JP3607006B2 - Exposure apparatus for integrated circuit manufacturing - Google Patents

Exposure apparatus for integrated circuit manufacturing Download PDF

Info

Publication number
JP3607006B2
JP3607006B2 JP19149396A JP19149396A JP3607006B2 JP 3607006 B2 JP3607006 B2 JP 3607006B2 JP 19149396 A JP19149396 A JP 19149396A JP 19149396 A JP19149396 A JP 19149396A JP 3607006 B2 JP3607006 B2 JP 3607006B2
Authority
JP
Japan
Prior art keywords
quartz glass
hydrogen
exposure apparatus
optical system
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19149396A
Other languages
Japanese (ja)
Other versions
JPH1022216A (en
Inventor
朗 藤ノ木
裕幸 西村
利樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP19149396A priority Critical patent/JP3607006B2/en
Priority to PCT/EP1997/003406 priority patent/WO1998000761A1/en
Priority to US09/029,451 priority patent/US6031238A/en
Priority to DE69702830T priority patent/DE69702830T2/en
Priority to EP97930447A priority patent/EP0852742B1/en
Publication of JPH1022216A publication Critical patent/JPH1022216A/en
Application granted granted Critical
Publication of JP3607006B2 publication Critical patent/JP3607006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は64Mから256Mをにらんだ集積回路製造用露光装置に係り、特にArFエキシマレーザーからのレーザ光で集積回路のパターンを照明し、石英ガラス材からなる光学系により集積回路のパターンをウエーハ上に焼き付けて集積回路を製造する為の露光装置に関する。
【0002】
【従来の技術】
従来より、光を用いてマスク上のパターンをウエーハ上に転写する光リソグラフィ技術は電子線やΧ線を用いる他の技術に比較してコスト面で優れている事から集積回路を製造する為の露光装置として広く用いられている。
従来かかる光リソグラフィ技術を利用した露光装置には光源に高圧水銀ランプから発する波長365nmのi線を用いて線幅0.5〜0.4μmのパターン形成が露光装置が開発されているが、かかる露光装置は16Mビット−DRAM以下の集積回路に対応するものである。
一方次世代の64Mビット〜256Mビットでは0.25〜0.35μmの結像性能を、更には1Gビットでは0.13〜0.20μmの解像性能を必要とするが、0.35μmという解像性能はi線の波長を下回るもので、光源としてKrF光が用いられる。そして更に0.20μmを切る領域ではKrF光に代ってArF光、特にArFエキシマレーザーが使用される。
【0003】
しかしながらArFエキシマレーザーを用いた光リソグラフィ技術には種々の課題があり、その一つが投影光学系を構成するレンズ、ミラーやプリズムを形成するための光学材料の問題である。
即ちArFの193nm波長で透過率のよい光学材料は実質的に石英ガラス、特に高純度の合成石英ガラスに限定されるが、ArF光は石英ガラスに与えるダメージがKrF光に比べて10倍以上大きい。
【0004】
さて、石英ガラスのエキシマレーザー照射に対する耐性は、本出願人の出願にかかる特願平1ー145226に示される様に含有される水素濃度に依存する。
このため従来のKrFエキシマレーザーを光源とする露光装置では光学系を構成する石英ガラスはその含有する水素濃度が5×1016分子/cm以上あれば、十分な耐性を確保することが出来たと前記技術に記載されている。
しかしながらArFレーザー光が石英ガラスに与える影響は前記したようにKrFに比べて甚大であるために、ArFレーザー光によって合成石英ガラスに引き起こされるダメージの程度(透過率の変化及び屈折率の変化)を調べてみると、必要とされる水素分子濃度はKrFレーザー光に比べて場合によっては100〜1000倍以上も高濃度、具体的には5×1018分子/cm以上の水素分子濃度が必要がある事が判明した。
【0005】
さてこの光学系を構成する石英ガラスに含まれる水素分子濃度は原料素材を合成する条件及び/またはその後の熱処理工程(水素dopeも含む)の条件により決定される数字であり、一般的には水素分子濃度は工程のばらつきによる範囲を無視すれば一義的に定まり、従って露光装置を構成するミラーやレンズ等の光学系に用いられる合成石英ガラス部材は水素濃度という視点からみればただ1種類の合成石英ガラスから成り立っていた。
合成石英ガラスに水素分子を含ませる方法は2つあるが、まず製造時の雰囲気を調整して常圧で合成石英ガラスに水素分子を含ませる場合、含ませうる水素分子濃度は最高で5×1018分子/cm程度までである。またもう1つの方法として水素雰囲気での加圧熱処理により水素分子を石英ガラス中にドープする場合でも、高圧ガス取り締まり法の対象とならない上限の10気圧/cmの水素処理において導入される水素分子濃度はやはりが5×1018分子/cmが上限である。
【0006】
このため石英ガラス中に5×1018分子/cm以上の水素分子を含ませようとする場合には、10気圧より遥かに高い高圧の水素圧力で熱処理を行う事が必要となる。
例えば本出願人が出願した特開平4ー164833においては、アルゴンガス100%の高圧雰囲気で、1750℃の温度を再溶融加熱処理することにより略5×1018(molecules/cm)の程度の水素分子をドープし得る技術が開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら1750℃の温度を再溶融加熱処理することは石英ガラスに新たな欠陥を誘起するために、熱処理温度は200〜800℃の範囲で行う事が好ましいが(特開平6−166528)、この温度領域で水素熱処理により石英ガラス光学部材に5×1018分子/cm以上の多量の水素分子を導入する場合、水素分子の拡散速度があまり大きくないので大きな光学部材においては処理に非常に時間がかかるという欠点を有するうえに、高圧雰囲気で熱処理を行う事は石英ガラス光学部材の屈折率の均質性が低下し、また歪みが導入されるという問題点も有している。
従って高圧熱処理を行った場合においても再度の調整のための熱処理が必要で、このため5×1018分子/cm以上水素分子を含有しかつ露光装置の光学系を構成するに足りる屈折率の均質性、低歪み等の光学特性を兼ね備えた石英ガラスは工業的には極めて複雑で長時間の処理を経た非常に高価なものとなってしまう。
【0008】
本発明は、水素ドープされた石英ガラスからなる光学系を用いてArFエキシマレーザー露光装置を構成する場合においても、耐久性や品質を劣化させる事なく、光学系全体として低コストで製造容易に構成することのできる露光装置を提供する事を目的とする。
【0009】
【課題を解決するための手段】
本発明はかかる技術課題を達成する為に、ArFエキシマレーザーからのレーザ光で集積回路のパターンを照明し、石英ガラス材からなる光学系により集積回路のパターンをウエーハ上に焼き付けて集積回路を製造する為の露光装置において、
前記光学系を構成する少なくともレンズを水素ドープされた合成石英ガラス製光学部材で構成するとともに、該レンズを水素分子濃度の異なる複数種の石英ガラス製光学部材群で構成し、夫々の光学部材群の水素分子濃度 CH2(分子/cm)が、対応するレンズを透過するArFエキシマレーザー光の1パルス当たりのエネルギー密度をε(mJ/cm)として、
ε<0.2mJ/cmにおいては、
式19.2+2.98Logε≦Log(CH2) <18.6 …1)
ε≧0.2mJ/cmにおいては
式19.2+2.98Logε≦Log(CH2)≦20.7+2.98Logε …2)
で規定される範囲にあるように設定した事を特徴とする半導体露光装置を提案する。
【0010】
以下本発明を詳細に説明する。
図1は本発明に適用されるArFエキシマレーザーを用いたリソグラフィ露光装置の概略構成図で、1はArFエキシマレーザー光源、2はウエーハ面上において回析光の干渉のないパターン像を形成するための変形照明手段で、中心部が遮光面となる例えば四重極照明若しくは輪帯照明光源状の形状を有す。
3は前記光源より照射されたエキシマレーザー光をレチクルに導く為のコンデンサレンズ、4はマスク(レチクル)、5は投影光学系で、例えば屈折力が正のレンズ群と、屈折力が負のレンズ群を組合せて、前記光学系中に瞳面を形成し、解像力の向上を図っている。6はウエーハステージ7上に載置されたウエーハで、前記レチクル4に形成したマスクパターンが前記投影光学系を介してウエーハ6上に結像描画される。
【0011】
かかる装置において、前記投影光学系にはウエーハ面にパターン光を結像させるために、ウエーハ面と最近接位置に配置した集光レンズ群5aと、瞳面近傍に配置したレンズ群5bが存在するが、瞳面には光源の像である二次光源が形成される。従って瞳面に光源像が離散的に表われると、そこにエネルギーが集中し、ウエーハ側とともに光学系の破損要因となる。
一方レチクル側はウエーハ側に比べ結像倍率の2乗でエネルギー密度が小さくなる為厳しい条件とはならない。
【0012】
本発明はかかる点に着目したのであり、
即ち、具体的に説明すると、ArFエキシマレーザーの瞳面の大きさは参考文献によるとφ30〜φ50mm程度であり、この面積に対して何倍かという基準でエネルギー密度を決める事が合理的である。
例えばレジスト感度20〜50mJとし、これを20〜30パルスのレーザー照射で露光するとすると、瞳面上のパルス当たりのエネルギー密度は 0.7〜1.7mJ/cm、正確には露光面と瞳面ではエネルギー密度は異なり、ウエーハ面の方が僅かに大きいと仮定した場合ででも前記ウエーハ面に最も近接された位置に配置されたレンズ群のエネルギー密度はその80〜90%程度の0.6〜1.5mJ/cm程度であると推定される。又瞳面はこれより僅かに低いものと思料される。
【0013】
一方光の狭帯域化と解像力の向上を図るために、屈折力が正のレンズ群と、屈折力が負のレンズ群を組合せて前記投影光学系を構成するが(例えば特開平3−34308参照)、この場合夫々のレンズ群は収差を極力排除する必要があり、このような場合実際の夫々のレンズ群の縮小若しくは拡大する倍率はある程度抑えて設定するのがよく、してみると前記最近接位置より次段のレンズ群のエネルギー密度は0.6〜1.5mJ/cmの1/3程度、具体的には0.2〜0.6mJ/cm程度であると推定される。
その他のほとんどのレンズ群は1パルス当たりのエネルギー密度ε≦0.2mJ/cmである。
従って前記夫々のエネルギー密度を前記式に当てはめてみると、1)式より1パルス当たりのエネルギー密度ε≦0.2mJ/cmの前記投影光学系の殆どのレンズ群の水素分子濃度CH2分子/cmは、1×1017≦CH2<5×1018に設定でき、かかる水素濃度範囲であれば特に製造条件が困難を伴う事もなくレンズ用水素ドープ合成石英ガラスの製造が可能である。
【0014】
又同様に1パルス当たりのエネルギー密度0.2≦ε≦0.6mJ/cmの、最も強いエネルギーを受ける次段のレンズ群は2)式から水素分子濃度CH2分子/cmが5×1017≦CH2≦5×1018に設定出来、この場合もかかる水素濃度範囲であれば特に製造条件が困難を伴う事もなくレンズ用水素ドープ合成石英ガラスの製造が可能である。
そして1パルス当たりのエネルギー密度0.6≦ε≦1.5mJ/cmの最も強い光エネルギーを受けるウエーハ露光面又は/及び瞳面に最も近接した位置にあるレンズ(群)についてのみ水素分子濃度CH2分子/cmが5×1018≦CH2≦5×1019に設定すればよい。
【0015】
尚、本発明は前記図1に示した投影光学系露光装置のみならず、反射光学系露光装置にも適用可能である。
即ち、図2は高解像度を図るためにプリズム型のビームスプリッタを用いた反射光学系露光装置のレンズ構成を示す概略図で、その構成を簡単に説明するに、光源11より第1レンズ群12を介してビームスプリッタ13を通過した光が第2レンズ群14を通過し、その後ミラー15で変向されて、その後第3レンズ群16で集光した後、該集光光で、レチクル17をスキャンした後、再度第3レンズ群16、ミラー15、第2レンズ群14を介して再びビームスプリッタ13に戻り、今度は該スプリッタ13に変向されて第4レンズ群19で結像されてウエーハ18上に集積回路パターンを焼き付ける。
【0016】
かかる装置によれば前記スプリッタ13に変向後の第4レンズ群19は1パルス当たりのエネルギー密度0.6≦ε≦1.5 mJ/cmの最も強い光エネルギーを受ける為水素分子濃度CH2分子/cmを5×1018≦CH2≦5×1019に設定すればよく、又本装置においてはレチクル17側で第3レンズ群16で集光スキャンされるために1パルス当たりのエネルギー密度0.2≦ε≦0.6 mJ/cmのエネルギーを受ける為水素分子濃度CH2分子/cmを5×1017≦CH2≦5×1018に設定すればよく、そして他のレンズ、ミラー、及びプリズム型のビームスプリッタにおいては1パルス当たりのエネルギー密度ε≦0.2 mJ/cmのエネルギーしか受けない為に、そのレンズ群等の水素分子濃度CH2分子/cmは、1×1017≦CH2≦5×1018に設定すればよい。
【0017】
【発明の実施の形態】
以下、本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている組成、ドープ量、製造条件等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。
さて前記図1及び図2に示す露光装置において実際の操業条件における光学特性の長期にわたる安定性を確認する事は非常に時間がかかるので、レンズ、ミラー、及びプリズム等を製造するための石英ガラス光学部材のみを取り出し、実際の操業を加速したシュミレーション実験を行った。
【0018】
一般に石英ガラスのレーザー照射におけるダメージの進行速度は照射エキシマレーザーのエネルギー密度(フルエンス)の2乗に比例して早くなるが(光学 第23巻10号“エキシマレーザ用石英ガラス”藤ノ木朗著参照、以下文献1という)この事を利用して加速実験の基準とした。
【0019】
四塩化珪素を酸水素火炎で加水分解しながら回転する基体上に堆積させるいわゆる直接法で石英ガラスインゴットを作成した。
得られた石英ガラスインゴットはOH基を800〜1000ppm含有し、かつ水素分子を5×1018分子/cm含有していた。この石英ガラスインゴットを特開平7−267662号に示される方法で均質化処理を行い1150℃で40時間の歪取アニール為の加熱、徐冷を行った。
得られた均質な光学用石英ガラス材料の光学特性を測定したが、3方向に脈理が存在せず、また屈折率分布を干渉計(Zygo MarkIV)で測定したところΔnは1×10−6以下と極めて良好な値を示した。また直交ニコルの歪み測定器で複屈折量を測定したが、複屈折量は1nm/cm以下であった。
【0020】
この光学用石英ガラス材料は文献2(New Glass VoL6 No,2(1989)191−196“ステッパ用石英ガラスについて”牛田一雄著)に示されるエキシマレーザーステッパーに用いられる石英ガラス部材として必要な光学特性を満たしているために、この光学用石英ガラス材料を用いて光学部品を構成する事によりArFを光源とする半導体露光装置を作る事が可能である。
一方で該光学用石英ガラス材料に含有された水素分子濃度をレーザーラマン法にて測定したところ、5×1017分子/cmであった。(サンプル番号A)
水素分子含有量はラマン分光光度計を用いて行なったが、これは日本分光工業社製のラマン分光光度計・NR1100を用いて、励起波長488nmのArレーザー光で出力700mW、浜松ホトニクス社製のホトマル・R943−02を使用するホストカウンティング法で行なった。なお、この水素分子含有量はこのときのラマン散乱スペクトルで800cm−1に観察されるSiOの散乱バンドと水素の4135−40cm−1に観察される散乱バンドの面積強度比を濃度に換算して求めた。また、換算定数は文献値4135cm−1/800cm−1×1.22×1021 (Zhurnal Pri−Kladnoi Spektroskopii, Vol.46、No.6、PP987〜991,June,1987)を使用した。
【0021】
また該光学用石英ガラス材料からφ60mm×t20mmの試料を切り出し、大気雰囲気で1000℃×20時間の酸化処理を行った後、水素ガスの高圧(50気圧)雰囲気で600℃×1000時間の水素ドープ処理を行った。処理後のサンプルの屈折率分布を測定したところΔnが4×10−6で複屈折量は5nm/cm、含有される水素分子濃度は2×1019分子/cmであった。(サンプル番号D)
【0022】
更に該光学用石英ガラス材料からφ60mm×t20mmの試料を切り出し、大気雰囲気で1000℃×20時間の酸化処理を行った後、雰囲気炉中で水素ガスの加圧(9気圧)雰囲気で600℃×1000時間の水素ドープ処理を行った。処理後のサンプルの屈折率分布を測定したところΔnが3×10−6で複屈折量は3nm/cm、含有される水素分子濃度は5×1018分子/cmであった。(サンプル番号B)
【0023】
再び該光学用石英ガラス材料からφ60mm×t20mmの試料を切り出し、大気雰囲気で1000℃×20時間の酸化処理を行った後、雰囲気炉中で水素ガスの加圧(3気圧)雰囲気で600℃×1000時間の水素ドープ処理を行った。処理後のサンプルの屈折率分布を測定したところΔnが2×10−6で複屈折量は2nm/cm、含有される水素分子濃度は2×1018分子/cmであった。(サンプル番号C)
【0024】
ここで、サンプルA及びCを除いてはそれぞれ1種類の石英ガラスのみではArFエキシマレーザーを光源とする露光装置を構成するには十分な均質性を有しておらず、また複屈折量も大きすぎる事が判ったが、サンプルA、B、C、Dで代表される光学部材を図1の装置の投影光学系として光路長に換算して4:2:1:1でレンズ系を構成したとして光学系全体の屈折率の均質性を計算したところ、光路1cmあたりのΔnとしては2×10−6、複屈折の平均値は2nm/cmであり露光装置を構成するに十分な光学特性が得られている事が判った。
【0025】
尚、4つのサンプルの波長193nmの紫外線に対する透過率を紫外分光光度計で測定したところ、1cm当たりの内部透過率で99.8%と良好な値を示した。やはりエキシマレーザーステッパーを構成するのに十分な透過性を有している。
【0026】
得られた4つのサンプルに対してArFエキシマレーザーを照射して光学特性の変化を調べた。照射条件はパルス当たりのエネルギー密度が10mJ/cm、照射周波数は300Hzで行った。これは文献1に示される様に実際の操業における光学部材を透過するレーザーの光エネルギー密度をεmJ/cmとすると、(100/ε)倍の加速試験に該当する。
表1に各サンプルのエキシマレーザー照射結果を示す。照射数は2.5×10ショットで、この照射に伴う193nmの透過率変化と屈折率の変化を示す。
【0027】
【表1】

Figure 0003607006
【0028】
サンプルDに関しては屈折率の変化量が少なすぎるため正確な測定が行えなかった。
この結果から露光装置としての安定性を決定するパラメーターとして光学部材のArFレーザー照射による屈折率の変化が最も重要なパラメーターであることが判った。
今、サンプルA〜Cの結果を用いてパルス当りのArFレーザーのエネルギー密度10mJ/cmにおける屈折率の変化率と水素濃度の関係を調べると、以下の式を得た。
【0029】
Log[dn/dp10mJ]=−1.13−0.67Log[CH2
ここでこの加速シュミレーション実験の条件から、実際の露光装置の操業において石英ガラス光学部材を透過するArFエキシマレーザー光のエネルギー密度をεmJ/cmとした場合に対する加速率は(100/ε)倍であると考えられるので、ArFエキシマレーザー光のエネルギー密度をεmJ/cmの場合における屈折率の変化率は、
Log[dn/dpεmJ]=−3.13−0.67Log[CH2]+2Log[ε]
であらわせる事が判った。
【0030】
これらの石英ガラス光学部材より構成されるArFエキシマレーザーを光源とする露光装置においては照射数が1×1010〜1×1011ショットのエキシマレーザー照射(これは600Hzの周波数で半年〜600Hzの周波数で5年強に対応する)に対して屈折率の変化量Δnが1×10−6以下であれば、実際の半導体露光には十分な安定性が確保できていると判断できるため、この基準でエネルギー密度εcmの場合における屈折率の変化率は、
−17≦Log[dn/dpεmJ]≦−16
の範囲にある事が好ましい事が分かった。
【0031】
このことから、石英ガラス光学部材より構成されるArFエキシマレーザーを光源とする露光装置において透過するArFエキシマレーザー光のエネルギー密度がεmJ/cmである石英ガラス部材が十分な安定性を有するためには、該石英ガラス部材に含まれるべき水素分子濃度は、以下の式であらわされる事が分かった。
19.2+2.98Logε≦Log(CH2)≦20.7+2.98Logε
ここで、上記式によって求められる水素分子濃度はエネルギー密度εとの関係で表にすると以下のような範囲になる。
【0032】
【表2】
Figure 0003607006
【0033】
ここでε<0.2mJ/cmの低いエネルギー密度の領域においては、石英ガラス光学部材に含有される水素濃度の最大値に関しては、4×1018分子/cmのレベルであれば工程的に負担の少ないより水素濃度の高い石英ガラス材料でも代替できると考えられるので、上記式はε≧0.2mJ/cmに対して規定し、ε<0.2mJ/cmにおいては、
式19.2+2.98Logε≦Log(CH2)<18.6
を用いればよい事が判明した。
【0034】
【発明の効果】
以上記載のごとく本発明によれば、水素ドープされた石英ガラスからなる光学系を用いてArFエキシマレーザー露光装置を構成する場合においても、耐久性や品質を劣化させる事なく、光学系全体として低コストで製造容易に構成することのできる。
【図面の簡単な説明】
【図1】本発明が適用される投影光学系を用いた集積回路製造用露光装置である。
【図2】本発明が適用される反射光学系を用いた集積回路製造用露光装置である。
【符号の説明】
1 ArFエキシマレーザー光源
2 変形照明手段
3 コンデンサレンズ
4 マスク(レチクル)
5 投影光学系
6 ウエーハ
11 光源
12 第1レンズ群12
13 ビームスプリッタ
14 第2レンズ群
15 ミラー
16 第3レンズ群
17 レチクル
19 第4レンズ群
18 ウエーハ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exposure apparatus for manufacturing an integrated circuit that looks from 64M to 256M. In particular, the pattern of the integrated circuit is illuminated by a laser beam from an ArF excimer laser, and the pattern of the integrated circuit is formed by an optical system made of quartz glass. The present invention relates to an exposure apparatus for manufacturing an integrated circuit by printing on the surface.
[0002]
[Prior art]
Conventionally, an optical lithography technique that uses light to transfer a pattern on a mask onto a wafer is superior in cost compared with other techniques that use an electron beam or a wire. Widely used as an exposure apparatus.
Conventionally, an exposure apparatus using such a photolithographic technique has been developed to form a pattern with a line width of 0.5 to 0.4 μm using i-line having a wavelength of 365 nm emitted from a high-pressure mercury lamp as a light source. The exposure apparatus corresponds to an integrated circuit of 16 Mbit DRAM or lower.
On the other hand, the next generation 64 Mbit to 256 Mbit requires imaging performance of 0.25 to 0.35 μm, and further 1 Gbit requires resolution performance of 0.13 to 0.20 μm. The image performance is lower than the wavelength of i-line, and KrF light is used as a light source. Further, ArF light, particularly ArF excimer laser is used in place of KrF light in the region of less than 0.20 μm.
[0003]
However, there are various problems in the optical lithography technology using an ArF excimer laser, one of which is a problem of optical materials for forming lenses, mirrors, and prisms constituting the projection optical system.
That is, the optical material with good transmittance at 193 nm wavelength of ArF is substantially limited to quartz glass, especially high-purity synthetic quartz glass, but ArF light damages quartz glass more than 10 times as much as KrF light. .
[0004]
The resistance of quartz glass to excimer laser irradiation depends on the concentration of hydrogen contained as shown in Japanese Patent Application No. 1-145226 filed by the present applicant.
For this reason, in an exposure apparatus using a conventional KrF excimer laser as a light source, the quartz glass constituting the optical system can ensure sufficient resistance if the hydrogen concentration contained therein is 5 × 10 16 molecules / cm 3 or more. It is described in said technique.
However, since the influence of ArF laser light on quartz glass is much larger than that of KrF as described above, the degree of damage (change in transmittance and change in refractive index) caused by ArF laser light on synthetic quartz glass is determined. As a result of the investigation, the required hydrogen molecule concentration is 100 to 1000 times higher than the KrF laser light in some cases, specifically, a hydrogen molecule concentration of 5 × 10 18 molecules / cm 3 or more is required. It turns out that there is.
[0005]
The concentration of hydrogen molecules contained in the quartz glass constituting this optical system is a number determined by the conditions for synthesizing the raw materials and / or the conditions for the subsequent heat treatment process (including hydrogen dope). The molecular concentration is uniquely determined by ignoring the range due to process variations. Therefore, a synthetic quartz glass member used in an optical system such as a mirror or a lens constituting an exposure apparatus has only one type of synthesis from the viewpoint of hydrogen concentration. It consisted of quartz glass.
There are two methods of including hydrogen molecules in synthetic quartz glass. First, when adjusting the atmosphere during production and including hydrogen molecules in synthetic quartz glass at normal pressure, the maximum concentration of hydrogen molecules that can be included is 5 ×. Up to about 10 18 molecules / cm 3 . As another method, even when hydrogen molecules are doped into quartz glass by a pressure heat treatment in a hydrogen atmosphere, hydrogen molecules introduced in the upper limit 10 atm / cm 2 of hydrogen treatment that are not subject to the high pressure gas control method. The upper limit of the concentration is still 5 × 10 18 molecules / cm 3 .
[0006]
For this reason, when it is intended to contain 5 × 10 18 molecules / cm 3 or more of hydrogen molecules in quartz glass, it is necessary to perform heat treatment at a high hydrogen pressure much higher than 10 atm.
For example, in Japanese Patent Application Laid-Open No. 4-164833 filed by the present applicant, a temperature of about 1 × 10 18 (molecules / cm 3 ) is obtained by remelting heat treatment at a temperature of 1750 ° C. in a high-pressure atmosphere of 100% argon gas. A technique capable of doping hydrogen molecules is disclosed.
[0007]
[Problems to be solved by the invention]
However, remelting heat treatment at a temperature of 1750 ° C. preferably induces a new defect in the quartz glass, so that the heat treatment temperature is preferably in the range of 200 to 800 ° C. (Japanese Patent Laid-Open No. 6-166528). When a large amount of hydrogen molecules of 5 × 10 18 molecules / cm 3 or more are introduced into the quartz glass optical member by hydrogen heat treatment in the region, the diffusion rate of hydrogen molecules is not so high, so that processing time is very long for large optical members. In addition to the disadvantages described above, performing heat treatment in a high-pressure atmosphere has problems in that the homogeneity of the refractive index of the quartz glass optical member is reduced and distortion is introduced.
Accordingly, even when high-pressure heat treatment is performed, heat treatment for re-adjustment is necessary. Therefore, the refractive index is sufficient to contain 5 × 10 18 molecules / cm 3 or more of hydrogen molecules and to constitute the optical system of the exposure apparatus. Quartz glass having optical properties such as homogeneity and low distortion is extremely complicated industrially and becomes very expensive after a long process.
[0008]
In the present invention, even when an ArF excimer laser exposure apparatus is configured using an optical system made of hydrogen-doped quartz glass, the entire optical system can be easily manufactured at low cost without deteriorating durability and quality. An object of the present invention is to provide an exposure apparatus that can perform the above.
[0009]
[Means for Solving the Problems]
In order to achieve such a technical problem, the present invention manufactures an integrated circuit by illuminating an integrated circuit pattern with a laser beam from an ArF excimer laser and baking the integrated circuit pattern on a wafer by an optical system made of quartz glass material. In the exposure apparatus for
At least the lens constituting the optical system is composed of an optical member made of synthetic quartz glass doped with hydrogen, and the lens is composed of a plurality of types of optical members made of quartz glass having different hydrogen molecule concentrations. The hydrogen molecule concentration of C H2 (molecules / cm 3 ) is ε (mJ / cm 2 ), where ε (mJ / cm 2 ) is the energy density per pulse of ArF excimer laser light that passes through the corresponding lens
For ε <0.2 mJ / cm 2
Formula 19.2 + 2.98 Logε ≦ Log (C H2 ) <18.6… 1)
In the case of ε ≧ 0.2 mJ / cm 2 , the formula 19.2 + 2.98 Log ε ≦ Log (C H2 ) ≦ 20.7 + 2.98 Log ε 2)
We propose a semiconductor exposure apparatus characterized in that it is set to fall within the range specified in (1).
[0010]
The present invention will be described in detail below.
FIG. 1 is a schematic block diagram of a lithography exposure apparatus using an ArF excimer laser applied to the present invention, where 1 is an ArF excimer laser light source and 2 is a pattern for forming a pattern image free from interference of diffraction light on the wafer surface. The modified illumination means has a shape of, for example, a quadrupole illumination or an annular illumination light source whose central portion is a light shielding surface.
3 is a condenser lens for guiding the excimer laser light emitted from the light source to the reticle, 4 is a mask (reticle), and 5 is a projection optical system. For example, a lens group having a positive refractive power and a lens having a negative refractive power By combining the groups, a pupil plane is formed in the optical system to improve the resolution. Reference numeral 6 denotes a wafer placed on the wafer stage 7, and the mask pattern formed on the reticle 4 is imaged and drawn on the wafer 6 via the projection optical system.
[0011]
In such an apparatus, the projection optical system includes a condenser lens group 5a disposed at a position closest to the wafer surface and a lens group 5b disposed in the vicinity of the pupil surface in order to form an image of pattern light on the wafer surface. However, a secondary light source that is an image of the light source is formed on the pupil plane. Therefore, when a light source image appears discretely on the pupil plane, energy concentrates on the pupil surface, which causes damage to the optical system along with the wafer side.
On the other hand, the reticle side is not a severe condition because the energy density is reduced by the square of the imaging magnification compared to the wafer side.
[0012]
The present invention focuses on this point,
Specifically, the size of the pupil plane of the ArF excimer laser is about φ30 to φ50 mm according to the reference, and it is reasonable to determine the energy density on the basis of several times the area. .
For example, when the resist sensitivity is 20 to 50 mJ and exposure is performed with 20 to 30 pulses of laser irradiation, the energy density per pulse on the pupil plane is 0.7 to 1.7 mJ / cm 2 . Even if it is assumed that the wafer surface is slightly larger, the energy density of the lens group arranged at the position closest to the wafer surface is 0.6 to about 80 to 90%. It is estimated to be about ˜1.5 mJ / cm 2 . The pupil plane is considered to be slightly lower.
[0013]
On the other hand, in order to narrow the light band and improve the resolving power, the projection optical system is configured by combining a lens group having a positive refractive power and a lens group having a negative refractive power (see, for example, JP-A-3-34308). In this case, it is necessary to eliminate aberrations as much as possible in each lens group. In such a case, it is preferable to set the magnification for reducing or enlarging the actual lens group to some extent. It is estimated that the energy density of the next lens unit from the contact position is about 1/3 of 0.6 to 1.5 mJ / cm 2 , specifically about 0.2 to 0.6 mJ / cm 2 .
Most other lens groups have an energy density ε ≦ 0.2 mJ / cm 2 per pulse.
Accordingly, when the respective energy densities are applied to the above equation, the hydrogen molecule concentration C H2 molecule of most lens groups of the projection optical system having an energy density ε ≦ 0.2 mJ / cm 2 per pulse from the equation 1). / Cm 3 can be set to 1 × 10 17 ≦ C H2 <5 × 10 18, and within such a hydrogen concentration range, it is possible to produce a hydrogen-doped synthetic quartz glass for lenses without any particular difficulty in production conditions. is there.
[0014]
Similarly, the next-stage lens group receiving the strongest energy having an energy density per pulse of 0.2 ≦ ε ≦ 0.6 mJ / cm 2 has a hydrogen molecule concentration C H2 molecule / cm 3 of 5 × 10 17 ≦ C H2 ≦ 5 × 10 18 can be set, and in this case as well, hydrogen-doped synthetic quartz glass for lenses can be manufactured without any particular difficulty in manufacturing conditions within such a hydrogen concentration range.
Hydrogen molecule concentration only for the wafer exposure surface or / and the lens (group) closest to the pupil plane that receives the strongest light energy of 0.6 ≦ ε ≦ 1.5 mJ / cm 2 per pulse. C H2 molecule / cm 3 may be set to 5 × 10 18 ≦ C H2 ≦ 5 × 10 19 .
[0015]
The present invention can be applied not only to the projection optical system exposure apparatus shown in FIG. 1 but also to the reflection optical system exposure apparatus.
That is, FIG. 2 is a schematic diagram showing a lens configuration of a reflection optical system exposure apparatus using a prism type beam splitter for achieving a high resolution. To briefly explain the configuration, the first lens group 12 from the light source 11 is described. The light passing through the beam splitter 13 through the second lens group 14 passes through the second lens group 14, is then redirected by the mirror 15, and then condensed by the third lens group 16. After scanning, the beam again returns to the beam splitter 13 through the third lens group 16, the mirror 15, and the second lens group 14. This time, the beam is redirected to the splitter 13 and imaged by the fourth lens group 19, and then the wafer. An integrated circuit pattern is burned onto 18.
[0016]
The fourth lens group 19 of the variable Kogo to the splitter 13 according to such devices Energy density per pulse 0.6 ≦ ε ≦ 1.5 mJ / strongest hydrogen for receiving the light energy molecules cm 2 concentration C H2 The molecule / cm 3 may be set to 5 × 10 18 ≦ C H2 ≦ 5 × 10 19, and in this apparatus, since the condensing scan is performed by the third lens group 16 on the reticle 17 side, energy per pulse In order to receive energy of density 0.2 ≦ ε ≦ 0.6 mJ / cm 2 , the hydrogen molecule concentration C H2 molecule / cm 3 may be set to 5 × 10 17 ≦ C H2 ≦ 5 × 10 18 , and other Lenses, mirrors, and prism-type beam splitters receive only an energy density of ε ≦ 0.2 mJ / cm 2 per pulse. The degree C H2 molecule / cm 3 may be set to 1 × 10 17 ≦ C H2 ≦ 5 × 10 18 .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail by way of example. However, unless specifically stated otherwise, the composition, dope amount, production conditions, etc. described in the examples are not intended to limit the scope of the invention, but are merely illustrative examples.
In the exposure apparatus shown in FIGS. 1 and 2, it takes a very long time to confirm the long-term stability of the optical characteristics under actual operating conditions, so that quartz glass for manufacturing lenses, mirrors, prisms, and the like is used. A simulation experiment was conducted in which only the optical member was taken out and the actual operation was accelerated.
[0018]
In general, the progress rate of damage of quartz glass by laser irradiation increases in proportion to the square of the energy density (fluence) of the irradiated excimer laser (refer to Optical 23, No. 10, “Quartz glass for excimer laser” written by Akira Fujinoki, This is used as a standard for acceleration experiments.
[0019]
A quartz glass ingot was prepared by a so-called direct method in which silicon tetrachloride was deposited on a rotating substrate while being hydrolyzed with an oxyhydrogen flame.
The obtained quartz glass ingot contained 800 to 1000 ppm of OH groups and 5 × 10 18 molecules / cm 2 of hydrogen molecules. This quartz glass ingot was homogenized by the method disclosed in Japanese Patent Application Laid-Open No. 7-267661, and heated and annealed at 1150 ° C. for 40 hours for strain relief annealing.
The optical properties of the obtained homogeneous optical quartz glass material for optical were measured, but there was no striae in three directions, and the refractive index distribution was measured with an interferometer (Zygo Mark IV), and Δn was 1 × 10 −6. Very good values were shown below. Further, the birefringence amount was measured with a crossed Nicol strain measuring instrument, but the birefringence amount was 1 nm / cm or less.
[0020]
This optical quartz glass material has optical characteristics necessary for a quartz glass member used for an excimer laser stepper described in Reference 2 (New Glass VoL6 No, 2 (1989) 191-196 "About Stepper Quartz Glass" by Kazuo Ushida). Therefore, it is possible to make a semiconductor exposure apparatus using ArF as a light source by configuring an optical component using this optical quartz glass material.
On the other hand, when the concentration of hydrogen molecules contained in the optical quartz glass material was measured by a laser Raman method, it was 5 × 10 17 molecules / cm 2 . (Sample number A)
The hydrogen molecule content was measured using a Raman spectrophotometer. This was performed using a Raman spectrophotometer / NR1100 manufactured by JASCO Corporation, an output of 700 mW with an Ar laser beam having an excitation wavelength of 488 nm, manufactured by Hamamatsu Photonics. This was carried out by the host counting method using Photomaru R943-02. Incidentally, the hydrogen molecule content is converted to concentration relative intensity of scattering band observed in 4135-40Cm -1 of SiO 2 scattering band and hydrogen is observed 800 cm -1 in the Raman scattering spectrum of the time Asked. Also, conversion constant literature value 4135cm -1 / 800cm -1 × 1.22 × 10 21 (Zhurnal Pri-Kladnoi Spektroskopii, Vol.46, No.6, PP987~991, June, 1987) was used.
[0021]
In addition, a φ60 mm × t20 mm sample was cut out from the optical quartz glass material, oxidized at 1000 ° C. for 20 hours in an air atmosphere, and then hydrogen doped at 600 ° C. for 1000 hours in a high-pressure (50 atm) atmosphere of hydrogen gas. Processed. When the refractive index distribution of the treated sample was measured, Δn was 4 × 10 −6 , the birefringence was 5 nm / cm, and the concentration of hydrogen molecules contained was 2 × 10 19 molecules / cm 3 . (Sample number D)
[0022]
Further, a φ60 mm × t20 mm sample was cut out from the optical quartz glass material, subjected to an oxidation treatment at 1000 ° C. for 20 hours in an atmospheric atmosphere, and then 600 ° C. in a pressurized (9 atm) atmosphere of hydrogen gas in an atmospheric furnace. A hydrogen doping treatment for 1000 hours was performed. When the refractive index distribution of the sample after the treatment was measured, Δn was 3 × 10 −6 , the birefringence was 3 nm / cm, and the concentration of hydrogen molecules contained was 5 × 10 18 molecules / cm 3 . (Sample number B)
[0023]
A sample of φ60 mm × t20 mm was cut out from the quartz glass material for optical again and subjected to an oxidation treatment at 1000 ° C. for 20 hours in an air atmosphere, and then 600 ° C. in a pressurized atmosphere (3 atm) of hydrogen gas in an atmospheric furnace. A hydrogen doping treatment for 1000 hours was performed. When the refractive index distribution of the sample after the treatment was measured, Δn was 2 × 10 −6 , the birefringence was 2 nm / cm, and the concentration of hydrogen molecules contained was 2 × 10 18 molecules / cm 3 . (Sample number C)
[0024]
Here, except for samples A and C, only one type of quartz glass is not sufficient to form an exposure apparatus using an ArF excimer laser as a light source, and the amount of birefringence is large. It was found that the optical system represented by Samples A, B, C, and D was converted into an optical path length as the projection optical system of the apparatus shown in FIG. As a result, the refractive index homogeneity of the entire optical system was calculated. As a result, Δn per 1 cm of the optical path was 2 × 10 −6 , and the average birefringence was 2 nm / cm. I understood that it was obtained.
[0025]
When the transmittance of the four samples with respect to ultraviolet rays having a wavelength of 193 nm was measured with an ultraviolet spectrophotometer, the internal transmittance per cm was as good as 99.8%. Again, it has sufficient transparency to construct an excimer laser stepper.
[0026]
The obtained four samples were irradiated with ArF excimer laser, and changes in optical properties were examined. The irradiation conditions were an energy density per pulse of 10 mJ / cm 2 and an irradiation frequency of 300 Hz. As shown in Document 1, this corresponds to an acceleration test of (100 / ε) 2 times, where εmJ / cm 2 is the light energy density of the laser that passes through the optical member in actual operation.
Table 1 shows the results of excimer laser irradiation of each sample. The number of irradiation is 2.5 × 10 7 shots, and shows a change in transmittance and refractive index at 193 nm accompanying this irradiation.
[0027]
[Table 1]
Figure 0003607006
[0028]
For sample D, the amount of change in the refractive index was too small to accurately measure.
From this result, it was found that the most important parameter is the change in the refractive index of the optical member due to ArF laser irradiation as a parameter for determining the stability of the exposure apparatus.
When the relationship between the refractive index change rate and the hydrogen concentration at the energy density of 10 mJ / cm 2 of the ArF laser per pulse was examined using the results of samples A to C, the following equation was obtained.
[0029]
Log [dn / dp 10 mJ ] = − 1.13−0.67 Log [C H2 ]
Here, based on the conditions of this accelerated simulation experiment, the acceleration rate with respect to the case where the energy density of ArF excimer laser light transmitted through the quartz glass optical member is εmJ / cm 2 in the actual operation of the exposure apparatus is (100 / ε) 2 times. Therefore, the change rate of the refractive index when the energy density of ArF excimer laser light is εmJ / cm 2 is
Log [dn / dpεmJ] = − 3.13−0.67 Log [C H2 ] +2 Log [ε]
I found out that
[0030]
In an exposure apparatus using an ArF excimer laser composed of these quartz glass optical members as a light source, excimer laser irradiation with an irradiation number of 1 × 10 10 to 1 × 10 11 shots (this is a frequency of 600 Hz and a frequency of half a year to 600 Hz). If the refractive index change Δn is 1 × 10 −6 or less, it can be determined that sufficient stability can be secured for actual semiconductor exposure. And the change rate of the refractive index in the case of energy density εcm 2 is
−17 ≦ Log [dn / dpεmJ] ≦ −16
It was found that it is preferable to be in the range.
[0031]
For this reason, the quartz glass member in which the energy density of ArF excimer laser light transmitted in an exposure apparatus using an ArF excimer laser composed of a quartz glass optical member as a light source has sufficient stability is εmJ / cm 2. It has been found that the hydrogen molecule concentration to be contained in the quartz glass member is expressed by the following equation.
19.2 + 2.98 Logε ≦ Log (C H2 ) ≦ 20.7 + 2.98 Logε
Here, the hydrogen molecule concentration obtained by the above formula is in the following range when tabulated in relation to energy density ε.
[0032]
[Table 2]
Figure 0003607006
[0033]
Here, in the low energy density region of ε <0.2 mJ / cm 2 , the maximum value of the hydrogen concentration contained in the quartz glass optical member is a process level as long as the level is 4 × 10 18 molecules / cm 2. Therefore, the above equation is defined for ε ≧ 0.2 mJ / cm 2 , and when ε <0.2 mJ / cm 2 ,
Formula 19.2 + 2.98 Log ε ≦ Log (C H2 ) <18.6
It turned out that it should be used.
[0034]
【The invention's effect】
As described above, according to the present invention, even when an ArF excimer laser exposure apparatus is configured using an optical system made of hydrogen-doped quartz glass, the entire optical system is reduced without deteriorating durability and quality. It can be easily manufactured at a low cost.
[Brief description of the drawings]
FIG. 1 shows an exposure apparatus for manufacturing an integrated circuit using a projection optical system to which the present invention is applied.
FIG. 2 is an exposure apparatus for manufacturing an integrated circuit using a reflective optical system to which the present invention is applied.
[Explanation of symbols]
1 ArF excimer laser light source 2 Modified illumination means 3 Condenser lens 4 Mask (reticle)
5 Projection Optical System 6 Wafer 11 Light Source 12 First Lens Group 12
13 Beam splitter 14 Second lens group 15 Mirror 16 Third lens group 17 Reticle 19 Fourth lens group 18 Wafer

Claims (1)

ArFエキシマレーザーからのレーザ光で集積回路のパターンを照明し、石英ガラス材からなる光学系により集積回路のパターンをウエーハ上に焼き付けて集積回路を製造する為の露光装置において、
前記光学系を構成する少なくともレンズを水素ドープされた合成石英ガラス製光学部材で構成するとともに、該レンズを水素分子濃度の異なる複数種の石英ガラス製光学部材群で構成し、夫々の光学部材群の水素分子濃度 CH2(分子/cm)が、対応するレンズを透過するArFエキシマレーザー光の1パルス当たりのエネルギー密度をε(mJ/cm)として、
ε<0.2mJ/cmにおいては、
式19.2+2.98Logε≦Log(CH2)<18.6
ε≧0.2mJ/cmにおいては、
式19.2+2.98Logε≦Log(CH2)≦20.7+2.98Logε
で規定される範囲にあるように設定した事を特徴とする半導体露光装置。
In an exposure apparatus for manufacturing an integrated circuit by illuminating an integrated circuit pattern with a laser beam from an ArF excimer laser and baking the integrated circuit pattern on a wafer by an optical system made of a quartz glass material.
At least the lens constituting the optical system is composed of a synthetic silica glass optical member doped with hydrogen, and the lens is composed of a plurality of types of quartz glass optical member groups having different hydrogen molecule concentrations. as the hydrogen molecule concentration C H2 (molecules / cm 3) is the energy density per one pulse of the ArF excimer laser light transmitted through the corresponding lens ε (mJ / cm 2),
For ε <0.2 mJ / cm 2
Formula 19.2 + 2.98 Log ε ≦ Log (C H2 ) <18.6
For ε ≧ 0.2 mJ / cm 2 ,
Formula 19.2 + 2.98 Logε ≦ Log (C H2 ) ≦ 20.7 + 2.98 Logε
A semiconductor exposure apparatus characterized in that it is set so as to be within the range specified in 1.
JP19149396A 1996-07-02 1996-07-02 Exposure apparatus for integrated circuit manufacturing Expired - Lifetime JP3607006B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19149396A JP3607006B2 (en) 1996-07-02 1996-07-02 Exposure apparatus for integrated circuit manufacturing
PCT/EP1997/003406 WO1998000761A1 (en) 1996-07-02 1997-06-30 Projection aligner for integrated circuit fabrication
US09/029,451 US6031238A (en) 1996-07-02 1997-06-30 Projection aligner for integrated circuit fabrication
DE69702830T DE69702830T2 (en) 1996-07-02 1997-06-30 PROJECTION DEVICE WITH ALIGNMENT DEVICE FOR PRODUCING INTEGRATED CIRCUITS
EP97930447A EP0852742B1 (en) 1996-07-02 1997-06-30 Projection aligner for integrated circuit fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19149396A JP3607006B2 (en) 1996-07-02 1996-07-02 Exposure apparatus for integrated circuit manufacturing

Publications (2)

Publication Number Publication Date
JPH1022216A JPH1022216A (en) 1998-01-23
JP3607006B2 true JP3607006B2 (en) 2005-01-05

Family

ID=16275567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19149396A Expired - Lifetime JP3607006B2 (en) 1996-07-02 1996-07-02 Exposure apparatus for integrated circuit manufacturing

Country Status (1)

Country Link
JP (1) JP3607006B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040004389A (en) * 2000-10-03 2004-01-13 코닝 인코포레이티드 Photolithography methods and systems

Also Published As

Publication number Publication date
JPH1022216A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
EP0720969B1 (en) Silica glass, optical member including the same, and method for producing the same
US5719698A (en) Silica glass member for UV-lithography, method for silica glass production, and method for silica glass member production
EP0691312B1 (en) Method for producing silica glass for use with light in a vacuum ultraviolet wavelength range, and silica glass and optical member produced by the method
JP4304409B2 (en) Method for producing quartz glass member
KR100392127B1 (en) Quartz glass for optical lithography, optical member containing the same, exposure apparatus using the same, and manufacturing method thereof
JP5299477B2 (en) Method for producing synthetic quartz glass
US6025955A (en) Optical member for photolithography, method for evaluating optical member, and photolithography apparatus
JP3125630B2 (en) Method for producing quartz glass for vacuum ultraviolet and quartz glass optical member
KR20010052399A (en) Synthetic quartz glass for optical member, process for producing the same, and method of using the same
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP3607006B2 (en) Exposure apparatus for integrated circuit manufacturing
JP3976083B2 (en) Optical system for circuit pattern exposure
JP3531870B2 (en) Synthetic quartz glass
US6611317B1 (en) Exposure apparatus, semiconductor device, and photomask
JP3641767B2 (en) Exposure apparatus for integrated circuit manufacturing
JP3641766B2 (en) Exposure apparatus for integrated circuit manufacturing
US6031238A (en) Projection aligner for integrated circuit fabrication
JP2566151B2 (en) Method for manufacturing laser optical system base material
JPH10270352A (en) Aligner for manufacturing integrated circuit
JPH06308717A (en) Quartz glass member for photolithography
JPH11109101A (en) Optical member for laser beam
JPWO2004065315A1 (en) Synthetic quartz glass optical member and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term