JPH11109101A - Optical member for laser beam - Google Patents

Optical member for laser beam

Info

Publication number
JPH11109101A
JPH11109101A JP27168197A JP27168197A JPH11109101A JP H11109101 A JPH11109101 A JP H11109101A JP 27168197 A JP27168197 A JP 27168197A JP 27168197 A JP27168197 A JP 27168197A JP H11109101 A JPH11109101 A JP H11109101A
Authority
JP
Japan
Prior art keywords
concentration
hydrogen molecule
laser beam
glass
molecule concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27168197A
Other languages
Japanese (ja)
Inventor
Kensho Shimodaira
憲昭 下平
Yorisuke Ikuta
順亮 生田
Shinya Kikukawa
信也 菊川
Akio Masui
暁夫 増井
Shuhei Yoshizawa
修平 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP27168197A priority Critical patent/JPH11109101A/en
Publication of JPH11109101A publication Critical patent/JPH11109101A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical member for laser beam in which the optical homogeneity is not degraded or degradation of the image-forming performance is small even under irradiation of the UV laser beam such as KrF by forming the optical member of high-purity transparent synthetic quartz glass containing hydrogen molecule, and specifying the mean hydrogen molecule concentration in the glass, the ratio of the maximum hydrogen molecule concentration to the minimum molecule concentration in the glass, and the content of OH group. SOLUTION: An optical member for laser beam to be used for the laser beam of the UV ray wavelength range of 190-400 nm is formed of high-purity transparent synthetic quartz glass containing hydrogen molecule. The mean hydrogen molecule concentration in the glass is >=1×10<17> molecules/cm<3> , and the ratio of the maximum hydrogen molecule concentration to the minimum molecule concentration in the glass is 1.0-2.2, and the OH group content is <=500 ppm. If the mean hydrogen molecule concentration is <=5×10<16> molecules/cm<3> , the reduction effect o the optical damage is not sufficiently demonstrated, and the transmissivity is degraded, and the refractive index is increased in the laser beam irradiation. The OH group concentration is preferably <=300 ppm, more preferably, <=100 ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レンズ、窓部材、
ミラー、プリズム、フィルタ、エタロン板、その他のレ
ーザ光用光学系に係り、190〜400nmの紫外線波
長域で使用されるレーザ光用光学系部材、特にフォトリ
ソグラフィ装置用光学系部材に関する。
TECHNICAL FIELD The present invention relates to a lens, a window member,
The present invention relates to a mirror, a prism, a filter, an etalon plate, and other optical systems for laser light, and more particularly to an optical system member for laser light used in the ultraviolet wavelength region of 190 to 400 nm, particularly an optical system member for a photolithography apparatus.

【0002】[0002]

【従来の技術】近年LSIの高集積化に伴って、ウェー
ハ上に集積回路パターンを描画する光リソグラフィ技術
においても、サブミクロン単位の描画技術が要求されて
おり、より微細な描画を行うため、リソグラフィ用ステ
ッパーや反射屈折光学系システムに使用されるレンズや
マスク基板には、優れた均質性と優れた紫外線の透過性
および紫外線照射に対する強い耐性が要求されている。
2. Description of the Related Art With the recent increase in the degree of integration of LSIs, optical lithography techniques for drawing an integrated circuit pattern on a wafer also require a drawing technique in sub-micron units. Lenses and mask substrates used in lithography steppers and catadioptric optical systems are required to have excellent homogeneity, excellent ultraviolet transmittance, and strong resistance to ultraviolet irradiation.

【0003】石英ガラスは、近赤外から真空紫外域にわ
たる広範囲の波長域にわたって透明な材料であること、
並びに熱膨張係数が極めて小さく寸法安定性に優れてい
ることなどの理由から、特に不純物の少ない合成石英ガ
ラスがフォトリソグラフィ装置用光学系部材やフォトマ
スク用基板材料として用いられてきた。
[0003] Quartz glass is a transparent material over a wide wavelength range from near infrared to vacuum ultraviolet.
Synthetic quartz glass, which has a particularly small amount of impurities, has been used as an optical system member for a photolithography apparatus or a substrate material for a photomask because of its extremely small thermal expansion coefficient and excellent dimensional stability.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、リソグ
ラフィ技術においては、近年LSIの微細化、高集積化
に伴い、光源の短波長化が進んでおり、KrF(248
nm)、ArF(193nm)などの190〜400n
mの紫外線波長域のレーザ光の使用が実用化もしくは研
究されている。これらのレーザ光を、石英ガラスに長時
間照射した場合、ガラスがダメージを受け、透過率低
下、絶対屈折率の上昇や蛍光が発生するという問題があ
った。
However, in the lithography technology, the wavelength of the light source has been shortened in recent years with the miniaturization and high integration of LSI, and the KrF (248
190 nm to 400 n such as ArF (193 nm).
The use of laser light in the ultraviolet wavelength range of m has been put to practical use or studied. When these laser beams are irradiated on quartz glass for a long time, the glass is damaged, and there is a problem that the transmittance is reduced, the absolute refractive index is increased, and fluorescence is generated.

【0005】レーザ照射時の透過率低下の原因は、NB
OHCと呼ばれる260nm吸収バンド、およびE’セ
ンターと呼ばれる215nm吸収バンドの生成によるも
のであると一般的に考えられている。これらの吸収の問
題を解決するための方法として、種々の検討がなされて
いるが、石英ガラス中に水素分子を何らかの形で含有さ
せればよいことが知られている。例えば、特開平3−1
09233には、190〜400nmの紫外線波長域の
レーザ耐性を付与するために、水素分子を5×1016
子/cm3 以上含有させるということが開示されてい
る。
The cause of the decrease in transmittance during laser irradiation is NB
It is generally thought to be due to the generation of a 260 nm absorption band called OHC and a 215 nm absorption band called E 'center. Although various studies have been made as a method for solving these absorption problems, it is known that hydrogen molecules may be contained in quartz glass in some form. For example, JP-A-3-1
No. 09233 discloses that hydrogen molecules are contained in an amount of 5 × 10 16 molecules / cm 3 or more in order to impart laser resistance in an ultraviolet wavelength region of 190 to 400 nm.

【0006】ガラス中での水素分子の作用は明確ではな
いが、レーザ照射時に生成した前記欠陥を修復すると考
えられ、水素分子濃度の影響について検討した結果、そ
の濃度が5×1016分子/cm3 以上であれば、KrF
エキシマレーザを400mJ/cm2 ・pulse、1
00Hzの条件で5×105 ショット照射した場合の2
48nm透過率低下が0.2%以下と実用上問題ないレ
ベルになる。
Although the action of hydrogen molecules in glass is not clear, it is considered that the defects generated during laser irradiation are repaired. As a result of examining the influence of the hydrogen molecule concentration, the concentration was found to be 5 × 10 16 molecules / cm. If it is 3 or more, KrF
Excimer laser at 400 mJ / cm 2 · pulse, 1
2 when 5 × 10 5 shots are irradiated under the condition of 00 Hz
The decrease in the transmittance at 48 nm is 0.2% or less, which is a practically acceptable level.

【0007】しかしながら、5×1016分子/cm3
上の水素を含有させても、レーザ照射時の透過率・屈折
率の均一性が劣化し、結像性能が悪化するという問題の
あることがわかってきた。
However, also contain 5 × 10 16 molecules / cm 3 or more hydrogen, that is the uniformity of the transmittance and refractive index, at the time of laser irradiation degradation, a problem that the imaging performance is degraded I understand.

【0008】本発明の目的は、前述の問題を解決するた
めになされたものであり、190〜400nmの紫外線
波長域のレーザ照射に対しても透過率低下、結像性能の
劣化のない石英ガラスを提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problem. Quartz glass which does not cause a decrease in transmittance and a deterioration in imaging performance even when irradiated with a laser in the ultraviolet wavelength region of 190 to 400 nm. Is provided.

【0009】[0009]

【課題を解決するための手段】本発明は、上述の課題を
解決すべくなされたものであり、190〜400nmの
紫外線波長域のレーザ光に使用されるレーザ光用光学部
材であって、水素分子含有高純度透明合成石英ガラスで
形成されており、該ガラス中の平均水素分子濃度が1×
1017分子/cm3 以上で、該ガラス中の最高水素分子
濃度と最低分子濃度との比が1.0〜2.2であり、か
つOH基含有量が500ppm以下であることを特徴と
するレーザ光用光学部材を提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is an optical member for laser light used for laser light in the ultraviolet wavelength region of 190 to 400 nm, comprising hydrogen. It is formed of high purity transparent synthetic quartz glass containing molecules, and the average hydrogen molecule concentration in the glass is 1 ×
The ratio of the highest concentration of hydrogen molecules to the lowest concentration of hydrogen molecules in the glass is at least 10 17 molecules / cm 3 , and the OH group content is at most 500 ppm. An optical member for laser light is provided.

【0010】すなわち、平均水素分子濃度が5×1016
分子/cm3 以下であれば、光学的ダメージの低減効果
が十分に発揮されず、レーザ照射時に透過率の低下、屈
折率の上昇が起きる。また水素分子濃度が5×1016
子/cm3 以上であっても、その濃度に分布があると、
光学的ダメージの低減効果にバラツキが生じ、均質性の
悪化により結像性能が低下するなどの問題が生じるた
め、ガラス中の最高水素分子濃度と最低水素分子濃度と
の比を1.0〜2.2の範囲内にする。
That is, the average hydrogen molecule concentration is 5 × 10 16
When the molecular weight is not more than the molecule / cm 3 , the effect of reducing optical damage is not sufficiently exhibited, and a decrease in transmittance and an increase in refractive index occur during laser irradiation. Even if the hydrogen molecule concentration is 5 × 10 16 molecules / cm 3 or more, if the concentration has a distribution,
Variations occur in the effect of reducing optical damage, and problems such as deterioration of imaging performance due to deterioration of homogeneity occur. .2.

【0011】[0011]

【発明の実施の形態】図1は、水素濃度による、KrF
レーザ照射後の波長214nmでの吸収系係数変化Δk
を示したもので、横軸が水素濃度、縦軸が吸収係数変化
Δkを示している。すなわちΔk[1/cm]は、Kr
Fレーザ(100mJ/cm2 ・Pulse、100H
z)を、3.6×105 ショット照射する前後での波長
214nmの吸収率変化である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows KrF according to hydrogen concentration.
Absorption coefficient change Δk at a wavelength of 214 nm after laser irradiation
The horizontal axis represents the hydrogen concentration, and the vertical axis represents the absorption coefficient change Δk. That is, Δk [1 / cm] is equal to Kr
F laser (100mJ / cm 2 · Pulse, 100H
z) is the change in the absorptance at a wavelength of 214 nm before and after irradiating 3.6 × 10 5 shots.

【0012】また、水素濃度CH2は、ラマン散乱法によ
り測定した。すなわち、SiO2 に関する波数800c
-1のラマンバンドの強化I800 と合成石英中に含有さ
れる水素分子に関する4135cm-1のラマンバンドと
の強度I4135との比より、次式を用いて算出した(Zh
urnal Prikladnoi Spektros
Ropii vol.46,No6,pp.987〜9
91,1987)。
The hydrogen concentration C H2 was measured by a Raman scattering method. That is, wave number 800c for SiO 2
The ratio was calculated from the ratio of the enhanced I 800 of the Raman band at m −1 and the intensity I 4135 of the Raman band at 4135 cm −1 for the hydrogen molecules contained in the synthetic quartz using the following equation (Zh):
urnal Prikladnoi Spektros
Ropii vol. 46, No. 6, pp. 146-64. 987-9
91, 1987).

【0013】[0013]

【数1】CH2[分子/cm3 ]=12200×(I4135
/I800
C H2 [molecule / cm 3 ] = 12200 × (I 4135)
/ I 800 )

【0014】測定が行われる領域の大きさは1mm角程
度である。
The size of the area where the measurement is performed is about 1 mm square.

【0015】図1から理解されるように、1019(分子
/cm3 )レベルの水素分子を含有していても、水素濃
度が変動すると、吸収率変化も変動する。すなわち、透
過率の低下はさほど大きくなくとも、その均一性が低下
することにより、結像性能が悪化する。
[0015] As can be understood from FIG. 1, also contain 10 19 (molecules / cm 3) levels of hydrogen molecules, the hydrogen concentration is varied, also varied absorption rate changes. That is, even if the transmittance is not significantly reduced, the uniformity is reduced, and the imaging performance is deteriorated.

【0016】本発明ではガラス中の最高水素分子濃度と
最低水素分子濃度との比を1.0〜2.2の範囲内とし
たため、均一性の低下による結像性の悪化を抑制でき
る。
In the present invention, the ratio of the highest concentration of hydrogen molecules to the lowest concentration of hydrogen molecules in the glass is in the range of 1.0 to 2.2.

【0017】また、同時に本発明における光学系部材の
OH基濃度は500ppm以下であり、より好ましくは
300ppm以下、特に好ましくは100ppm以下で
ある。すなわちOH基を含有すると、レーザ照射により
解裂してNBOHCが生成し、260nm近辺の波長に
おける透過率が低下するため、OH基濃度は500pp
m以下とする。
At the same time, the OH group concentration of the optical member according to the present invention is at most 500 ppm, more preferably at most 300 ppm, particularly preferably at most 100 ppm. In other words, when an OH group is contained, it is cleaved by laser irradiation to generate NBOHC, and the transmittance at a wavelength near 260 nm is reduced.
m or less.

【0018】[0018]

【実施例】表1に示す最大水素分子濃度、最低水素分子
濃度の異なる透明石英ガラス(サイズ:20×20×1
5mm3 )を用意し、KrFレーザ(エネルギー密度:
400mJ/cm2 ・Pulse、周波数:100H
z)を3.0時間照射した。照射前後での屈折率分布を
キヤノン(株)製Zygo Mrak III Syste
m(光源:He−Neレーザ、波長633nm)で測定
した。例1〜6は実施例、例7〜9は比較例である。そ
の結果を表2に示す。また照射前後での波長248nm
透過率およびその面内での分布を(株)日立製作所製U
−3210で測定した。その結果を表3に示す。なお、
水素分子濃度は図1のグラフに示したのと同様に測定し
た。
EXAMPLE Transparent quartz glass (size: 20 × 20 × 1) having different maximum hydrogen molecule concentration and minimum hydrogen molecule concentration shown in Table 1
5mm 3 ) and prepare a KrF laser (energy density:
400mJ / cm 2 · Pulse, frequency: 100H
z) was irradiated for 3.0 hours. The refractive index distribution before and after the irradiation was measured by Zygo Mrak III System manufactured by Canon Inc.
m (light source: He-Ne laser, wavelength 633 nm). Examples 1 to 6 are Examples and Examples 7 to 9 are Comparative Examples. Table 2 shows the results. 248 nm wavelength before and after irradiation
The transmittance and the distribution in the plane are measured by U
It was measured at -3210. Table 3 shows the results. In addition,
The hydrogen molecule concentration was measured in the same manner as shown in the graph of FIG.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】例7は水素分子濃度の最大/最低比が大き
いため、KrFレーザ光照射前後の透過率の均質性の低
下が著しい例である。また、例8は水素分子濃度の含有
量が小さく、KrFレーザ光の照射前後の透過率の低下
が著しい例である。さらに例9は、OH基の含有量が大
きく、KrFレーザ光の照射による透過率の低下が著し
いうえに、透過率の均質性の低下も大きい例である。
In Example 7, since the maximum / minimum ratio of the hydrogen molecule concentration is large, the homogeneity of the transmittance before and after the irradiation of the KrF laser light is remarkably reduced. Example 8 is an example in which the content of the hydrogen molecule concentration is small, and the transmittance before and after irradiation with the KrF laser light is remarkably reduced. Further, Example 9 is an example in which the content of the OH group is large, the transmittance is significantly reduced by KrF laser beam irradiation, and the transmittance uniformity is also significantly reduced.

【0023】[0023]

【発明の効果】本発明によれば、KrFなどの紫外レー
ザ光の照射によっても、光学的均質性が悪化せず、結像
性能の低下も少ない、レーザ光用光学部材が得られる。
According to the present invention, an optical member for laser light can be obtained in which the optical homogeneity does not deteriorate and the imaging performance does not decrease much even when irradiated with ultraviolet laser light such as KrF.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水素濃度に対する、KrFレーザ照射後の波長
214nmでの吸収係数変化を示したグラフ
FIG. 1 is a graph showing a change in absorption coefficient at a wavelength of 214 nm after KrF laser irradiation with respect to a hydrogen concentration.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増井 暁夫 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 吉沢 修平 東京都千代田区丸の内二丁目1番2号 旭 硝子株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Akio Masui 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside the Central Research Laboratory of Asahi Glass Co., Ltd. (72) Inventor Shuhei Yoshizawa 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Asahi Glass Inside the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】190〜400nmの紫外線波長域のレー
ザ光に使用されるレーザ光用光学部材であって、水素分
子含有高純度透明合成石英ガラスで形成されており、該
ガラス中の平均水素分子濃度が1×1017分子/cm3
以上で、該ガラス中の最高水素分子濃度と最低分子濃度
との比が1.0〜2.2であり、かつOH基含有量が5
00ppm以下であることを特徴とするレーザ光用光学
部材。
1. An optical member for laser light used for laser light in an ultraviolet wavelength range of 190 to 400 nm, which is made of high-purity transparent synthetic quartz glass containing hydrogen molecules, and has an average hydrogen molecule content in the glass. Concentration is 1 × 10 17 molecules / cm 3
As described above, the ratio between the highest hydrogen molecule concentration and the lowest molecule concentration in the glass is 1.0 to 2.2, and the OH group content is 5%.
An optical member for laser light, characterized in that the content is not more than 00 ppm.
JP27168197A 1997-10-03 1997-10-03 Optical member for laser beam Pending JPH11109101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27168197A JPH11109101A (en) 1997-10-03 1997-10-03 Optical member for laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27168197A JPH11109101A (en) 1997-10-03 1997-10-03 Optical member for laser beam

Publications (1)

Publication Number Publication Date
JPH11109101A true JPH11109101A (en) 1999-04-23

Family

ID=17503394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27168197A Pending JPH11109101A (en) 1997-10-03 1997-10-03 Optical member for laser beam

Country Status (1)

Country Link
JP (1) JPH11109101A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1340722A1 (en) * 2002-01-31 2003-09-03 Heraeus Quarzglas GmbH & Co. KG Synthetic quartz glass material for ArF aligners
JP2007084427A (en) * 2005-09-16 2007-04-05 Corning Inc Fused silica glass and method for making the same
JP2017125873A (en) * 2016-01-12 2017-07-20 セイコーエプソン株式会社 Wavelength variable interference filter, electronic component, manufacturing method for electronic component, and electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1340722A1 (en) * 2002-01-31 2003-09-03 Heraeus Quarzglas GmbH & Co. KG Synthetic quartz glass material for ArF aligners
JP2007084427A (en) * 2005-09-16 2007-04-05 Corning Inc Fused silica glass and method for making the same
JP2017125873A (en) * 2016-01-12 2017-07-20 セイコーエプソン株式会社 Wavelength variable interference filter, electronic component, manufacturing method for electronic component, and electronic apparatus
US11042023B2 (en) 2016-01-12 2021-06-22 Seiko Epson Corporation Wavelength variable interference filter having substrate hydroxyl group concentration, electronic component, manufacturing method of electronic component, and electronic apparatus

Similar Documents

Publication Publication Date Title
US7589039B2 (en) Synthetic silica having low polarization-induced birefringence, method of making same and lithographic device comprising same
US7619227B2 (en) Method of reducing radiation-induced damage in fused silica and articles having such reduction
US6174830B1 (en) Silica glass having superior durability against excimer laser beams and method for manufacturing the same
JPH0653593B2 (en) Synthetic silica glass optical body and method for producing the same
KR20010052399A (en) Synthetic quartz glass for optical member, process for producing the same, and method of using the same
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP3531870B2 (en) Synthetic quartz glass
JPH11109101A (en) Optical member for laser beam
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP4051805B2 (en) Exposure apparatus and photomask
US6031238A (en) Projection aligner for integrated circuit fabrication
JP2001302275A (en) Optical member made from synthetic quartz glass
JP3976083B2 (en) Optical system for circuit pattern exposure
JPH0755845B2 (en) Transmitter for laser light
JP3245589B2 (en) Laser exposure equipment for lithography
US20100149500A1 (en) Projection lens for microlithography and corresponding terminal element
JP3607006B2 (en) Exposure apparatus for integrated circuit manufacturing
JP3187735B2 (en) Laser exposure equipment for lithography
Sewell et al. 157nm Lithography-Window of Opportunity
JPH01167258A (en) Element assembly of laser optical system
JPH05152648A (en) Fabrication of synthetic quartz glass molded article for ultraviolet laser
JP2652847B2 (en) Optical system member for laser beam and optical system member for lithographic apparatus
JP2558217B2 (en) Optical lithography equipment
JP3641766B2 (en) Exposure apparatus for integrated circuit manufacturing
JPWO2004065315A1 (en) Synthetic quartz glass optical member and manufacturing method thereof