JPH10270352A - Aligner for manufacturing integrated circuit - Google Patents

Aligner for manufacturing integrated circuit

Info

Publication number
JPH10270352A
JPH10270352A JP9023597A JP9023597A JPH10270352A JP H10270352 A JPH10270352 A JP H10270352A JP 9023597 A JP9023597 A JP 9023597A JP 9023597 A JP9023597 A JP 9023597A JP H10270352 A JPH10270352 A JP H10270352A
Authority
JP
Japan
Prior art keywords
optical
optical body
less
quartz glass
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9023597A
Other languages
Japanese (ja)
Inventor
Akira Fujinoki
朗 藤ノ木
Hiroyuki Nishimura
裕幸 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP9023597A priority Critical patent/JPH10270352A/en
Priority to PCT/EP1998/001692 priority patent/WO1998043135A1/en
Priority to DE69801731T priority patent/DE69801731T2/en
Priority to US09/194,536 priority patent/US6483639B2/en
Priority to EP98912497A priority patent/EP0901650B1/en
Publication of JPH10270352A publication Critical patent/JPH10270352A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aligner device which is not deteriorated in its characteristic, such as the durability, light transmissivity, etc., even when the device emits ArF excimer laser and can be manufactured at a low cost by constituting its optical system by combining of a synthetic quarts glass optical body having specific physical properties with a fluorite optical body. SOLUTION: The optical system of the aligner is constituted by combining a synthetic quarts glass optical body with a flourite optical body. The optical body (wafer-side optical body) on the side where the density ε (mJ/cm<2> ) of light energy transmitted through the optical bodies is relatively large is constituted of single-crystal fluorite and the optical body (light-source side optical body) on the side where the density ε (mJ/cm<2> ) of light energy transmitted through the optical bodies is relatively small is constituted of synthetic quartz glass having a hydrogen molecule concentration of 1×10<17> to 5×10<18> molecules/cm<3> which is nearly equal to the doped concentration of the glass under a normal pressure so that the optical system may have high transmissivity as a whole. A more preferable optical system is constituted of a plurality of kinds of synthetic quarts glass optical bodies and a single-crystal fluorite optical body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は64Mから256M
をにらんだ集積回路製造用露光装置に係り、特に狭帯化
した短波長紫外レーザ光で集積回路のパターンを照明
し、石英ガラス材からなる光学系により集積回路のパタ
ーンをウエーハ上に焼き付けて集積回路を製造する為の
露光装置に関する。
TECHNICAL FIELD The present invention relates to a 64M to 256M
In particular, an integrated circuit manufacturing exposure apparatus is used to illuminate an integrated circuit pattern with a narrow band short-wavelength ultraviolet laser beam and print the integrated circuit pattern on a wafer using an optical system made of quartz glass material. The present invention relates to an exposure apparatus for manufacturing an integrated circuit.

【0002】[0002]

【従来の技術】従来より、光を用いてマスク上のパター
ンをウエーハ上に転写する光リソグラフィ技術は電子線
やΧ線を用いる他の技術に比較してコスト面で優れてい
る事から集積回路を製造する為の露光装置として広く用
いられている。従来かかる光リソグラフィ技術を利用し
た露光装置には光源に高圧水銀ランプから発する波長3
65nmのi線を用いて線幅0.5〜0.4μmのパタ
ーン形成が露光装置が開発されているが、かかる露光装
置は16Mビット−DRAM以下の集積回路に対応する
ものである。一方次世代の64Mビット〜256Mビッ
トでは0.25〜0.35μmの結像性能を、更には1
Gビットでは0.13〜0.20μmの解像性能を必要
とするが、0.35μmという解像性能はi線の波長を
上回るもので、光源としてKrF光が用いられる。そし
て更に0.20μmを切る領域ではKrF光に代ってA
rF光、特にArFエキシマレーザが使用される。
2. Description of the Related Art Conventionally, an optical lithography technique for transferring a pattern on a mask onto a wafer using light is superior in cost in comparison with other techniques using an electron beam or a Χ-ray, so that an integrated circuit is used. Is widely used as an exposure apparatus for manufacturing a semiconductor device. Conventionally, an exposure apparatus utilizing such photolithography technology has a light source of a wavelength of 3 from a high-pressure mercury lamp.
An exposure apparatus has been developed to form a pattern having a line width of 0.5 to 0.4 μm using an i-line of 65 nm. Such an exposure apparatus corresponds to an integrated circuit of 16 Mbit-DRAM or less. On the other hand, the next-generation 64 Mbit to 256 Mbit has an imaging performance of 0.25 to 0.35 μm,
The G bit requires a resolution of 0.13 to 0.20 μm, but the resolution of 0.35 μm exceeds the wavelength of the i-line, and KrF light is used as a light source. Further, in the region below 0.20 μm, Ar instead of KrF light
rF light, particularly an ArF excimer laser, is used.

【0003】しかしながらArFエキシマレーザを用い
た光リソグラフィ技術には種々の課題があり、その一つ
が投影光学系を構成するレンズ、ミラーやプリズムを形
成するための光学材料の問題である。即ちArFの19
3nm波長で透過率のよい光学材料は実質的に石英ガラ
ス、特に高純度の合成石英ガラスに限定されるが、Ar
F光は石英ガラスに与えるダメージがKrF光に比べて
10倍以上大きい。
However, there are various problems in the optical lithography technique using an ArF excimer laser, one of which is a problem of an optical material for forming a lens, a mirror and a prism constituting a projection optical system. That is, ArF 19
Optical materials having a good transmittance at a wavelength of 3 nm are substantially limited to quartz glass, particularly high-purity synthetic quartz glass.
F light causes damage to quartz glass at least 10 times greater than KrF light.

【0004】さて、石英ガラスのエキシマレーザ照射に
対する耐性は、本出願人の出願にかかる特願平1−14
5226号に示されるように含有される水素濃度に依存
する。このため従来のKrFエキシマレーザを光源とす
る露光装置では光学系を構成する石英ガラスはその含有
する水素濃度が5×1016分子/cm3 以上あれば、十
分な耐性を確保することが出来たと前記技術に記載され
ている。しかしながらArFレーザ光が石英ガラスに与
える影響は前記したようにKrFに比べて甚大であるた
めに、ArFレーザ光によって合成石英ガラスに引き起
こされるダメージの程度(透過率の変化及び屈折率の変
化)を調べてみると、必要とされる水素分子濃度はKr
Fレーザ光に比べて場合によっては100〜1000倍
以上も高濃度、具体的には5×1018分子/cm3 以上
の水素分子濃度が必要である事が判明した。
[0004] The resistance of quartz glass to irradiation with excimer laser is described in Japanese Patent Application No. Hei.
No. 5226, it depends on the concentration of hydrogen contained. For this reason, in a conventional exposure apparatus using a KrF excimer laser as a light source, if the concentration of hydrogen contained in the quartz glass constituting the optical system is 5 × 10 16 molecules / cm 3 or more, sufficient durability can be secured. It is described in the art. However, since the influence of the ArF laser beam on the quartz glass is greater than that of KrF as described above, the degree of damage (change in transmittance and change in refractive index) caused by the ArF laser beam on the synthetic quartz glass is limited. Examination shows that the required hydrogen molecule concentration is Kr
In some cases, it has been found that the concentration of hydrogen molecules is required to be 100 to 1000 times or more higher than that of the F laser light, specifically, a hydrogen molecule concentration of 5 × 10 18 molecules / cm 3 or more is required.

【0005】合成石英ガラスに水素分子を含ませる方法
は2つあるが、まず製造時の雰囲気を調整して常圧で合
成石英ガラスに水素分子を含ませる場合、含ませうる水
素分子濃度は最高で5×1018分子/cm3 程度までで
ある。またもう1つの方法として水素雰囲気での加圧熱
処理により水素分子を石英ガラス中にドープする場合で
も、高圧ガス取締法の対象とならない上限の10気圧/
cm2 の水素処理において導入される水素分子濃度はや
はり5×1018分子/cm3 が上限である。
[0005] There are two methods for incorporating hydrogen molecules into synthetic quartz glass. First, when the atmosphere during production is adjusted to include hydrogen molecules in synthetic quartz glass at normal pressure, the concentration of hydrogen molecules that can be contained is the highest. Up to about 5 × 10 18 molecules / cm 3 . As another method, even when doping hydrogen molecules into quartz glass by pressurized heat treatment in a hydrogen atmosphere, the upper limit of 10 atm / atmosphere which is not subject to the high-pressure gas control method.
The upper limit of the concentration of hydrogen molecules introduced in the hydrogen treatment of cm 2 is also 5 × 10 18 molecules / cm 3 .

【0006】このため石英ガラス中に5×1018分子/
cm3 以上の水素分子を含ませようとする場合には、1
0気圧より遥かに高い例えば100気圧以上の高圧水素
圧力で且つ1000℃以上の温度で熱処理を行う事が必
要となる。(特開平4−164833号他)
For this reason, 5 × 10 18 molecules /
If it is intended to contain hydrogen molecules of cm 3 or more, 1
It is necessary to perform the heat treatment at a high pressure hydrogen pressure much higher than 0 atm, for example, 100 atm or more and at a temperature of 1000 ° C or more. (Japanese Unexamined Patent Publication No. 4-164833 and others)

【0007】[0007]

【発明が解決しようとする課題】しかしながら100気
圧以上の高圧水素圧力で且つ1000℃以上の温度で加
熱処理することは石英ガラスに新たな欠陥を誘起するた
めに、熱処理温度は200〜800℃の範囲で行う事が
好ましいが(特開平6−166528号)、この温度領
域で水素熱処理により石英ガラス光学体に5×1018
子/cm3 以上の多量の水素分子を導入する場合、水素
分子の拡散速度があまり大きくないので大きな光学体に
おいては処理に非常に時間がかかるという欠点を有する
うえに、高圧雰囲気で熱処理を行う事は石英ガラス光学
体の屈折率の均質性が低下し、また歪みが導入されると
いう問題点も有している。従って、高圧熱処理を行った
場合においても再度の調整のための熱処理が必要で、こ
のため5×1018分子/cm3 以上水素分子を含有しか
つ露光装置の光学系を構成するに足りる屈折率の均質
性、低歪み等の光学特性を兼ね備えた石英ガラスは、工
業的には極めて複雑で長時間の処理を経た非常に高価な
ものとなってしまう。
However, heat treatment at a high-pressure hydrogen pressure of 100 atm or more and a temperature of 1000 ° C. or more induces new defects in quartz glass. Although it is preferable to carry out in the range (JP-A-6-166528), when a large amount of hydrogen molecules of 5 × 10 18 molecules / cm 3 or more is introduced into the quartz glass optical body by hydrogen heat treatment in this temperature range, the In addition to the drawback that the diffusion rate is not so high, the processing of a large optical body takes a very long time.In addition, performing heat treatment in a high-pressure atmosphere reduces the homogeneity of the refractive index of the quartz glass optical body and causes distortion. Is also introduced. Therefore, even when the high-pressure heat treatment is performed, a heat treatment for re-adjustment is necessary. Therefore, a refractive index sufficient to contain 5 × 10 18 molecules / cm 3 or more of hydrogen molecules and constitute an optical system of the exposure apparatus is required. Quartz glass having optical characteristics such as homogeneity and low distortion is extremely complicated industrially and very expensive after a long time treatment.

【0008】又5×1018分子/cm3 以上水素分子を
含有しかつ屈折率の均質性、低歪み等の光学特性を兼ね
備えた石英ガラスが提供できたにしても、ArFエキシ
マレーザ光はKrFに比べて石英ガラスに与えるダメー
ジが10倍程度大きい為に、そのダメージにより石英ガ
ラスの屈折率変化をもたらす体積収縮(compaction)が
経年的に生じるのを避けられない。
Further, even if quartz glass containing hydrogen molecules of 5 × 10 18 molecules / cm 3 or more and having optical characteristics such as uniform refractive index and low distortion can be provided, the ArF excimer laser beam will not emit KrF. Since the damage to the quartz glass is about ten times greater than that of the above, it is inevitable that the damage causes a volume contraction (change) that causes a change in the refractive index of the quartz glass over time.

【0009】本発明は、狭帯化した短波長紫外レーザ
光、特にArFエキシマレーザを用いて露光装置を構成
する場合においても、耐久性や光透過性等の品質を劣化
させる事なく、光学系全体として低コストで製造容易に
構成することのできる露光装置を提供する事を目的とす
る。
According to the present invention, even when an exposure apparatus is constructed using a short-wavelength ultraviolet laser beam having a narrow band, in particular, an ArF excimer laser, the optical system can be manufactured without deteriorating the quality such as durability and light transmittance. An object of the present invention is to provide an exposure apparatus which can be easily manufactured at low cost as a whole.

【0010】[0010]

【課題を解決するための手段】本発明は、次の点に着目
したものである。前記したようにArFエキシマレーザ
露光装置の耐久性の向上を図るために5×1018分子/
cm3 以上の水素分子を含有することは工業的には極め
て複雑で長時間の処理を必要とし製造困難であるととも
に非常に高価になってしまう。そこで本発明は合成石英
ガラスと蛍石の組み合わせにより前記光学系を構成した
ことを要旨とする。
The present invention focuses on the following points. As described above, in order to improve the durability of the ArF excimer laser exposure apparatus, 5 × 10 18 molecules /
Including hydrogen molecules of cm 3 or more is industrially extremely complicated, requires a long-term treatment, is difficult to produce, and is very expensive. Therefore, the gist of the present invention is that the optical system is configured by a combination of synthetic quartz glass and fluorite.

【0011】このような投影露光装置に用いる光学系に
合成石英ガラスと蛍石とを組み合わせた技術は、特開平
8−78319号(第一従来技術)にも開示されている
が、その技術思想が全く異なり異質な発明である。
A technique in which a synthetic quartz glass and fluorite are combined with an optical system used in such a projection exposure apparatus is also disclosed in JP-A-8-78319 (first prior art). Are completely different and different inventions.

【0012】すなわち前記第一従来技術は、前記光学系
を正のパワーを有する回析光学素子と負のパワーを有す
る石英レンズと正のパワーを有する蛍石レンズとで構成
したものであるが、かかる技術は色収差を補正するため
に前記構造を取るもので、本従来技術においては、前記
パワーの回析光学素子と屈折レンズである石英レンズや
蛍石レンズを組み合わせて用いる事で、互いに異なる分
散をもつ光学素子を利用して色収差の補正を行うもので
あり、特にこれらを組み合わせて、色収差の二次スペク
トルの小さい結像特性を有する光学系を実現し、これに
よりレンズの曲率半径を大きくでき、光学設計上は大N
A化、大フィールド化等の仕様向上の余裕が生れるのみ
ならず、製造上も偏心公差が緩くなり、製造容易性を高
めるものである。従って前記従来技術においては設計上
及び製造上の問題より負のパワーを有する石英レンズと
正のパワーを有する蛍石レンズを組み合わせたもので、
本発明のように高出力レーザ照射による耐レーザ劣化を
防止する事を目的とするもので、従って本発明と従来技
術は、前記目的の相違に起因してその構成も異なる。
That is, in the first prior art, the optical system is composed of a diffraction optical element having a positive power, a quartz lens having a negative power, and a fluorite lens having a positive power. Such a technique employs the above-described structure to correct chromatic aberration. In this conventional technique, different dispersion variances are obtained by using a combination of the power diffraction optical element and a quartz lens or a fluorite lens which is a refractive lens. Chromatic aberration is corrected by using an optical element having the following characteristics.In particular, by combining these, an optical system having an imaging characteristic with a small secondary spectrum of chromatic aberration is realized, and thereby the radius of curvature of the lens can be increased. Large in optical design
Not only does there be room for improvement in specifications such as A and large field, but also the eccentricity tolerance becomes loose in manufacturing, and the manufacturability is improved. Therefore, in the prior art, a quartz lens having a negative power and a fluorite lens having a positive power are combined due to design and manufacturing problems.
An object of the present invention is to prevent deterioration due to laser irradiation due to high-power laser irradiation as in the present invention. Therefore, the present invention and the prior art have different configurations due to the difference in the above objects.

【0013】すなわち本発明は耐レーザ性を向上するた
めに、請求項1記載の発明は、前記光学系を、合成石英
ガラス製光学体と蛍石の組み合わせで構成し、光学体を
透過する光エネルギー密度ε(mJ/cm2 )が相対的
に大なる位置にある光学体(以下ウエーハ側光学体とい
う)については単結晶蛍石で構成してArFエキシマレ
ーザを照射した場合に破損に至る恐れを回避し、光学体
を透過する光エネルギー密度ε(mJ/cm2 )が相対
的に小なる位置にある光学体(以下光源側光学体とい
う)については常圧下でドープされる程度の1×1017
分子/cm3 以上5×1018分子/cm3 以下の水素分
子濃度を有する合成石英ガラスで形成して屈折率の均質
性を重視し、これにより光学系全体としての高透過率を
達成させた事を特徴とし、より好ましくは前記光学系を
複数種の合成石英ガラス光学体と単結晶蛍石光学体で構
成し、前記光学体の内、単結晶蛍石光学体は、屈折率の
均質性Δnが3×10-6/1cm以下で且つ複屈折量が
2nm/cm以下で有り、複数種の合成石英ガラス光学
体が、5×1017分子/cm3 以上5×1018分子/c
3 以下の水素分子濃度を有し、屈折率の均質性Δnが
2×10-6以下でかつ複屈折量が1nm/cm以下であ
る石英ガラス光学体と、1×1017分子/cm3 以上5
×1018分子/cm3 以下の水素分子濃度を有し、屈折
率の均質性Δnが2×10-6以下でかつ複屈折量が1n
m/cm以下である石英ガラス光学体の組み合わせで構
成されるのがよい。
That is, in order to improve the laser resistance of the present invention, according to the first aspect of the present invention, the optical system includes a combination of an optical body made of synthetic quartz glass and fluorite, and the light transmitted through the optical body. An optical body located at a position where the energy density ε (mJ / cm 2 ) is relatively large (hereinafter referred to as a wafer-side optical body) may be made of single crystal fluorite and may be damaged when irradiated with an ArF excimer laser. And the optical body at a position where the light energy density ε (mJ / cm 2 ) passing through the optical body is relatively small (hereinafter referred to as the light source side optical body) is 1 × which is doped at normal pressure. 10 17
It is made of synthetic quartz glass having a hydrogen molecule concentration of not less than molecules / cm 3 and not more than 5 × 10 18 molecules / cm 3 , and the emphasis is placed on the homogeneity of the refractive index, thereby achieving a high transmittance of the entire optical system. Characterized in that, more preferably, the optical system is composed of a plurality of types of synthetic silica glass optical body and a single crystal fluorite optical body, among the optical body, the single crystal fluorite optical body has a uniform refractive index Δn is 3 × 10 −6 / cm or less and the birefringence is 2 nm / cm or less, and a plurality of kinds of synthetic silica glass optical bodies are 5 × 10 17 molecules / cm 3 or more and 5 × 10 18 molecules / c.
a quartz glass optical body having a hydrogen molecule concentration of not more than m 3 , a refractive index homogeneity Δn of not more than 2 × 10 −6 and a birefringence of not more than 1 nm / cm, and 1 × 10 17 molecules / cm 3 More than 5
It has a hydrogen molecule concentration of × 10 18 molecules / cm 3 or less, a refractive index homogeneity Δn of 2 × 10 −6 or less, and a birefringence of 1 n.
It is good to be composed of a combination of quartz glass optical bodies of m / cm or less.

【0014】すなわち本発明はレーザの高エネルギレベ
ル領域においては、石英ガラス光学体を用いる代わりに
レーザによる透過率変化に対する耐性を有する蛍石、特
に単結晶蛍石を用い、compactionが全く生じない光学体
を用いるも、蛍石においてもリソグラフィに用いる大口
径のものについては屈折率の均質性や低い複屈折率とい
った光学特性を達成するのは著しく困難である。そこで
レーザの低エネルギレベル領域においては常圧で水素を
含有可能で且つ高均質性の合成石英ガラスを用いる事に
より光学系全体としての耐透過率性と高均質性を維持で
きる。
That is, in the present invention, in a high energy level region of a laser, instead of using a quartz glass optical body, a fluorite, particularly a single crystal fluorite, which is resistant to a change in transmittance by a laser is used, and an optical element which does not cause any compaction is used. Even if a fluorite is used, it is extremely difficult to achieve optical characteristics such as uniformity of refractive index and low birefringence for fluorite having a large diameter used for lithography. Therefore, in the low energy level region of the laser, by using synthetic quartz glass that can contain hydrogen at normal pressure and has high homogeneity, the transmittance resistance and high homogeneity of the entire optical system can be maintained.

【0015】即ち蛍石と合成石英ガラスとの関係は、屈
折率分布(Δn)と複屈折量nm/cmの均質性の規定
値については、前記したように合成石英ガラスの規定値
を蛍石の規定値より光源側光学体をウエーハ側光学体の
均質性より良好に設定するのがよい。より具体的には請
求項4に記載の様に、前記ウエーハ側光学体が、屈折力
の均質性Δnが3×10-6/1cm以下で且つ複屈折量
が2nm/cm以下の単結晶蛍石で形成され、一方光源
側光学体が屈折率の均質性Δnが2×10-6/1cm以
下で且つ複屈折量が1nm/cm以下の合成石英ガラス
材で形成するのがよい。
That is, as for the relationship between the fluorite and the synthetic quartz glass, the specified values of the refractive index distribution (.DELTA.n) and the homogeneity of the birefringence nm / cm are set to the specified values of the synthetic quartz glass as described above. It is better to set the light source side optical body to be more favorable than the uniformity of the wafer side optical body from the specified value. More specifically, as set forth in claim 4, the wafer-side optical body is a single-crystal phosphor having a refractive power homogeneity Δn of 3 × 10 −6 / cm or less and a birefringence of 2 nm / cm or less. It is preferable that the light source side optical body is formed of a synthetic quartz glass material having a refractive index homogeneity Δn of 2 × 10 −6 / 1 cm or less and a birefringence of 1 nm / cm or less.

【0016】尚、エキシマレーザ光は一般に発振波長に
幅を持っており、通常のレーザ光を用い、構成レンズ部
材が石英のみの単色レンズ系では発振波長幅を1.5p
m以下にしないと、色収差が生じてしまう。そこで本発
明は前記短波長紫外レーザ光を発振波長幅を1.5pm
(FWHM:半値全幅)以下にしたArFエキシマレー
ザで構成した事を第二の特徴としている。尚、前記光学
体として用いられる蛍石は請求項2に記載の様に、パル
ス当たりのレーザエネルギー密度が50mJ/cm2
1×106 パルス照射した後の193nmでの厚さ1c
m当たりの内部透過率は略98%までは許容出来る。
Excimer laser light generally has a wide oscillation wavelength, and ordinary laser light is used. The oscillation wavelength width of a monochromatic lens system made of only quartz is 1.5 p.
If not less than m, chromatic aberration will occur. Accordingly, the present invention provides the short wavelength ultraviolet laser light with an oscillation wavelength width of 1.5 pm.
(FWHM: full width at half maximum) is a second feature that the laser device is constituted by an ArF excimer laser having a width of not more than (FWHM: full width at half maximum). The fluorite used as the optical body has a thickness of 1 c at 193 nm after irradiating 1 × 10 6 pulses with a laser energy density per pulse of 50 mJ / cm 2 as described in claim 2.
The internal transmittance per m is acceptable up to about 98%.

【0017】[0017]

【発明の実施の形態】以下図面を参照して本発明の実施
形態を説明する。但し、この実施形態に記載されている
構成部品の寸法、材質、形状、その相対的配置等は特に
特定的な記載がないかぎりは、この発明の範囲をそれに
限定する趣旨ではなく、単なる説明例にすぎない。図1
は本発明に適用されるArFエキシマレーザを用いたリ
ソグラフィ露光装置の概略構成図(基本構成はNo.182・O
plus E,特集リソグラフィ技術の最先端1)光リソグラ
フィにおける光解像技術参照)で、1はArFエキシマ
レーザ光源、2はウエーハ面上において回析光の干渉の
ないパターン像を形成するための変形照明手段で、中心
部が遮光面となる例えば四重極照明若しくは輪帯照明光
源状の形状を有す。3は前記光源より照射されたArF
エキシマレーザ光をレチクルに導く為のコンデンサレン
ズ、4はマスク(レチクル)、5は投影光学系で、例え
ば屈折力が正のレンズ群と、屈折力が負のレンズ群を組
合せて光の狭帯域化を図りつつ、前記光学系中に瞳面を
形成し、解像力の向上を図っている。6はウエーハステ
ージ7上に載置されたウエーハで、前記レチクル4に形
成したマスクパターンが前記投影光学系を介してウエー
ハ6上に結像描画される。
Embodiments of the present invention will be described below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. It's just FIG.
Is a schematic configuration diagram of a lithography exposure apparatus using an ArF excimer laser applied to the present invention (the basic configuration is No. 182 · O
plus E, Special Feature: State-of-the-art lithography technology 1) Photo-resolution technology in optical lithography), where 1 is an ArF excimer laser light source and 2 is a deformation for forming a pattern image without interference of diffraction light on the wafer surface The illuminating means has, for example, a quadrupole illumination or an annular illumination light source shape in which a central portion is a light shielding surface. 3 is ArF irradiated from the light source
A condenser lens for guiding the excimer laser light to the reticle, 4 is a mask (reticle), 5 is a projection optical system, for example, a narrow band of light by combining a lens group having a positive refractive power and a lens group having a negative refractive power. A pupil plane is formed in the optical system while improving the resolution to improve the resolving power. Numeral 6 denotes a wafer placed on a wafer stage 7, and a mask pattern formed on the reticle 4 is image-formed on the wafer 6 via the projection optical system.

【0018】かかる装置において、前記ArFエキシマ
レーザ光源は、公知の様にレーザの共振器内にプリズ
ム、回析格子、エタロンなどの波長選択素子を配置する
事により、1.0〜1.5pmスペクトル幅をもつ狭帯
化エキシマレーザを得る事が出来る。(Optical and Qu
antum Electronics Vol.25(1993)p.293〜 310参照)
In this apparatus, the ArF excimer laser light source is provided with a wavelength selecting element such as a prism, a diffraction grating, an etalon, or the like in a laser cavity, as is well known, to obtain a 1.0 to 1.5 pm spectrum. A narrow band excimer laser having a width can be obtained. (Optical and Qu
antum Electronics Vol.25 (1993) pp.293-310)

【0019】投影光学系5にはウエーハ面にパターン光
を結像させるために、ウエーハ面と最近接位置に配置し
た集光レンズ群5bと、瞳面近傍に配置したレンズ群5
aが存在するが、瞳面には光源の像である二次光源が形
成される。従って瞳面に光源像が離散的に現れると、そ
こにエネルギーが集中し、ウエーハ側とともに光学系の
破損要因となる。一方レチクル側はウエーハ側に比べ結
像倍率の2乗でエネルギー密度が小さくなる為厳しい条
件とはならない。
The projection optical system 5 includes a condensing lens group 5b disposed closest to the wafer surface and a lens group 5 disposed near the pupil plane for forming a pattern light on the wafer surface.
Although a exists, a secondary light source, which is an image of the light source, is formed on the pupil plane. Therefore, when a light source image appears discretely on the pupil plane, energy concentrates on the image, which causes damage to the optical system together with the wafer side. On the other hand, on the reticle side, the energy density becomes smaller by the square of the imaging magnification as compared with the wafer side.

【0020】本実施形態はかかる点に着目したのであ
り、即ち、具体的に説明すると、ArFエキシマレーザ
の瞳面の大きさは参考文献によるとφ30〜φ50mm
程度であり、この面積に対して何倍かという基準でエネ
ルギー密度を決める事が合理的である。例えばレチクル
感度20〜50mJとし、これを20〜30パルスのレ
ーザ照射で露光するとすると、瞳面上のパルス当たりの
エネルギー密度は0.6〜1.7mJ/cm2 、正確に
は露光面と瞳面ではエネルギー密度は異なり、ウエーハ
面の方が僅かに大きいと仮定した場合ででも前記ウエー
ハ面に最も近接された位置に配置されたウエーハ側レン
ズ群のエネルギー密度はその75〜90%程度の0.4
〜1.5mJ/cm2 程度であると推定される。又瞳面
はこれより僅かに低いものと思料される。
The present embodiment focuses on this point, that is, specifically, the size of the pupil plane of the ArF excimer laser is from φ30 to φ50 mm according to the reference.
It is reasonable to determine the energy density on the basis of several times this area. For example, if the reticle sensitivity is set to 20 to 50 mJ and this is exposed by laser irradiation of 20 to 30 pulses, the energy density per pulse on the pupil surface is 0.6 to 1.7 mJ / cm 2 , and more precisely, the exposure surface and the pupil The energy densities of the wafer-side lens groups arranged closest to the wafer surface are about 75 to 90% of 0, even if it is assumed that the wafer surface is slightly larger. .4
It is estimated to be about 1.5 mJ / cm 2 . It is also assumed that the pupil plane is slightly lower.

【0021】一方、解像力の向上を図るために、屈折力
が正のレンズ群と、屈折力が負のレンズ群を組合せて前
記投影光学系を構成するが(例えば前記従来技術や特開
平3−34308号参照)、この場合夫々のレンズ群は
収差を極力排除する必要があり、このような場合実際の
夫々のレンズ群の縮小若しくは拡大する倍率はある程度
抑えて設定するのがよく、してみると前記ウエーハ側若
しくは瞳面最近接位置より次段のレンズ群のエネルギー
密度は0.4〜1.5mJ/cm2 の1/3程度、具体
的には0.1〜0.4mJ/cm2 程度であると推定さ
れる。その他のほとんどのレンズ群(光源側レンズも含
めて)は1パルス当たりのエネルギー密度ε≦0.1m
J/cm2 である。従ってウエーハ側レンズ群のうち1
パルス当たりのエネルギー密度がε≦0.1mJ/cm
2 であるレンズ群においては、耐久性より光学的均質性
を重視することにより、光学系全体としての解像度の向
上が図れる。
On the other hand, in order to improve the resolving power, the projection optical system is constructed by combining a lens group having a positive refractive power and a lens group having a negative refractive power (for example, the above prior art and Japanese Patent Laid-Open No. In this case, it is necessary to eliminate aberrations in each lens group as much as possible. In such a case, it is better to set the actual reduction or enlargement magnification of each lens group to some extent. And the energy density of the next lens unit from the wafer side or the position closest to the pupil plane is about 1 / of 0.4 to 1.5 mJ / cm 2 , specifically 0.1 to 0.4 mJ / cm 2. It is estimated to be about. Most other lens groups (including the light source side lens) have an energy density ε ≦ 0.1 m per pulse.
J / cm 2 . Therefore, one of the wafer side lens groups
Energy density per pulse ε ≦ 0.1 mJ / cm
In the lens group of No. 2 , the resolution of the entire optical system can be improved by placing importance on optical homogeneity rather than durability.

【0022】そこで本実施形態においては、ε:≦0.
1mJ/cm2 の光源側光学体を構成する合成石英ガラ
スの場合は、水素分子濃度CH2を1×1017≦CH2≦5
×1018分子/cm3 に低く設定するも、屈折率分布
(Δn)は≦1×10-6、複屈折量は≦1.00nm/
cmと高品質に維持するもArFレーザの波長である1
93nmにおける透過率は99.5%以上と緩やかに設
定させている。
In this embodiment, ε: ≦ 0.
In the case of synthetic quartz glass constituting the light source side optical body of 1 mJ / cm 2 , the hydrogen molecule concentration C H2 is set to 1 × 10 17 ≦ C H2 ≦ 5.
Although it is set as low as × 10 18 molecules / cm 3 , the refractive index distribution (Δn) is ≦ 1 × 10 −6 and the birefringence is ≦ 1.00 nm /.
cm, which is the wavelength of ArF laser
The transmittance at 93 nm is set gently to 99.5% or more.

【0023】また、瞳面周辺やウエーハに最も近接する
ウエーハ側レンズ群において、1パルス当たりのエネル
ギー密度が0.4≦ε(mJ/cm2 )であるレンズ群
においては、耐久性を重視することにより、光学系全体
としての耐久性の向上が図れる。そこで本実施形態にお
いては、ε:0.4≦εの光学体の場合は単結晶蛍石製
のレンズを用い、屈折率分布(Δn)は≦3×10-6
複屈折量は≦2.0nm/cmと緩やかに設定し、製造
の容易化を図るも、光透過率については、ArFレーザ
の波長である193nmにおける透過率は99.8%以
上に維持させている。
In the lens group near the pupil plane and the wafer side closest to the wafer, durability is emphasized in the lens group in which the energy density per pulse is 0.4 ≦ ε (mJ / cm 2 ). Thereby, the durability of the entire optical system can be improved. Therefore, in the present embodiment, a lens made of single crystal fluorite is used in the case of an optical body with ε: 0.4 ≦ ε, the refractive index distribution (Δn) is ≦ 3 × 10 −6 ,
The amount of birefringence is set gently at ≦ 2.0 nm / cm to facilitate the manufacture, but the light transmittance is maintained at 99.8% or more at 193 nm, which is the wavelength of the ArF laser. I have.

【0024】更に前記受光エネルギーが高密度レンズ等
の次段に位置するレンズ等の光学体は前記両者の中間を
取り、ε:0.1≦ε≦0.4mJ/cm2 の範囲に位
置する光学体の場合は、水素分子濃度CH2を5×1017
≦CH2≦5×1018分子/cm3 に、又屈折率分布(Δ
n)は≦2×10-6、複屈折量は≦1.0nm/cm、
ArFレーザの波長である193nmにおける透過率は
99.5%以上と僅かに緩やかに設定し、製造の容易化
を図る。そして好ましくは0.4≦ε≦1.5mJ/c
2 の光学体の光路長さの合計は光学系全体の光路長の
25%以下で、前記0.1≦ε≦0.4(mJ/c
2)の光学体の光路長の合計が光学系の光路長全体の
25%以下になるように光学系を組合せ配置することに
より後記実施例に示すように、耐久性を維持しつつ光学
系全体として高透過率を達成させることが出来る。
Further, the optical body such as a lens having the received light energy located at the next stage such as a high-density lens has a middle point between the two and is located in the range of ε: 0.1 ≦ ε ≦ 0.4 mJ / cm 2. In the case of an optical body, the hydrogen molecule concentration C H2 is set to 5 × 10 17
≦ C H2 ≦ 5 × 10 18 molecules / cm 3 and the refractive index distribution (Δ
n) is ≦ 2 × 10 −6 , the birefringence is ≦ 1.0 nm / cm,
The transmittance at 193 nm, which is the wavelength of the ArF laser, is set slightly gently to 99.5% or more to facilitate the manufacture. And preferably 0.4 ≦ ε ≦ 1.5 mJ / c
The sum of the optical path lengths of the optical body of m 2 is 25% or less of the optical path length of the entire optical system, and 0.1 ≦ ε ≦ 0.4 (mJ / c
m 2 ) By combining and arranging the optical systems so that the total optical path length of the optical body of the optical system is 25% or less of the entire optical path length of the optical system, the optical system can be maintained while maintaining the durability, as shown in Examples described later. High transmittance can be achieved as a whole.

【0025】さて前記投影光学系を構成するレンズ材を
考えるとき、レンズ等の径がいくらの時、劣化の程度が
激しいかという事を決めなければならないが、前記した
参考文献によるとArFエキシマレーザの瞳面の大きさ
はφ30〜φ50mm程度であり、この面積に対して何
倍かという基準で決める事が合理的である。即ち、瞳面
やウエーハ面に近接する位置で前記した0.4≦ε(m
J/cm2)、より具体的には0.4≦ε≦1.5(m
J/cm2 )のエネルギー密度のArFエキシマレーザ
を受光するレンズ径は使用面積を80%とすると瞳面の
最大値がφ50mmであることを考慮すると、そのレン
ズ口径が最大φ80mm程度であり、従ってε:0.4
≦ε≦1.5mJ/cm2 の光学体のレンズ径は略80
φ以下であると推定される。更に同様の計算により、
ε:0.1≦ε≦0.4mJ/cm2 のレンズ等の場合
は前記瞳面に対し、拡大率が2〜3倍程度であり、従っ
てそのレンズ直径はφ80〜100mm前後のレンズに
対応する。
Now, when considering the lens material constituting the projection optical system, it is necessary to determine the diameter of the lens or the like and the degree of deterioration is severe. According to the above-mentioned reference, the ArF excimer laser is used. Of the pupil plane is about φ30 to φ50 mm, and it is reasonable to determine the pupil plane on the basis of several times this area. That is, at the position close to the pupil plane or the wafer plane, 0.4 ≦ ε (m
J / cm 2 ), more specifically 0.4 ≦ ε ≦ 1.5 (m
Considering that the maximum diameter of the pupil plane is φ50 mm when the use area is 80%, the lens diameter for receiving an ArF excimer laser having an energy density of J / cm 2 ) is about φ80 mm at maximum, and therefore, ε: 0.4
The lens diameter of the optical body of ≦ ε ≦ 1.5 mJ / cm 2 is approximately 80
It is estimated to be less than or equal to φ. Further, by the same calculation,
ε: In the case of a lens with 0.1 ≦ ε ≦ 0.4 mJ / cm 2 , the magnification is about 2 to 3 times the pupil plane, and the lens diameter corresponds to a lens having a diameter of about 80 to 100 mm. I do.

【0026】そしてこれ以上(100mm)のレンズ径
では当然エネルギ密度ε:≦0.1mJ/cm2 と低く
なる。そしてこの場合も、直径φ80mm以下のレンズ
等光学体の光路長さの合計が光学系全体の25%以下
で、直径φ80mm以上φ100mm以下のレンズ等光
学体の光路長の合計が光学系の光路長全体の25%以下
に設定するのが良い。
When the lens diameter is larger than this (100 mm), the energy density ε is naturally as low as 0.1 mJ / cm 2 . Also in this case, the total optical path length of the optical body such as a lens having a diameter of φ80 mm or less is 25% or less of the entire optical system, and the total optical path length of the optical body such as a lens having a diameter of φ80 mm to φ100 mm is the optical path length of the optical system. It is better to set it to 25% or less of the whole.

【0027】尚、本発明は前記図1に示した投影光学系
露光装置のみならず、反射光学系露光装置にも適用可能
である。即ち、図2は高解像度を図るためにプリズム型
のビームスプリッタを用いた反射光学系露光装置のレン
ズ等構成を示す概略図(基本構成はNo.182・O plus E,
特集リソグラフィ技術の最先端1)光リソグラフィにお
ける光解像技術参照)で、その構成を簡単に説明する
に、光源11より第1レンズ群12を介してビームスプ
リッタ13を通過した光が第2レンズ群14を通過し、
その後ミラー15で変向されて、その後第3レンズ群1
6で集光した後、該集光光で、レチクル17をスキャン
した後、再度第3レンズ群16、ミラー15、第2レン
ズ群14を介して再びビームスプリッタ13に戻り、今
度は該スプリッタ13に変向されて第4レンズ群19で
結像されてウエーハ18上に集積回路パターンを焼き付
ける。
The present invention is applicable not only to the projection optical system exposure apparatus shown in FIG. 1 but also to a reflection optical system exposure apparatus. That is, FIG. 2 is a schematic diagram showing a configuration of a lens and the like of a reflection optical system exposure apparatus using a prism type beam splitter in order to achieve high resolution (the basic configuration is No. 182 · O plus E,
The feature is briefly described in “Special Feature: Cutting Edge of Lithography Technology 1) Optical Resolution Technology in Optical Lithography”. In order to briefly explain the configuration, light passing through a beam splitter 13 from a light source 11 through a first lens group 12 is converted into a second lens. Through group 14,
After that, the light is turned by the mirror 15 and then the third lens group 1
6, the reticle 17 is scanned with the condensed light, and then returns to the beam splitter 13 again via the third lens group 16, the mirror 15, and the second lens group 14, and this time the splitter 13 Then, the image is formed by the fourth lens group 19 and the integrated circuit pattern is printed on the wafer 18.

【0028】かかる装置においても、前記ArFエキシ
マレーザ光源は、公知のようにレーザの共振器内にプリ
ズム、回析格子、エタロンなどの波長選択素子を配置す
る事により、1.0〜1.5pmスペクトル幅をもつ狭
帯化エキシマレーザを得る事が出来る。又前記スプリッ
タ13に変向後のウエーハに最も近い第4レンズ群19
は1パルス当たりのエネルギー密度0.4≦ε≦1.5
mJ/cm2 の最も強い光エネルギーを受ける為単結晶
蛍石製のレンズを用い、屈折率分布(Δn)は≦3×1
-6、複屈折量は≦2.0nm/cmと緩やかに設定
し、製造の容易化を図るも光透過率については、ArF
レーザの波長である193nmにおける透過率は99.
8%以上に維持させている。
Also in this apparatus, the ArF excimer laser light source is provided with a wavelength selecting element such as a prism, a diffraction grating, an etalon, or the like in a laser resonator, as is well known, so that the ArF excimer laser light source is 1.0 to 1.5 pm. A narrow band excimer laser having a spectrum width can be obtained. The fourth lens group 19 closest to the wafer after the deflection to the splitter 13
Is the energy density per pulse 0.4 ≦ ε ≦ 1.5
To receive the strongest light energy of mJ / cm 2, a single crystal fluorite lens is used, and the refractive index distribution (Δn) is ≦ 3 × 1.
0 −6 , the birefringence is gently set to ≦ 2.0 nm / cm to facilitate the production, but the light transmittance is not higher than that of ArF.
The transmittance at 193 nm, which is the wavelength of the laser, is 99.
It is maintained at 8% or more.

【0029】又本装置においてはレチクル17側で第3
レンズ群16については集光/スキャンされるために1
パルス当たりのエネルギー密度0.1≦ε≦0.4mJ
/cm2 のエネルギーを受けると推定される為水素分子
濃度CH2分子/cm3 を5×1017≦CH2≦5×1018
に設定、又屈折率分布(Δn)は≦2×10-6、複屈折
量は≦1.0nm/cmと緩やかに設定すればよく、そ
して他のレンズ、ミラー、及びプリズム型のビームスプ
リッタ、特に光源側に近い光学体においては1パルス当
たりのエネルギー密度ε≦0.1mJ/cm2 のエネル
ギーしか受けない為に、そのレンズ群等の水素分子濃度
H2分子/cm3 は、1×1017≦CH2≦5×1018
設定するも、屈折率分布(Δn)は≦1×10-6、複屈
折量は≦1nm/cmと高品質に維持する。
In this apparatus, the third reticle 17 side
For the lens group 16, 1
Energy density per pulse 0.1 ≦ ε ≦ 0.4mJ
/ Cm 2, the hydrogen molecule concentration C H2 molecule / cm 3 is set to 5 × 10 17 ≦ C H2 ≦ 5 × 10 18
The refractive index distribution (Δn) may be set to ≦ 2 × 10 −6 , the birefringence may be set to gently as ≦ 1.0 nm / cm, and other lenses, mirrors, and prism type beam splitters may be used. In particular, since the optical body near the light source side receives only the energy of energy density ε ≦ 0.1 mJ / cm 2 per pulse, the hydrogen molecule concentration C H2 molecule / cm 3 of the lens group and the like is 1 × 10 Although 17 ≦ C H2 ≦ 5 × 10 18 , high quality is maintained with a refractive index distribution (Δn) of ≦ 1 × 10 −6 and a birefringence of ≦ 1 nm / cm.

【0030】そしてレンズ径の関係は前記と同様で、更
にレンズ口径をφ80mm以下に設定した第4レンズ群
19の光路長さの合計が光学系全体の光路長の25%以
下で、前記レンズ口径をφ80〜100mmに設定した
第3レンズ群16の光学体の光路長の合計が光学系の光
路長全体の25%以下になるように光学系を組合せ配置
することにより本実施形態においても、耐久性を維持し
つつ光学系全体の平均値として透過率99.8%/cm
を達成させることが出来ると推定される。
The relationship between the lens diameters is the same as that described above, and the sum of the optical path lengths of the fourth lens group 19 whose lens aperture is set to φ80 mm or less is 25% or less of the optical path length of the entire optical system. Also, in the present embodiment, the durability can be improved by arranging the optical systems in such a manner that the total optical path length of the optical body of the third lens group 16 is set to 25% or less of the entire optical path length of the optical system. Transmittance 99.8% / cm as an average value of the entire optical system while maintaining the light transmittance
It is estimated that can be achieved.

【0031】[0031]

【発明の実施例】さて前記図1及び図2に示す露光装置
において実際の操業条件における光学特性の長期にわた
る安定性を確認する事は非常に時間がかかるので、レン
ズ、ミラー、及びプリズム等を製造するための石英ガラ
ス光学体のみを取り出し、実際の操業を加速したシュミ
レーション実験を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the exposure apparatus shown in FIGS. 1 and 2, it takes a very long time to confirm the long-term stability of optical characteristics under actual operating conditions. Only a quartz glass optical body for manufacturing was taken out, and a simulation experiment in which actual operation was accelerated was performed.

【0032】一般に石英ガラスのレーザ照射におけるダ
メージの進行速度は照射エキシマレーザのエネルギー密
度(フルエンス)の2乗に比例して早くなるが(光学
第23巻10号“エキシマレーザ用石英ガラス”藤ノ木
朗著参照、以下文献1という)この事を利用して加速実
験の基準とした。
In general, the rate of progress of damage in laser irradiation of quartz glass increases in proportion to the square of the energy density (fluence) of the irradiated excimer laser.
Vol. 23, No. 10, "Quartz Glass for Excimer Laser", by Akira Fujinoki, hereinafter referred to as Reference 1. This was used as a reference for acceleration experiments.

【0033】先ず使用する光学材料について説明する。
四塩化珪素を酸水素火炎で加水分解しながら回転する基
体上に堆積させるいわゆるDQ法で石英ガラスインゴッ
トを作成した。得られた石英ガラスインゴットはOH基
を800〜1000ppm含有し、かつ水素分子を5×
1018分子/cm2 含有していた。この石英ガラスイン
ゴットを特開平7−267662号に示される方法で均
質化処理を行い1150℃で40時間の歪取アニール為
の加熱、徐冷を行った。得られた均質な光学用石英ガラ
ス材料の光学特性を測定したが、3方向に脈理が存在せ
ず、また屈折率分布を干渉計(Zygo MarkIV )で測定し
たところΔnは1×10-6と極めて良好な値を示した。
また直交ニコルの歪み測定器で複屈折量を測定したが、
複屈折量は1nm/cm以下であった。
First, the optical material used will be described.
A quartz glass ingot was prepared by a so-called DQ method in which silicon tetrachloride was deposited on a rotating substrate while being hydrolyzed by an oxyhydrogen flame. The obtained quartz glass ingot contains 800 to 1000 ppm of OH groups and contains 5 × hydrogen molecules.
It contained 10 18 molecules / cm 2 . This quartz glass ingot was homogenized by the method described in JP-A-7-267662, and was heated and gradually cooled at 1150 ° C. for 40 hours for strain relief annealing. While the optical properties of the resulting homogeneous optical quartz glass material was measured in three directions in the absence of striae and Δn was measured refractive index distribution in the interferometer (Zygo MarkIV) is 1 × 10 -6 And an extremely good value.
Also, the amount of birefringence was measured with a crossed Nicols strain gauge,
The amount of birefringence was 1 nm / cm or less.

【0034】この光学用石英ガラス材料は文献(New Gl
ass VoL6 No,2(1989)191-196“ステッパ用石英ガラスに
ついて”)に示されるエキシマレーザステッパーに用い
られる石英ガラス部材として必要な光学特性を満たして
いるために、この光学用石英ガラス材料を用いて光学部
品を構成する事によりArFを光源とする半導体露光装
置を作る事が可能である。一方で該光学用石英ガラス材
料に含有された水素分子濃度をレーザラマン法にて測定
したところ、5×1017分子/cm2 であった。(サン
プル番号A)
This quartz glass material for optics is described in the literature (New Gl
ass VoL6 No, 2 (1989) 191-196 “Quartz glass for stepper”), because it satisfies the optical properties required for the quartz glass member used in the excimer laser stepper, A semiconductor exposure apparatus using ArF as a light source can be manufactured by configuring an optical component using the semiconductor device. On the other hand, when the concentration of hydrogen molecules contained in the quartz glass material for optics was measured by a laser Raman method, it was 5 × 10 17 molecules / cm 2 . (Sample number A)

【0035】水素分子含有量はラマン分光光度計を用い
て行なったが、これは日本分光工業社製のラマン分光光
度計・NR1100を用いて、励起波長488nmのA
rレーザ光で出力700mW、浜松ホトニクス社製のホ
トマル・R943−02を使用するホストカウンティン
グ法で行なった。なお、この水素分子含有量はこのとき
のラマン散乱スペクトルで800cm-1に観察されるS
iO2 の散乱バンドと水素の4135−40cm-1に観
察される散乱バンドの面積強度比を濃度に換算して求め
た。また、換算定数は文献値4135cm-1/800c
-1×1.22×1021(Zhurnal Pri-Kladnoi Spektr
oskopii, Vol.46、No.6、PP987〜991,June,1987)を使用
した。
The content of hydrogen molecules was measured using a Raman spectrophotometer, which was measured using a Raman spectrophotometer NR1100 manufactured by JASCO Corporation with an excitation wavelength of 488 nm.
This was carried out by a host counting method using H-MATSU R943-02 manufactured by Hamamatsu Photonics with an output of r laser light of 700 mW. The content of this hydrogen molecule is determined by Raman scattering spectrum at 800 cm -1 observed at this time.
The area intensity ratio between the iO 2 scattering band and the scattering band observed at 4135-40 cm −1 of hydrogen was calculated by converting it to concentration. The conversion constant is 4135 cm -1 / 800 c in the literature.
m -1 × 1.22 × 10 21 (Zhurnal Pri-Kladnoi Spektr
oskopii, Vol. 46, No. 6, PP987-991, June, 1987) was used.

【0036】また該光学用石英ガラス材料からφ60m
m×t20mmの試料を切り出し、大気雰囲気で100
0℃×20時間の酸化処理を行った後、雰囲気炉中で水
素ガスの加圧(8気圧)雰囲気で600℃×1000時
間の水素ドープ処理を行った。処理後のサンプルの屈折
率分布を測定したところΔnが2×10-6で複屈折量は
2nm/cm、含有される水素分子濃度は4×1018
子/cm2 であった。(サンプル番号B)
The optical quartz glass material is φ60 m
A sample of mxt20mm is cut out and 100
After performing the oxidation treatment at 0 ° C. × 20 hours, a hydrogen doping treatment was performed at 600 ° C. × 1000 hours in a hydrogen gas pressurized (8 atm) atmosphere in an atmosphere furnace. When the refractive index distribution of the sample after the treatment was measured, Δn was 2 × 10 −6 , the amount of birefringence was 2 nm / cm, and the concentration of contained hydrogen molecules was 4 × 10 18 molecules / cm 2 . (Sample number B)

【0037】一方、φ60×t20の高純度光学用蛍石
の内、UVグレード品(例、応用光研CaF2/UVグ
レード、オプトロンCaF2/UVグレード等)を用意
し、レーザ特性の評価を行った。評価は1.0〜1.5
pmスペクトル幅をもつ狭帯化ArFエキシマレーザを
用い、パルス当たりのエネルギー密度50mJ/cm2
p、300Hzで106 ショットの照射による透過率の変
化により行った。
On the other hand, among the high-purity optical fluorites of φ60 × t20, UV grade products (eg, Applied Koken CaF2 / UV grade, Optron CaF2 / UV grade, etc.) were prepared, and the laser characteristics were evaluated. . Evaluation is 1.0 to 1.5
The energy density per pulse is 50 mJ / cm 2 using a narrow band ArF excimer laser having a pm spectrum width.
The change was performed by changing the transmittance due to irradiation of 10 6 shots at p, 300 Hz.

【0038】同じUVグレードであってもレーザ照射に
より200nmに小さな吸収、320nm及び380n
mに大きな吸収が現れるものとそうでないものがある事
が判った。図3に示すようにサンプルCにおいては、上
記エキシマレーザ照射後の透過率は193nmで99.
0%と良好な数値を示したが、図4に示すサンプルDに
おいては、250nm及び370nmに非常に大きな吸
収バンドが発現し、193nmにおける透過率は95.
3%であった。尚、サンプルC,D共に屈折率の均質性
Δnは2×10-6以下であり、複屈折量は2nm/cm
以下であった。更にレーザ照射以前の193nmの透過
率は99.8%と良好な数値を示した。
Even with the same UV grade, a small absorption at 200 nm, 320 nm and 380 n by laser irradiation
It was found that some of the m showed large absorption and some did not. As shown in FIG. 3, in the sample C, the transmittance after excimer laser irradiation was 99.000 at 193 nm.
Although a good value of 0% was shown, in sample D shown in FIG. 4, very large absorption bands were developed at 250 nm and 370 nm, and the transmittance at 193 nm was 95.
3%. The refractive index homogeneity Δn of each of the samples C and D is 2 × 10 −6 or less, and the birefringence is 2 nm / cm.
It was below. Further, the transmittance at 193 nm before the laser irradiation was a good value of 99.8%.

【0039】次に前記サンプルA〜Dの光学体を用い
て、露光装置を構成した場合の光学系の寿命を予測する
ための実験を行った。寿命予測実験は、サンプルA〜D
にArFエキシマレーザをエネルギー密度50mJ/c
2 p、300Hzで1×106 ショット照射し(加速試
験)生じる光学特性の変化を193nmにおける透過率
の変化及び屈折率の変化として測定を行った。これは文
献1に示される様に実際の操業における光学体を透過す
るレーザの光エネルギー密度をεmJ/cm2 とする
と、(100/ε)2 倍の加速試験に該当する。結果を
表1に示す。尚、表中の想定エネルギー密度とは透過率
変化の予測のために想定される実際に光学体が使用され
る際のエネルギー密度を現し、透過率変化及び屈折率変
化の予測値は、その想定エネルギー密度で5×1010
ョットレーザを照射した際の透過率の変化及び屈折率の
変化の予測値である。
Next, an experiment was performed to predict the life of the optical system when an exposure apparatus was constructed using the optical bodies of Samples A to D. Life expectancy experiments were performed on samples AD.
ArF excimer laser with energy density of 50 mJ / c
Irradiation of 1 × 10 6 shots at 300 Hz with m 2 p (acceleration test) was performed to measure changes in optical characteristics as changes in transmittance and changes in refractive index at 193 nm. This When εmJ / cm 2 light energy density of the laser transmitted through the optical body in the actual operation as shown in Document 1, corresponding to the acceleration test twice (100 / ε). Table 1 shows the results. The assumed energy density in the table indicates the energy density when the optical body is actually used to estimate the transmittance change, and the estimated values of the transmittance change and the refractive index change are the estimated values. This is a predicted value of a change in transmittance and a change in refractive index when a 5 × 10 10 shot laser is irradiated at an energy density.

【0040】[0040]

【表1】 [Table 1]

【0041】この実験結果からこれらの光学体を組み合
わせて、縮小光学系を構成した場合、長期にわたって高
い透過率を維持し、かつ屈折率の安定性を維持しうる組
み合わせについて調べた結果を下記表2に示す。
From the experimental results, the following table shows the results of a study on combinations that can maintain a high transmittance over a long period of time and maintain the stability of the refractive index when a reduction optical system is constructed by combining these optical bodies. It is shown in FIG.

【0042】[0042]

【表2】 [Table 2]

【0043】本表2より理解されるように、エネルギー
密度(mJ/cm2 )に対応して小(0.1≧ε)、中
(0.1≦ε≦0.4、大(0.4≦ε)とした場合、
[A+B+C]の構成を取る事により、光学系全体の平
均透過率が98.6%/cm、平均屈折率変化が1.3
×10ー6/1cmと目的とする基準値を満足している。
[0043] As will be understood from this Table 2, the energy density (mJ / cm 2) small to correspond to (0.1 ≧ epsilon), medium (0.1 ≦ ε ≦ 0.4, large (0. 4 ≦ ε),
With the configuration of [A + B + C], the average transmittance of the entire optical system is 98.6% / cm, and the change in average refractive index is 1.3.
× 10 −6 / 1 cm, which satisfies the target standard value.

【0044】又[A+A+C]の構成を取った場合に
も、全体透過率が97.1%、平均屈折率変化が2.2
×10ー6/1cmと目的とする基準値を僅かにオーバし
ているが、ほぼ基準値を満足している。特に実際の結像
光学系においては各レンズを透過するレーザのエネルギ
ー密度は光学系の設計によりそれぞれ異なる為に[A+
A+C]の構成でも実用化に耐え得る場合が有る。尚、
本実験により、レーザの照射による透過率低下を問題な
いレベルに抑えるためには、パルス当たりのレーザエネ
ルギー密度が0.1mJ/cm2 以下の領域にある光学
体の配設部位の光路長が、少なくとも全体の光路長の5
0%以上である事が必要である事が判った。
Also in the case of the configuration of [A + A + C], the total transmittance is 97.1% and the average refractive index change is 2.2.
Although slightly exceeding the target reference value of × 10 −6 / 1 cm, it almost satisfied the reference value. In particular, in an actual imaging optical system, the energy density of the laser transmitted through each lens differs depending on the design of the optical system.
A + C] may be able to withstand practical use. still,
According to this experiment, in order to suppress the decrease in transmittance due to laser irradiation to a level that does not cause any problem, the optical path length of the optical member where the laser energy density per pulse is 0.1 mJ / cm 2 or less is set as follows: At least 5 of the total optical path length
It turned out that it was necessary to be 0% or more.

【0045】尚、計算のため各エネルギー密度における
光路長は前記エネルギー密度の小:中:大でそれぞれ約
2(50%):1(25%):1(25%)と想定した。
For calculation, it was assumed that the optical path length at each energy density was about 2 (50%): 1 (25%): 1 (25%) for the above energy densities: small: medium: large.

【0046】本シュミレーション実験により、請求範囲
に定められた合成石英ガラス光学体と蛍石光学体により
構成される光学系よりなる露光装置は、実際の操業にお
いても長期にわたって十分な光学特性の安定性を実現で
きると予想される。
According to this simulation experiment, an exposure apparatus comprising an optical system composed of a synthetic silica glass optical body and a fluorite optical body as defined in the claims has a sufficient optical characteristic stability over a long period of time even in actual operation. Is expected to be realized.

【0047】[0047]

【発明の効果】以上記載のごとく本発明によれば、水素
を含有する石英ガラスからなる光学系を用いてArFエ
キシマレーザ露光装置を構成する場合においても、耐久
性や品質を劣化させる事なく、光学系全体として低コス
トで製造容易に構成することのできる。
As described above, according to the present invention, even when an ArF excimer laser exposure apparatus is configured using an optical system made of quartz glass containing hydrogen, durability and quality are not deteriorated. The entire optical system can be easily manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される投影光学系を用いた集積回
路製造用露光装置である。
FIG. 1 is an exposure apparatus for manufacturing an integrated circuit using a projection optical system to which the present invention is applied.

【図2】本発明が適用される反射光学系を用いた集積回
路製造用露光装置である。
FIG. 2 is an exposure apparatus for manufacturing an integrated circuit using a reflection optical system to which the present invention is applied.

【図3】本発明の実施例たるサンプルCの蛍石のレーザ
照射による吸収バンドを示すグラフ図である。
FIG. 3 is a graph showing an absorption band of a sample C, which is an example of the present invention, obtained by irradiating fluorite with laser.

【図4】本発明の比較例たるサンプルDの蛍石のレーザ
照射による吸収バンドを示すグラフ図である。
FIG. 4 is a graph showing the absorption band of fluorite of a sample D as a comparative example of the present invention by laser irradiation.

【符号の説明】 1 ArFエキシマレーザ光源 2 変形照明手段 3 コンデンサレンズ 4 マスク(レチクル) 5 投影光学系 6 ウエーハ 11 光源 12 第1レンズ群(合成石英ガラス光学体) 13 ビームスプリッタ 14 第2レンズ群(合成石英ガラス光学体) 15 ミラー 16 第3レンズ群(合成石英ガラス光学体) 17 レチクル 19 第4レンズ群 (蛍石光学体) 18 ウエーハ[Description of Signs] 1 ArF excimer laser light source 2 Deformation illumination means 3 Condenser lens 4 Mask (reticle) 5 Projection optical system 6 Wafer 11 Light source 12 First lens group (synthetic silica glass optical body) 13 Beam splitter 14 Second lens group (Synthetic silica glass optical body) 15 Mirror 16 Third lens group (Synthetic silica glass optical body) 17 Reticle 19 Fourth lens group (Fluorite optical body) 18 Wafer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 狭帯化した短波長紫外レーザ光で集積回
路のパターンを照明し、投影光学系若しくは反射光学系
により集積回路のパターンをウエーハ上に焼き付けて集
積回路を製造する為の露光装置において、 前記光学系を、合成石英ガラス製光学体と蛍石製光学体
の組み合わせで構成し、 ウエーハ露光面又は/及び瞳面に最も近接して配設され
該光学体を透過する光エネルギー密度ε(mJ/cm
2 )が相対的に大なる位置にある少なくとも1の光学体
を単結晶蛍石で、 ウエーハ露光面又は/及び瞳面に遠ざかる位置に配設さ
れ該光学体を透過する光エネルギー密度ε(mJ/cm
2 )が相対的に小なる位置にある少なくとも1の光学体
を、1×1017分子/cm3 以上5×1018分子/cm
3 以下の水素分子濃度を有する合成石英ガラスで夫々形
成するとともに、 一方前記短波長紫外レーザ光を発振波長幅を1.5pm
(FWHM:半値全幅)以下にしたArFエキシマレー
ザで構成した事を特徴とする集積回路製造用露光装置。
An exposure apparatus for manufacturing an integrated circuit by illuminating an integrated circuit pattern with a short-wavelength ultraviolet laser beam having a narrow band and printing the integrated circuit pattern on a wafer by a projection optical system or a reflection optical system. In the above, the optical system is constituted by a combination of an optical body made of synthetic quartz glass and an optical body made of fluorite, and a light energy density which is arranged closest to a wafer exposure surface and / or a pupil surface and transmits through the optical body. ε (mJ / cm
2 ) At least one optical body at a position where the relative increase is relatively large is made of single crystal fluorite, and is disposed at a position away from the wafer exposure surface and / or the pupil surface and has a light energy density ε (mJ) transmitted through the optical body. / Cm
2 ) At least one optical body at a position where the relative value is relatively small is 1 × 10 17 molecules / cm 3 or more and 5 × 10 18 molecules / cm.
Each of them is made of synthetic quartz glass having a hydrogen molecule concentration of 3 or less, and the short-wavelength ultraviolet laser light has an oscillation wavelength width of 1.5 pm.
(FWHM: full width at half maximum) An exposure apparatus for manufacturing integrated circuits, comprising an ArF excimer laser having a width of not more than (FWHM).
【請求項2】 前記光学体として用いられる蛍石が、パ
ルス当たりのレーザエネルギー密度が50mJ/cm2
で1×106 パルス照射した後の193nmでの厚さ1
cm当たりの内部透過率が98%以上である事を特徴と
する請求項1記載の半導体回路製造用露光装置。
2. The method according to claim 1, wherein the fluorite used as the optical body has a laser energy density per pulse of 50 mJ / cm 2.
Thickness at 193 nm after 1 × 10 6 pulse irradiation with
2. The exposure apparatus according to claim 1, wherein the internal transmittance per cm is 98% or more.
【請求項3】 請求項1記載の半導体回路製造用露光装
置において、 屈折率分布(Δn)と複屈折量(nm/cm)の均質性
の規定値について、合成石英ガラス光学体の規定値を蛍
石光学体の規定値より良好に設定した事を特徴とする集
積回路製造用露光装置。
3. An exposure apparatus for manufacturing a semiconductor circuit according to claim 1, wherein the specified value of the synthetic quartz glass optical body is set as the specified value of the homogeneity of the refractive index distribution (Δn) and the birefringence (nm / cm). An exposure apparatus for manufacturing an integrated circuit, wherein the exposure apparatus is set to a value better than the specified value of the fluorite optical body.
【請求項4】 前記蛍石光学体が、屈折率の均質性Δn
が3×10-6/1cm以下で且つ複屈折量が2nm/c
m以下の単結晶蛍石で形成され、 一方合成石英ガラス光学体が、屈折率の均質性Δnが2
×10-6/1cm以下で且つ複屈折量が1nm/cm以
下の合成石英ガラス材で形成したことを特徴とする請求
項1記載の集積回路製造用露光装置。
4. The fluorite optical body has a refractive index homogeneity Δn.
Is not more than 3 × 10 −6 / cm and the birefringence is 2 nm / c.
m or less, and the synthetic quartz glass optical body has a refractive index homogeneity Δn of 2
2. The integrated circuit manufacturing exposure apparatus according to claim 1, wherein the exposure apparatus is made of a synthetic quartz glass material having a birefringence of 1 × 10 −6 / cm or less and a birefringence of 1 nm / cm or less.
【請求項5】 前記投影光学系を構成する光学系を複数
種の合成石英ガラス光学体と単結晶蛍石光学体で構成
し、 前記光学体の内、単結晶蛍石光学体は、屈折率の均質性
Δnが3×10-6/1cm以下で且つ複屈折量が2nm
/cm以下で有り、複数種の合成石英ガラス光学体が、
5×1017分子/cm3 以上5×1018分子/cm3
下の水素分子濃度を有し、屈折率の均質性Δnが2×1
-6以下でかつ複屈折量が1nm/cm以下である石英
ガラス光学体と、1×1017分子/cm3 以上5×10
18分子/cm3 以下の水素分子濃度を有し、屈折率の均
質性Δnが2×10-6以下でかつ複屈折量が1nm/c
m以下である石英ガラス光学体の組み合わせで構成され
る事を特徴とする請求項1記載の半導体製造用露光装
置。
5. An optical system constituting the projection optical system is composed of a plurality of kinds of synthetic silica glass optical bodies and a single crystal fluorite optical body, wherein the single crystal fluorite optical body has a refractive index. Has a homogeneity Δn of 3 × 10 −6 / 1 cm or less and a birefringence of 2 nm
/ Cm or less, and a plurality of types of synthetic quartz glass optical bodies,
It has a hydrogen molecule concentration of 5 × 10 17 molecules / cm 3 or more and 5 × 10 18 molecules / cm 3 or less, and has a refractive index homogeneity Δn of 2 × 1
0 and the quartz glass optical body -6 or less and the birefringence amount is less than 1nm / cm, 1 × 10 17 molecules / cm 3 to 5 × 10
It has a hydrogen molecule concentration of 18 molecules / cm 3 or less, a refractive index homogeneity Δn of 2 × 10 −6 or less, and a birefringence of 1 nm / c.
2. The exposure apparatus according to claim 1, wherein the exposure apparatus is composed of a combination of quartz glass optical bodies having a diameter of m or less.
JP9023597A 1997-03-25 1997-03-25 Aligner for manufacturing integrated circuit Pending JPH10270352A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9023597A JPH10270352A (en) 1997-03-25 1997-03-25 Aligner for manufacturing integrated circuit
PCT/EP1998/001692 WO1998043135A1 (en) 1997-03-25 1998-03-23 Optical system for integrated circuit fabrication
DE69801731T DE69801731T2 (en) 1997-03-25 1998-03-23 OPTICAL SYSTEM FOR PRODUCING INTEGRATED CIRCUITS
US09/194,536 US6483639B2 (en) 1997-03-25 1998-03-23 Optical system for integrated circuit fabrication
EP98912497A EP0901650B1 (en) 1997-03-25 1998-03-23 Optical system for integrated circuit fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9023597A JPH10270352A (en) 1997-03-25 1997-03-25 Aligner for manufacturing integrated circuit

Publications (1)

Publication Number Publication Date
JPH10270352A true JPH10270352A (en) 1998-10-09

Family

ID=13992839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9023597A Pending JPH10270352A (en) 1997-03-25 1997-03-25 Aligner for manufacturing integrated circuit

Country Status (1)

Country Link
JP (1) JPH10270352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173918A (en) * 1998-11-30 2000-06-23 Carl Zeiss:Fa Lighting device for euv microlithography
JP2000203994A (en) * 1998-11-09 2000-07-25 Nikon Corp Fluorite single crystal, its heat treatment and production of fluorite single crystal raw material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203994A (en) * 1998-11-09 2000-07-25 Nikon Corp Fluorite single crystal, its heat treatment and production of fluorite single crystal raw material
JP2000173918A (en) * 1998-11-30 2000-06-23 Carl Zeiss:Fa Lighting device for euv microlithography

Similar Documents

Publication Publication Date Title
KR101432809B1 (en) Projection exposure apparatus, projection exposure method and projection objective
EP1114802A1 (en) Quartz glass member, production method therefor, and projection aligner using it
KR100291564B1 (en) Optical member for optical lithography and evaluation method of optical member
EP0901650B1 (en) Optical system for integrated circuit fabrication
JP4029838B2 (en) Optical member for optical lithography and its evaluation method
KR20010062343A (en) Projection exposure apparatus and method of manufacturing a device using the projection exposure apparatus
KR20010031779A (en) Projection exposure device, projection exposure method, and method of manufacturing projection exposure device
JP2770224B2 (en) Quartz glass for optical lithography, optical member including the same, exposure apparatus using the same, and method of manufacturing the same
JP3976083B2 (en) Optical system for circuit pattern exposure
JPH10270352A (en) Aligner for manufacturing integrated circuit
TW508477B (en) Exposure apparatus, semiconductor device and photomask
US6031238A (en) Projection aligner for integrated circuit fabrication
JP3641767B2 (en) Exposure apparatus for integrated circuit manufacturing
JP3607006B2 (en) Exposure apparatus for integrated circuit manufacturing
JP3641766B2 (en) Exposure apparatus for integrated circuit manufacturing
US6518210B1 (en) Exposure apparatus including silica glass and method for producing silica glass
JPH06308717A (en) Quartz glass member for photolithography
JPH0463019B2 (en)
JP2558217B2 (en) Optical lithography equipment
JPH11109101A (en) Optical member for laser beam
JPH1029831A (en) Laser exposure device for lithography

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050825

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050902

A521 Written amendment

Effective date: 20051101

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070608

Free format text: JAPANESE INTERMEDIATE CODE: A02