in a plurality of independent sections is almost zero, so it should be handled as a candidate section.
n35〜n37はORゲートn2を介してANDゲートn4に入力される。ANDゲートn4では、保護リレー動作信号n10との照合がとられ、成立すれば「当該区画を候補標定」n21の出力となる。即ち、この条件で標定された区画には、何らかの圧力上昇が認められるが、それを故障によるものに限定できないことを示しており、運転員にそのことを明示するため故障の候補区画であることを示す表示とする。ただし、パターンn35〜n37が1個の区画のみで成立した場合には、標定確定と扱うことも可能である。なお、保護リレーの動作がない状態で何れか1個の指標の判定が成立する場合(n35〜n37)がある。この現象は、微小圧力上昇を検出する装置のため、ある程度は生じる可能性があり、この場合に直ちに故障装置等には分類しない。発生頻度などを記憶しておき、頻度が大きくなった場合に装置故障として警報を出すことで、運転員の負担を軽減できる。   n35 to n37 are input to the AND gate n4 via the OR gate n2. In the AND gate n4, the comparison with the protection relay operation signal n10 is performed, and if it is established, the output of “the section is a candidate orientation” n21 is obtained. In other words, the section standardized under this condition shows some pressure increase, but it can not be limited to that due to the failure, and it is a candidate section for failure to clearly indicate it to the operator. Is displayed. However, if the patterns n35 to n37 are established in only one section, it can be treated as orientation determination. Note that there is a case (n35 to n37) where any one of the indicators is determined in a state where the protection relay is not operated. This phenomenon may occur to some extent because it is a device that detects a minute pressure rise, and in this case, it is not immediately classified as a malfunctioning device. The occurrence frequency and the like are stored, and when the frequency increases, an alarm is given as a device failure, thereby reducing the burden on the operator.
n38は、直接ANDゲートn5に入力される。ANDゲートn5では、保護リレー動作信号n10との照合がとられ、成立すれば「保護リレー単独動作」n22の出力となる。即ち、保護リレーで故障の発生を検出したが、圧力センサの判定からはガス圧力の上昇区画を検出できなかったことを示し、本故障点標定装置の誤不動作が生じたことを示す。このようなケースは、故障時の復旧の迅速化を目的に導入する本装置にとって、役に立たないことを示すため、極力起こらないようにすることが必要である。   n38 is directly input to the AND gate n5. The AND gate n5 collates with the protection relay operation signal n10, and if it is established, it becomes an output of “protection relay single operation” n22. That is, although the occurrence of a failure is detected by the protection relay, it indicates that the gas pressure rising section cannot be detected from the determination of the pressure sensor, and that this malfunction point locating device has malfunctioned. Such a case needs to be avoided as much as possible to show that it is useless for the present apparatus which is introduced for the purpose of speeding up recovery at the time of failure.
図6は指標2を詳細に示す説明図である。図6(a)は、圧力が上昇中に故障が発生した状態であり、上段に圧力P、中段に圧力の微分P'を示す。上段のΔPt/Δtが指標1であり、最下段のAP'が指標2の波形となる。 FIG. 6 is an explanatory diagram showing the index 2 in detail. FIG. 6 (a) shows a state in which a failure has occurred while the pressure is increasing, with pressure P shown in the upper stage and pressure differential P 'in the middle stage. The upper ΔP t / Δt is the index 1 and the lowermost AP ′ is the index 2 waveform.
指標2は、中段に示す圧力の微分P'の波形において定義される。すなわち、Δt前から現時点までの幅とP'と時間軸(横軸)とで囲まれる面積((2)+(3)の面積)から、2×Δt前〜Δt前までの幅とP'と時間軸(横軸)とで囲まれる面積((1)の面積)を差し引いた残りで定義される。ベース圧力の上昇傾きが一定であるから面積(1)=面積(2)となり、指標2は面積(3)に相当する。即ち、指標2の値の大きさが、故障による圧力上昇ピークの有無を代表することになる。   The index 2 is defined in the pressure differential P ′ waveform shown in the middle. That is, the width from Pt and the time axis (horizontal axis) from before Δt to the present time (area of (2) + (3)) to the width from 2 × Δt to Δt and P ′ And the remainder of subtracting the area enclosed by the time axis (horizontal axis) ((1) area). Since the rising slope of the base pressure is constant, area (1) = area (2), and index 2 corresponds to area (3). That is, the magnitude of the index 2 represents the presence or absence of a pressure increase peak due to a failure.
指標2の値は故障発生前後で最下段AP'の波形のように変化し、AP'の値が設定値を超過した場合に故障発生有りと判定できる。この場合、判定の設定値は、圧力の微分量の積分であり、積分時間を指標1を作成するときの時間幅Δtと同じにすることで、指標1の判定設定値と同一の値か、積分時の誤差の蓄積を考慮してこれに係数を乗じた形で利用することができる。   The value of the index 2 changes like the waveform of the lowest AP ′ before and after the occurrence of the failure, and it can be determined that the failure has occurred when the value of AP ′ exceeds the set value. In this case, the set value for determination is the integration of the differential amount of pressure, and by setting the integration time to be the same as the time width Δt when creating the index 1, it is the same value as the determination set value for index 1. It can be used by multiplying this by a coefficient in consideration of accumulation of errors during integration.
図6(b)は、圧力が下降中に故障が発生した状態であり、指標2は中段のP'の図示にある面積((2)+(3))−(1)で表される。ここで、ベース圧力の低下傾きが一定であれば、面積(1)=面積((2)+(4))であり、AP'=(3)−(4)となる。この場合、(4)はマイナスの値を持つので、AP'は図6(a)の場合と同様に、圧力の微分P'の波形の持つピーク部の面積を示し、故障による圧力上昇ピークの有無を代表する指標であることが判る。   FIG. 6B shows a state in which a failure has occurred while the pressure is decreasing, and the index 2 is represented by the area ((2) + (3)) − (1) shown in the middle P ′. Here, if the decrease slope of the base pressure is constant, area (1) = area ((2) + (4)) and AP ′ = (3) − (4). In this case, since (4) has a negative value, AP ′ indicates the area of the peak portion of the waveform of the pressure differential P ′, as in FIG. It can be seen that this is a representative index.
前述の通り、これらの指標は、故障による圧力の変動有無を判定するのに有効な値であるが、装置の適用対象が非接地系統の変電所のように圧力上昇判定の設定値が極めて小さい場合には、誤動作・誤不動作要因になる可能性がある。即ち、指標2ではベース圧力の上昇の傾き、または下降の傾きが一定であることが条件であり、この前提が崩れる場合、たとえば上昇傾向から急に下降傾向に変化する場合やその逆の場合、圧力が振動性である場合などに、判定に影響を及ぼす。設定値が大きければ上昇、下降傾きの多少のバラツキは判定に影響を及ぼさないが、設定値が小さいために影響を受けるものである。   As described above, these indicators are effective values for determining the presence or absence of pressure fluctuation due to a failure, but the set value for determining the pressure rise is extremely small, as in the case of an ungrounded system substation. In some cases, it may cause malfunction / malfunction. In other words, the index 2 is based on the condition that the slope of the base pressure rise or the slope of the fall is constant. When this assumption is broken, for example, when the trend is suddenly changed from the upward trend or vice versa, The judgment is affected when the pressure is vibrational. If the set value is large, a slight variation in ascending and descending slope does not affect the determination, but it is affected because the set value is small.
具体例として、設定値が非常に低い0.0001MPa(100Pa)となるガス区画におけるフイールドでの圧力測定例を説明する。   As a specific example, an example of pressure measurement in a field in a gas section where the set value is extremely low 0.0001 MPa (100 Pa) will be described.
図7は誤判定をもたらす波形と指標3の関係を示す説明図である。圧力50は、屋外に設置されている運転中のGISで測定された圧力波形であり、図中のB点では、わずかに圧力上昇速度が変化(低下)している。このB点付近で地絡が発生し、検出限界に近い圧力上昇分が重畳すると、圧力51のように上昇する。   FIG. 7 is an explanatory diagram showing the relationship between the waveform that causes erroneous determination and the index 3. The pressure 50 is a pressure waveform measured by an operating GIS installed outdoors, and the pressure increase rate slightly changes (decreases) at point B in the figure. When a ground fault occurs in the vicinity of the point B and the pressure increase near the detection limit is superimposed, the pressure increases like a pressure 51.
故障時の圧力51についての指標は、指標1が52、指標2が53のようになる。したがって指標1は故障発生前から設定値0.0001MPaを超過しており、指標2は故障圧力が重畳されても設定値0.0001MPaより小さい。このような条件下では指標1は誤動作側、指標2は誤不動作側に影響を受けており、このままでは標定装置として機能を果たせない。   The indices for the pressure 51 at the time of failure are such that index 1 is 52 and index 2 is 53. Therefore, the index 1 has exceeded the set value 0.0001 MPa before the occurrence of the failure, and the index 2 is smaller than the set value 0.0001 MPa even if the failure pressure is superimposed. Under such conditions, the index 1 is affected by the malfunctioning side and the index 2 is affected by the malfunctioning side, and cannot function as an orientation device as it is.
一方、指標3は図7の下図に示すトレンド54となる。故障無しの場合、指標3のトレンドは55となるため、明らかに故障点前後で変化があることを示している。図7の例では指標3に対する設定値を3倍とすれば、判定が成立することになる。なお、B点で故障発生後保護リレーが動作するため、動作接点の取り込みは縦破線56で示すタイミングになる。したがって、指標3は保護リレー動作接点取り込み前後の圧力データを保存しておき、指標1,2の判定タイミングにあわせて判定することができる。このように、指標1、2が有効で無い状態であっても、指標3により有意な圧力の変化分の有無を判定することが可能である。   On the other hand, the index 3 is the trend 54 shown in the lower diagram of FIG. When there is no failure, the trend of index 3 is 55, which clearly indicates that there is a change before and after the failure point. In the example of FIG. 7, if the set value for the index 3 is tripled, the determination is established. Since the protection relay operates after a failure occurs at point B, the operation contact is taken in at the timing indicated by the vertical broken line 56. Therefore, the index 3 can store pressure data before and after the protection relay operation contact is taken in and can be determined in accordance with the determination timing of the indices 1 and 2. As described above, even if the indices 1 and 2 are not effective, it is possible to determine the presence or absence of a significant pressure change by the index 3.
なお、指標3においても、圧力上昇が小さい区画ではその変化幅比率も小さいため、比率に対する設定値に到達しない可能性もある。このため、指標1、指標2、指標3と3種類の指標を組み合わせて圧力変動有無を判定することで、圧力変動をいずれかの指標で検出するのが良い。さらには、指標間の優先度を、指標1>指標2>指標3のように定義して、標定結果の表示に反映することも可能である。   In the index 3 as well, since the change width ratio is small in the section where the pressure increase is small, there is a possibility that the set value for the ratio is not reached. For this reason, it is preferable to detect the pressure fluctuation by any one of the indices 1, 2, and 3 by combining the three kinds of indices and determining the presence or absence of the pressure fluctuation. Furthermore, it is also possible to define the priority between the indices as index 1> index 2> index 3, and reflect it in the display of the orientation result.
以上のように、圧力上昇が非常に小さい区画での故障点標定に当たっては、圧力センサの上昇判定には周囲環境の影響が密に関連するので、断定的に故障点を特定できない。このような前提では、故障点標定装置の標定結果を、確定区画と候補区画に分けて表示することで、装置の機能の有効活用を図ることが有用である。   As described above, when determining the failure point in a section where the pressure increase is very small, the influence of the surrounding environment is closely related to the determination of the increase in the pressure sensor, and thus the failure point cannot be determined definitely. Under such a premise, it is useful to make effective use of the functions of the device by displaying the orientation results of the failure point location device separately for the confirmed zone and the candidate zone.
なお、指標3に対して保護リレー動作点前後の圧力P'の比率で定義したが、故障発生から圧力上昇の時定数が大きいケースでは、保護リレー動作点から所定の時間後の遅れを見込んで比率を作成することになるので、設定値tを利用して対応することができる。また、比率の作成も、P'の瞬時値同士の比率ではなく、前後数点のP'値の平均値同士で比較することにより、ノイズの影響を低減できる。 Although defined as the ratio of the pressure P 'before and after the protection relay operating point with respect to index 3, in the case where the time constant of the pressure increase from the occurrence of the failure is large, a delay after a predetermined time from the protection relay operating point is expected. it means to create a ratio, it is possible to cope by using the set value t 0. In addition, the creation of the ratio can reduce the influence of noise by comparing not the ratio between the instantaneous values of P ′ but the average values of the P ′ values at several points before and after.
本発明の一実施例による故障点標定装置の構成図。The block diagram of the failure point location apparatus by one Example of this invention. 本発明の一実施例による故障点標定処理を示すフローチャート。The flowchart which shows the failure point location process by one Example of this invention. 指標の作成方法を説明する概念図。The conceptual diagram explaining the creation method of a parameter | index. 保護リレー動作と指標の推移を示すタイムチャート。The time chart which shows transition of protection relay operation and an index. 一実施例による故障点判定部のロジックを示す構成図。The block diagram which shows the logic of the failure point determination part by one Example. 圧力波形に対する指標2の関係を示す説明図。Explanatory drawing which shows the relationship of the parameter | index 2 with respect to a pressure waveform. 故障発生前後における圧力波形と指標1、2、3の例を示すタイムチャート。6 is a time chart showing an example of pressure waveforms and indices 1, 2, and 3 before and after a failure occurs. 対象系統を示す系統図。The system diagram which shows an object system | strain.
符号の説明Explanation of symbols
1…接地容器、3…絶縁スペーサ、4…導体、5…ガス圧力センサ、6…配管、7…センサ信号受信部、8…A/D変換部、9…接点信号入力部、10…表示部、11…故障点標定部、12…保護リレー、13…無電圧接点、14…通信ユニット、15…支援システム、16…伝送路、20…故障点標定装置。   DESCRIPTION OF SYMBOLS 1 ... Grounding container, 3 ... Insulating spacer, 4 ... Conductor, 5 ... Gas pressure sensor, 6 ... Piping, 7 ... Sensor signal receiving part, 8 ... A / D conversion part, 9 ... Contact signal input part, 10 ... Display part DESCRIPTION OF SYMBOLS 11 ... Fault location part, 12 ... Protection relay, 13 ... Non-voltage contact, 14 ... Communication unit, 15 ... Support system, 16 ... Transmission path, 20 ... Fault location device.

Claims (7)

  1. ガス絶縁開閉装置に設けられた圧力センサにより内部のガス圧力を検出し、保護リレー情報と組み合わせて故障部位を標定する故障点標定装置において、
    現時点の圧力と所定時間前の圧力との差分(以下では、指標1と呼ぶ)と、圧力の微分量を用いた積算値の差分(以下では、指標2と呼ぶ)および圧力の微分量の急変率(以下では、指標3と呼ぶ)とを求め、前記指標1、2及び3は予め設定されるそれぞれの設定値を超えたとき判定成立とし、該判定成立または判定不成立のそれぞれの指標1、2及び3を前記保護リレー情報と組み合わせて故障有無の判定を行うことを特徴とするガス絶縁開閉装置の故障点標定装置。
    In the failure point locating device that detects the internal gas pressure by the pressure sensor provided in the gas insulated switchgear and locates the failure part in combination with the protection relay information,
    The difference between the current pressure and the pressure before a predetermined time (hereinafter referred to as index 1), the difference between the integrated values using the pressure differential (hereinafter referred to as index 2), and the sudden change in the pressure differential The index (hereinafter referred to as index 3) is determined, and the indices 1, 2, and 3 are determined to be satisfied when the respective preset values are exceeded. A failure point locating device for a gas-insulated switchgear characterized by determining whether or not there is a failure by combining 2 and 3 with the protection relay information.
  2. 請求項1において、前記指標2は、前記指標1の時間幅と同じ時間幅で差分を求めることを特徴とするガス絶縁開閉装置の故障点標定装置。   2. The failure point locating device for a gas insulated switchgear according to claim 1, wherein the index 2 calculates a difference with the same time width as the time width of the index 1.
  3. 請求項1または2において、前記指標3は、保護リレー動作時点の前後の圧力微分値を用いて生成することを特徴とするガス絶縁開閉装置の故障点標定装置。   3. The failure point locating device for a gas insulated switchgear according to claim 1, wherein the index 3 is generated using pressure differential values before and after the protection relay operation time.
  4. 請求項1〜3のいずれかにおいて、各指標の組み合わせによる故障点標定結果を、故障が確定したことを示す確定区画と故障の可能性を示す候補区画に判別して出力することを特徴とするガス絶縁開閉装置の故障点標定装置。   The failure point location determination result according to any one of claims 1 to 3 is determined and output as a confirmed section indicating that a failure has been confirmed and a candidate section indicating a possibility of failure. Fault location device for gas insulated switchgear.
  5. 請求項1〜4のいずれかにおいて、保護リレーの動作無しの場合、前記指標1、2及び3のうち2以上の指標が判定成立した時のみ、センサ単独動作と判定することを特徴とするガス絶縁開閉装置の故障点標定装置。   The gas according to any one of claims 1 to 4, wherein when the protection relay is not operated, it is determined that the sensor is operated alone only when two or more of the indicators 1, 2, and 3 are determined. Insulation switchgear fault location device.
  6. 請求項4において、3個の指標のうち指標1と2または、指標1と3のみによる組み合わせは、故障点標定結果を確定区画と候補区画に判別して出力することを特徴とするガス絶縁開閉装置の故障点標定装置。   5. The gas-insulated switching according to claim 4, wherein the combination of only the indices 1 and 2 or the indices 1 and 3 among the three indices outputs the fault location result as a determined section and a candidate section. Equipment fault location system.
  7. ガス絶縁開閉装置に設けられた圧力センサにより内部のガス圧力を検出し、保護リレー情報と組み合わせて故障部位を標定する故障点標定方法において、
    現時点の圧力と所定時間前の圧力との差分(以下では、指標1と呼ぶ)と、圧力の微分量を用いた積算値の差分(以下では、指標2と呼ぶ)および圧力の微分量の急変率(以下では、指標3と呼ぶ)とを求め、前記指標1、2及び3は予め設定されている設定値を超えたとき判定成立とし、該判定成立または判定不成立のそれぞれの指標1、2及び3を前記保護リレー情報と組み合わせて故障有無の判定を行うことを特徴とするガス絶縁開閉装置の故障点標定方法。
    In the fault location method of detecting the internal gas pressure with the pressure sensor provided in the gas insulated switchgear and locating the fault site in combination with the protection relay information,
    The difference between the current pressure and the pressure before a predetermined time (hereinafter referred to as index 1) , the difference between the integrated values using the pressure differential (hereinafter referred to as index 2), and the sudden change in the pressure differential A rate (hereinafter referred to as index 3) is obtained, and the indices 1, 2 and 3 are determined to be satisfied when a preset value is exceeded, and each index 1, 2 is determined or not satisfied. And 3 is combined with the protection relay information to determine whether or not there is a failure.
JP2006000321A 2006-01-05 2006-01-05 Fault location device and method for gas insulated switchgear Active JP4641262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000321A JP4641262B2 (en) 2006-01-05 2006-01-05 Fault location device and method for gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000321A JP4641262B2 (en) 2006-01-05 2006-01-05 Fault location device and method for gas insulated switchgear

Publications (2)

Publication Number Publication Date
JP2007185011A JP2007185011A (en) 2007-07-19
JP4641262B2 true JP4641262B2 (en) 2011-03-02

Family

ID=38340638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000321A Active JP4641262B2 (en) 2006-01-05 2006-01-05 Fault location device and method for gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP4641262B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961910B1 (en) * 2010-06-23 2012-08-17 Areva T & D Sas METHOD FOR LOCATING INTERNAL ARC IN A GAS INSULATED LINE AND DEVICE THEREOF
JP6173238B2 (en) * 2014-02-25 2017-08-02 三菱電機株式会社 Damage detection device, damage detection system, and damage detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866520A (en) * 1981-10-14 1983-04-20 Tokyo Shibaura Electric Co Gas pressure monitoring device for gas insulated equipment
JPH0223009A (en) * 1988-07-12 1990-01-25 Nissin Electric Co Ltd Gas insulated switchgear
JPH08136606A (en) * 1994-11-10 1996-05-31 Mitsubishi Electric Corp Device for detecting accident point of gas-insulated electric equipment
JPH08223720A (en) * 1995-02-13 1996-08-30 Takaoka Electric Mfg Co Ltd Fault detection device for gas-insulated electric apparatus
JP2002027623A (en) * 2000-07-06 2002-01-25 Mitsubishi Electric Corp Failure decision device for gas-insulated electrical, apparatus and gas-insulated electric apparatus monitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866520A (en) * 1981-10-14 1983-04-20 Tokyo Shibaura Electric Co Gas pressure monitoring device for gas insulated equipment
JPH0223009A (en) * 1988-07-12 1990-01-25 Nissin Electric Co Ltd Gas insulated switchgear
JPH08136606A (en) * 1994-11-10 1996-05-31 Mitsubishi Electric Corp Device for detecting accident point of gas-insulated electric equipment
JPH08223720A (en) * 1995-02-13 1996-08-30 Takaoka Electric Mfg Co Ltd Fault detection device for gas-insulated electric apparatus
JP2002027623A (en) * 2000-07-06 2002-01-25 Mitsubishi Electric Corp Failure decision device for gas-insulated electrical, apparatus and gas-insulated electric apparatus monitor

Also Published As

Publication number Publication date
JP2007185011A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
US8174268B2 (en) Protective relay monitoring system and method of comparing behavior patterns
CN101539607B (en) Method for grounding and selecting lines of low-current grounding system and device
EP2686691B1 (en) A method for detecting earth faults
EP2332225B1 (en) Apparatus and method for adaptive fault detection in mv distribution circuits
US10910826B2 (en) Voltage derivative and zero-sequence broken conductor detection
CN103606909A (en) Protecting system and method for power distribution network circuit
US20110254557A1 (en) Electromechanical relays including embedded sensors
CN103457247A (en) Multi-level full-range selective coordination and protection technology of low-voltage system
CN1349103A (en) Judgement method of one-phase earthing failure in electric distribution network
KR101389844B1 (en) Degradation diagnosis and protection relay system with multi-sensor
JP4641262B2 (en) Fault location device and method for gas insulated switchgear
JP4971285B2 (en) Electric equipment accident sign detection device and electric equipment accident sign detection system
JP4142608B2 (en) Tree contact monitoring device for distribution lines
KR100231522B1 (en) Monitoring apparatus for gis
CN104795804A (en) Auxiliary relay protection monitoring processing system and processing method thereof
KR20110043512A (en) System and method for deciding a fault type of power transmission line
JP2010115006A (en) System for determining bus line accident section
KR101277141B1 (en) Electric watt-hour meter and method for monitoring power distribution system
KR101532979B1 (en) System of protective control for substation facilities
CN207992363U (en) Singlephase earth fault circuit monitoring system
Kapoor et al. Gis and Its Experience with New Emerging Trends
Neumann et al. The impact of insulation monitoring and diagnostics on reliability and exploitation of service life
JP6162661B2 (en) Breaking current analyzer, breaking current analysis system
JP2011244593A (en) Accident aspect decision device
Riechert et al. Monitoring and Diagnostics of Gas-Insulated Switchgear–Development Trends and Range of Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

R150 Certificate of patent or registration of utility model

Ref document number: 4641262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3