JPH10269845A - Fixed liquid film conductor - Google Patents
Fixed liquid film conductorInfo
- Publication number
- JPH10269845A JPH10269845A JP9091468A JP9146897A JPH10269845A JP H10269845 A JPH10269845 A JP H10269845A JP 9091468 A JP9091468 A JP 9091468A JP 9146897 A JP9146897 A JP 9146897A JP H10269845 A JPH10269845 A JP H10269845A
- Authority
- JP
- Japan
- Prior art keywords
- polyolefin
- aprotic
- electrolytic solution
- conductive material
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固定化液膜導電体
及びその製造方法に関し、特に高い電子導電性を有する
多孔性導電膜にイオン導電体を固定化した固定化液膜導
電体及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immobilized liquid film conductor and a method for producing the same, and more particularly, to an immobilized liquid film conductor in which an ionic conductor is immobilized on a porous conductive film having high electron conductivity, and a method for manufacturing the same. It relates to a manufacturing method.
【0002】[0002]
【従来の技術】高分子材料、例えばポリエチレン、ポリ
プロピレン、ポリ塩化ビニル、ポリスルホン、ブタジエ
ンゴム、シリコーンゴム、エチレン−プロピレン−ジエ
ンターポリマー、エポキシ樹脂などにカーボンブラック
などの電子導電性物質を混和して成る導電体は広く知ら
れている。そして、これらの導電体は、静電防止材料、
電磁波シールド用材料、導電性塗料、接着剤、IC包装
材、面状発熱体、面スイッチなどに使用されている。2. Description of the Related Art A polymer material such as polyethylene, polypropylene, polyvinyl chloride, polysulfone, butadiene rubber, silicone rubber, ethylene-propylene-diene terpolymer, epoxy resin, etc. is mixed with an electronic conductive substance such as carbon black. Such conductors are widely known. And these conductors are antistatic materials,
It is used for electromagnetic wave shielding materials, conductive paints, adhesives, IC packaging materials, planar heating elements, planar switches, and the like.
【0003】また、かかる導電体において、多孔質であ
りながら高い導電性を有する薄膜導電体(多孔性導電
膜)は、固体高分子電解質あるいは液体電解質を用いる
デバイスにおける電極や電極構成材料として極めて効果
的に用いることができる。すなわち、多孔質であるため
に電極と電解質との接触界面を大面積化することがで
き、従って例えば、これを用いてリチウム系一次電池、
リチウム系二次電池などの高性能の電池を製造すること
が可能となる。Further, among such conductors, a thin film conductor (porous conductive film) which is porous but has high conductivity is extremely effective as an electrode or an electrode constituent material in a device using a solid polymer electrolyte or a liquid electrolyte. Can be used for That is, since it is porous, the contact interface between the electrode and the electrolyte can be increased in area, and thus, for example, using this, a lithium primary battery,
It is possible to manufacture a high-performance battery such as a lithium secondary battery.
【0004】前記の薄膜導電体の開発例としては、ポリ
エチレンの可塑剤溶液にケッチェンブラック(Akzo
Chemic社商標)を混合し、シート成形、延伸の
後、可塑剤を除去した多孔質薄膜に、電解液を毛管凝縮
力を利用して固定化した多孔性導電膜とその製造方法
(特開平3−87096)がある。しかし、電解液保持
性に問題を有している。一方、最近では、ポリ弗化ビニ
リデンとヘキサフルオロプロピレンの共重合体にLiM
n2O4とカーボンブラックあるいは石油コークスとカー
ボンブラックを混合しリチウム塩を溶解したカーボネー
ト系溶液を含浸させたポリマーゲルを電池の正極あるい
は負極に用いる技術(USP5,296,318)が提
案されているが、高温におけるゲル収縮による電解液の
滲み出の問題があり、電解液保持性に関する完全な解決
策にはならない。したがって、薄膜化、大面積化が容易
で、広い温度範囲で電解質溶液の安定した保持能力を持
つ薄膜導電体の開発が望まれている。As a development example of the above-mentioned thin film conductor, Ketjen black (Akzo black) is added to a plasticizer solution of polyethylene.
Chemic Co., Ltd.), and after forming and stretching a sheet, a porous thin film from which a plasticizer has been removed, and an electrolyte solution immobilized by utilizing the capillary condensation force, and a method for producing the same (Japanese Patent Laid-Open No. -87096). However, there is a problem in the electrolyte retention. On the other hand, recently, a copolymer of polyvinylidene fluoride and hexafluoropropylene has been
A technique has been proposed (US Pat. No. 5,296,318) in which a polymer gel impregnated with a carbonate-based solution in which n 2 O 4 and carbon black or petroleum coke and carbon black are mixed and a lithium salt is dissolved is used for a positive electrode or a negative electrode of a battery. However, there is a problem of electrolyte seepage due to gel shrinkage at a high temperature, and this is not a complete solution for electrolyte retention. Therefore, it is desired to develop a thin-film conductor which can be easily formed into a thin film and has a large area and has a stable ability to hold an electrolyte solution in a wide temperature range.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、上記
のような問題点を解消し、薄膜化、大面積化が容易で広
い温度範囲で非プロトン性電解質溶液の保持性に優れ、
長期安定性と機械的強度の向上した固定化液膜導電体と
その製造方法を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, to easily form a thin film, to have a large area, and to have excellent aprotic electrolyte solution retention over a wide temperature range.
An object of the present invention is to provide an immobilized liquid film conductor having improved long-term stability and mechanical strength, and a method for producing the same.
【0006】[0006]
【課題を解決するための手段】本発明者らは、前記従来
技術の問題点を克服するために鋭意研究した結果、電子
導電性材料を含むポリオレフィン微多孔膜にグラフト重
合されたポリマーの溶解性により、非プロトン性電解液
を膜に固定化することによって、上記目的を達成できる
ことを見い出した。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to overcome the problems of the prior art and found that the solubility of the polymer graft-polymerized on the microporous polyolefin membrane containing an electronically conductive material was improved. Have found that the above object can be achieved by immobilizing the aprotic electrolyte on the membrane.
【0007】すなわち、本発明の固定化液膜導電体は、
非プロトン性電解質溶液に溶解性を有するグラフト重合
体及び電子導電性材料を含有するポリオレフィン微多孔
膜に、非プロトン性電解質溶液を固定化したものであ
る。また、本発明の固定化液膜導電体の製造方法は、電
子導電性材料を含有するポリオレフィン微多孔膜の表面
及び細孔表面に、非プロトン性電解質溶液に溶解性を有
するポリマーをグラフト重合し、これに非プロトン性電
解質溶液を含浸させて固定化するものである。That is, the immobilized liquid film conductor of the present invention comprises:
An aprotic electrolyte solution is immobilized on a microporous polyolefin membrane containing a graft polymer having solubility in an aprotic electrolyte solution and an electron conductive material. Further, the method for producing an immobilized liquid membrane conductor of the present invention comprises graft-polymerizing a polymer having solubility in an aprotic electrolyte solution on the surface and pore surface of a polyolefin microporous film containing an electronic conductive material. , Which are impregnated with an aprotic electrolyte solution to be immobilized.
【0008】[0008]
【発明の実施の形態】本発明の固定化液膜導電体は、電
子導電性材料を含有するポリオレフィン微多孔膜を主骨
格とし、これに非プロトン性電解質溶液に溶解性を有す
るポリマーをグラフト重合させ、さらに非プロトン性電
解質溶液を含浸することにより構成される。以下に各構
成の詳細を説明する。BEST MODE FOR CARRYING OUT THE INVENTION The immobilized liquid membrane conductor of the present invention has, as a main skeleton, a polyolefin microporous membrane containing an electronic conductive material, onto which a polymer having solubility in an aprotic electrolyte solution is graft-polymerized. And then impregnated with an aprotic electrolyte solution. The details of each configuration will be described below.
【0009】1.電子導電性材料を含有するポリオレフ
ィン微多孔膜 a.ポリオレフィン ポリオレフィンとしては、ポリエチレン、ポリプロピレ
ン、エチレン−プロピレン共重合体、ポリブテン−1、
ポリ4−メチルペンテン−1などが挙げられる。これら
の中ではポリエチレンが好ましい。このポリエチレンと
しては、超高分子量ポリエチレン、高密度ポリエチレ
ン、中低密度ポリエチレンからなるものを用いることが
できるが、強度、安全性、製膜性などの観点から超高分
子量ポリエチレンまたはその成分を含むものを用いるこ
とが好ましい。また、該ポリオレフィンは、重量平均分
子量が5×105以上、好ましくは1×106〜1×10
7の超高分子量成分を1重量%以上含有し、分子量分布
(重量平均分子量/数平均分子量)が10〜300であ
るのが好ましい。超高分子量ポリオレフィン成分の含有
量が1重量%未満では、膜の延伸性の向上に寄与すると
ころが不十分である。一方、上限は特に限定的ではな
い。また、分子量分布が300を超えると、低分子量成
分による破断が起こり薄膜全体の強度が低下するため好
ましくない。1. Polyolefin microporous membrane containing electronically conductive material a. Polyolefin Polyolefins include polyethylene, polypropylene, ethylene-propylene copolymer, polybutene-1,
Poly-4-methylpentene-1 and the like. Of these, polyethylene is preferred. As the polyethylene, those made of ultra-high molecular weight polyethylene, high density polyethylene, medium-low density polyethylene can be used, but those containing ultra-high molecular weight polyethylene or components thereof from the viewpoint of strength, safety, film forming property, etc. It is preferable to use The polyolefin has a weight average molecular weight of 5 × 10 5 or more, preferably 1 × 10 6 to 1 × 10 5.
It is preferred that the ultrahigh molecular weight component 7 is contained in an amount of 1% by weight or more and the molecular weight distribution (weight average molecular weight / number average molecular weight) is 10 to 300. When the content of the ultrahigh molecular weight polyolefin component is less than 1% by weight, the portion which contributes to the improvement of the stretchability of the film is insufficient. On the other hand, the upper limit is not particularly limited. On the other hand, if the molecular weight distribution exceeds 300, breakage due to low molecular weight components occurs, and the strength of the entire thin film decreases, which is not preferable.
【0010】b.電子導電性材料 電子導電性材料としては、各種の金属や半導体、酸化物
系及び硫化物系の電子導電性材料、及びカーボンもしく
はグラファイトが挙げられる。これらは粒子状、繊維
状、フィブリル状、ウイスカー状等のいかなる形状であ
ってもよい。特に好ましいものは、TiS3、TiS2、
TiO2、V2O5、NbSe3、MnO2、LiCoO2、
LiNiO2、LiMn2O4、PbO2、NiOOHなど
の電池正極活物質、石油コークス、天然グラファイト、
カーボンファイバー、Pb、Cdなどの電池負極活物質
及びアセチレンブラック、ケッチェンブラック(Akz
oChemic社商標)、カーボンウィスカー、グラフ
ァイトウィスカー、グラファイトフィブリル等の導電剤
がある。B. Electronic conductive material Examples of the electronic conductive material include various metals and semiconductors, oxide and sulfide electronic conductive materials, and carbon or graphite. These may be in any shape such as a particle shape, a fiber shape, a fibril shape, a whisker shape and the like. Particularly preferred are TiS 3 , TiS 2 ,
TiO 2 , V 2 O 5 , NbSe 3 , MnO 2 , LiCoO 2 ,
Battery positive electrode active materials such as LiNiO 2 , LiMn 2 O 4 , PbO 2 , NiOOH, petroleum coke, natural graphite,
Battery negative electrode active materials such as carbon fiber, Pb and Cd, acetylene black, Ketjen black (Akz
oChemic), carbon whiskers, graphite whiskers, graphite fibrils and the like.
【0011】c.製法 電子導電性材料を含有するポリオレフィン微多孔膜は、
上記の電子導電性材料をポリオレフィンに配合し、製膜
することにより得ることができる。電子導電性材料の配
合量は1〜200重量%、特に5〜100重量%である
ことが好ましい。この配合量が1重量%未満では十分な
導電性が得られにくく、200重量%を超えると実用的
に十分な強度の膜を得ることが困難となる。製膜は、特
開昭60−242035号や特開平3−64334号に
記載の方法で行えばよい。例えば次のようにして行うこ
とができる。超高分子量ポリオレフィンを含有するポリ
オレフィンを流動パラフィンのような溶媒に10〜50
重量%を加熱溶解して均一な溶液とし、これに電子導電
性材料を均一に配合する。この溶液からシートを形成
し、冷却してゲル状シートとした後、ポリオレフィンの
融点+10度以下の温度で加熱し、面倍率3倍以上に延
伸する。この延伸膜中に含まれる溶媒を塩化メチレンの
ような揮発性溶剤で抽出除去し、ついで乾燥、熱セット
する。なお、ポリオレフィン微多孔膜には、必要に応じ
て、酸化防止剤、紫外線吸収剤、滑剤、アンチブロッキ
ング剤、顔料、染料、無機充填剤などの各種添加剤を、
本発明の目的を損なわない範囲で添加することができ
る。C. The microporous polyolefin membrane containing the electronically conductive material is
It can be obtained by blending the above-mentioned electronic conductive material with polyolefin and forming a film. The compounding amount of the electronic conductive material is preferably 1 to 200% by weight, particularly preferably 5 to 100% by weight. If the amount is less than 1% by weight, it is difficult to obtain sufficient conductivity, and if it exceeds 200% by weight, it becomes difficult to obtain a film having practically sufficient strength. The film may be formed by the method described in JP-A-60-242035 or JP-A-3-64334. For example, it can be performed as follows. The polyolefin containing ultra-high molecular weight polyolefin is mixed with a solvent such as liquid paraffin for 10 to 50 minutes.
The weight percent is heated and dissolved to form a uniform solution, and the electronic conductive material is uniformly blended with the solution. After forming a sheet from this solution and cooling it into a gel-like sheet, the sheet is heated at a temperature equal to or lower than the melting point of the polyolefin plus 10 degrees, and stretched to an area magnification of 3 times or more. The solvent contained in the stretched film is extracted and removed with a volatile solvent such as methylene chloride, and then dried and heat-set. In addition, the polyolefin microporous membrane, if necessary, antioxidants, ultraviolet absorbers, lubricants, antiblocking agents, pigments, dyes, various additives such as inorganic fillers,
It can be added in a range that does not impair the purpose of the present invention.
【0012】d.物性 電子導電性材料を含有するポリオレフィン微多孔膜は、
1〜1000μm、好ましくは5〜500μmの膜厚を
有する。厚さが1μm未満では、機械的強度及び取扱の
観点から実用に供することが難しい。一方、1000μ
mを超える場合には、実効抵抗が大きくなり、導電体と
しての体積効率も不利となる。また、膜の空孔率は、限
定的ではないが30〜95%、より好ましくは50〜9
0%の範囲のものである。空孔率が30%未満では、非
プロトン性電解質溶液の固定化が不十分になる場合があ
り、一方、空孔率が95%を超えると、膜の機械的強度
が小さくなり実用性に劣る。また、平均孔径は1μm以
下が好ましい。1μmを超えるとグラフト重合量が少な
い場合は、活物質や反応生成物の拡散を防止することが
困難となる。下限は、限定的ではないが平均孔径が0.
005μm未満ではプラズマによるグラフト重合におい
て均一性、重合速度に問題を起こす場合がある。さら
に、上記の電子導電性材料を含有するポリオレフィン微
多孔膜は、破断強度を200kg/cm2以上が好まし
い。破断強度を200kg/cm2以上とすることで、
グラフト重合体に非プロトン性電解質溶液が溶解した際
の膨潤に対する耐変形性が十分となる。D. Polyolefin microporous membrane containing electronic conductive material
It has a thickness of 1 to 1000 μm, preferably 5 to 500 μm. If the thickness is less than 1 μm, it is difficult to practically use from the viewpoint of mechanical strength and handling. On the other hand, 1000μ
If it exceeds m, the effective resistance becomes large and the volumetric efficiency as a conductor is disadvantageous. The porosity of the film is not limited, but is preferably 30 to 95%, more preferably 50 to 9%.
It is in the range of 0%. If the porosity is less than 30%, the immobilization of the aprotic electrolyte solution may be insufficient. On the other hand, if the porosity exceeds 95%, the mechanical strength of the membrane becomes small and the practicability is poor. . Further, the average pore size is preferably 1 μm or less. If it exceeds 1 μm, it becomes difficult to prevent the active material and the reaction product from diffusing when the amount of graft polymerization is small. The lower limit is not limited, but the average pore size is not more than 0.2.
If it is less than 005 μm, problems may occur in the uniformity and the polymerization rate in the graft polymerization by plasma. Further, the microporous polyolefin membrane containing the above-mentioned electron conductive material preferably has a breaking strength of 200 kg / cm 2 or more. By setting the breaking strength to 200 kg / cm 2 or more,
Deformation resistance against swelling when the aprotic electrolyte solution is dissolved in the graft polymer is sufficient.
【0013】2.電子導電性材料を含有するポリオレフ
ィン微多孔膜の表面及び細孔表面にグラフト重合するポ
リマー a.モノマー ポリマーを構成するモノマーとしては、アクリル酸、メ
タクリル酸、アクリル酸エステル、メタクリル酸エステ
ル、アクリルアミド、アクリルニトリル、スチレン及び
その誘導体等が用いられる。具体的には、例えばアクリ
ル酸エステルとしては、アクリル酸メチル、アクリル酸
エチル、アクリル酸ブチル、アクリル酸イソブチル、ア
クリル酸2−エチルヘキシル、ラウリルアクリレート、
ステアリルアクリレート、エチルデシルアクリレート、
エチルヘキサデシルアクリレート、2−エトキシエチル
アクリレート、テトラヒドロフルフリルアクリレート、
トリメチロールプロパントリアクリレート、2−ヒドロ
キシエチルアクリレート、2−ヒドロキシプロピルアク
リレート、1,4−ブタンジオールジアクリレート、
1,6−ヘキサンジオールジアクリレート等のアクリル
系モノマーが挙げられ、メタクリル酸エステルとして
は、メタクリル酸メチル、メタクリル酸エチル、メタク
リル酸ブチル、メタクリル酸2−エチルヘキシル、メタ
クリル酸トリデシル、メタクリル酸ステアリル、メタク
リル酸シクロヘキシル、メタクリル酸ベンジル、メタク
リル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロ
キシプロピル、メタクリル酸グリシジル、ジメタクリル
酸エチレングリコール等のメタクリル系モノマーが挙げ
られる。これらの1種類または複数種類を選択して用い
ることができる。また、必要に応じてビニルアクリレー
ト、ビニルメタクリレート、ジビニルベンゼン、ビニル
アクリル酸ブチル等の架橋性モノマーも用いることがで
きる。上記したモノマーの中ではアクリル酸、メタクリ
ル酸、またはこれらのエステルからなるモノマー、アク
リルアミドまたはその誘導体からなるアクリル系モノマ
ーを用いるのが好ましい。2. Polymer graft-polymerized on the surface of microporous polyolefin membrane and the surface of pores containing an electronic conductive material a. Monomer Acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, acrylamide, acrylonitrile, styrene and derivatives thereof are used as monomers constituting the polymer. Specifically, for example, acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate,
Stearyl acrylate, ethyl decyl acrylate,
Ethyl hexadecyl acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate,
Trimethylolpropane triacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 1,4-butanediol diacrylate,
Acrylic monomers such as 1,6-hexanediol diacrylate are exemplified. Examples of methacrylates include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, tridecyl methacrylate, stearyl methacrylate, methacrylic acid. Examples include methacrylic monomers such as cyclohexyl acid, benzyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, glycidyl methacrylate, and ethylene glycol dimethacrylate. One or more of these can be selected and used. If necessary, a crosslinkable monomer such as vinyl acrylate, vinyl methacrylate, divinylbenzene, and vinyl butyl acrylate can also be used. Among the above-mentioned monomers, it is preferable to use a monomer composed of acrylic acid, methacrylic acid, or an ester thereof, or an acrylic monomer composed of acrylamide or a derivative thereof.
【0014】b.グラフト重合法 電子導電性材料を含有するポリオレフィン微多孔膜の表
面及び細孔表面に、上記のポリマーをグラフト重合する
方法としては、プラズマあるいは電子線、γ線などの放
射線グラフト重合法を用いる。ポリオレフィン微多孔膜
にラジカルを生成させた後に選択されたモノマーに接触
させる後重合法でも、モノマーに接触させた状態でラジ
カルを生成させる同時重合法でも良い。プラズマグラフ
ト重合の具体例としては、10-2〜10mbarの圧力
となるアルゴン、ヘリウム、窒素、空気等のガスの存在
下でポリオレフィン多孔膜に対して通常周波数10〜3
0MHz、出力1〜1000Wで、1〜1000秒のプ
ラズマ処理を行う。次に選択された前記モノマーを1〜
10容量%、必要に応じて架橋助剤を0.01〜2容量
%含む無機または有機溶媒(前記のモノマー及び架橋助
剤はこの溶媒に溶解または懸濁している)にプラズマ処
理を施したポリオレフィン微多孔膜を浸漬し、窒素ガ
ス、アルゴンガス等でバブリングしながら、20〜10
0℃で、1〜60分間グラフト重合反応を行う。なお、
溶媒としては、水、メタノール等のアルコール、アルコ
ール水溶液等を用いることができる。また、電子線グラ
フト重合法としては、前記のポリオレフィン微多孔膜、
前記選択されたモノマー及び前記架橋助剤を共存させて
同時に電子線を照射する同時照射法、及び、予めポリオ
レフィン微多孔膜に電子線を照射した後に、前記架橋助
剤の存在下に前記選択されたモノマーを反応させる前照
射法があるが、前記選択されたモノマーの単独重合を抑
制することから前照射法によるものが好ましい。B. Graft Polymerization Method As a method for graft-polymerizing the above-mentioned polymer onto the surface of the microporous polyolefin membrane containing the electron conductive material and the surface of the pores, a radiation graft polymerization method such as plasma or electron beam or γ-ray is used. A post-polymerization method in which radicals are generated in the polyolefin microporous membrane and then contacted with a selected monomer, or a simultaneous polymerization method in which radicals are generated in a state in contact with the monomers may be used. As a specific example of the plasma graft polymerization, a polyolefin porous membrane is usually subjected to a frequency of 10 to 3 in the presence of a gas such as argon, helium, nitrogen, or air at a pressure of 10 -2 to 10 mbar.
Plasma processing is performed at 0 MHz and output of 1 to 1000 W for 1 to 1000 seconds. Next, the selected monomer is
Polyolefin which has been subjected to plasma treatment in an inorganic or organic solvent containing 10% by volume and optionally 0.01 to 2% by volume of a crosslinking aid (the above-mentioned monomer and crosslinking aid are dissolved or suspended in this solvent) While immersing the microporous membrane and bubbling with nitrogen gas, argon gas, etc., 20 to 10
The graft polymerization reaction is performed at 0 ° C. for 1 to 60 minutes. In addition,
As the solvent, water, an alcohol such as methanol, an aqueous alcohol solution, or the like can be used. Further, as the electron beam graft polymerization method, the microporous polyolefin membrane described above,
Simultaneous irradiation method in which the selected monomer and the crosslinking aid coexist and simultaneously irradiate an electron beam, and after previously irradiating the polyolefin microporous membrane with an electron beam, the method is carried out in the presence of the crosslinking aid. There is a pre-irradiation method in which the monomer is reacted, but a method using the pre-irradiation method is preferable because homopolymerization of the selected monomer is suppressed.
【0015】前照射法では、ポリオレフィン微多孔膜に
加速電圧100〜5000KeVが好ましく、より好ま
しくは200〜800KeVの電子線を照射する。な
お、電子線照射は、空気雰囲気下で行うことができる。
照射量としては、10〜500KGyが適当であり、好
ましくは50〜200KGyである。10KGy未満で
は前記選択されたモノマーのグラフトが不十分であり、
一方500KGyを超えるとポリオレフィン微多孔膜が
劣化することがある。In the pre-irradiation method, the microporous polyolefin membrane is irradiated with an electron beam having an acceleration voltage of preferably from 100 to 5000 KeV, more preferably from 200 to 800 KeV. Note that the electron beam irradiation can be performed in an air atmosphere.
The irradiation amount is suitably from 10 to 500 KGy, preferably from 50 to 200 KGy. If it is less than 10 KGy, the grafting of the selected monomer is insufficient,
On the other hand, if it exceeds 500 KGy, the microporous polyolefin membrane may deteriorate.
【0016】次いで、電子線照射したポリオレフィン微
多孔膜を、前記架橋助剤の存在下に前記選択されたモノ
マー溶液中に浸漬処理してグラフト重合体を形成する。
このようなグラフト重合で、ポリオレフィン微多孔膜の
表面に選択的にグラフト重合体を形成、あるいはその細
孔内表面に選択的にグラフト重合体を形成、あるいは表
面及びその細孔内表面のいずれにもグラフト重合体を形
成することができる。なお、グラフト重合の過程で副成
されたホモポリマーは、そのまま残しておいても良い
が、トルエンなどの溶剤を用いて完全に洗い流し、グラ
フト重合体のみをポリオレフィン微多孔膜の表面及びそ
の細孔内表面に残しても良い。Next, the polyolefin microporous membrane irradiated with the electron beam is immersed in the selected monomer solution in the presence of the crosslinking aid to form a graft polymer.
By such graft polymerization, a graft polymer is selectively formed on the surface of the microporous polyolefin membrane, or a graft polymer is selectively formed on the inner surface of the pore, or on either the surface or the inner surface of the pore. Can also form a graft polymer. The homopolymer by-produced in the course of the graft polymerization may be left as it is, but it may be completely washed away using a solvent such as toluene, and only the graft polymer is removed from the surface of the polyolefin microporous membrane and its pores. It may be left on the inner surface.
【0017】c.グラフト重合量 グラフト重合量は、ラジカル生成量あるいはモノマー濃
度、その接触時間、温度などの条件で制御することがで
きる。グラフト重合量(単位面積当たりに重合したグラ
フトコポリマー量)は0.02〜35mg/cm2が好
ましく、より好ましくは0.03〜30mg/cm2で
ある。ポリオレフィン微多孔膜の膜厚にもよるが、0.
02mg/cm2未満では電解液による溶解、膨潤効果
が不十分となり、35mg/cm2を超えるとポリオレ
フィン多孔膜の変形防止、強度低下防止の効果が不十分
となる。グラフト重合量の増加に伴い、ポリオレフィン
微多孔膜の微細孔は次第に閉塞され多孔性は徐々に失わ
れ、最後には実質的に完全閉塞されることになる。C. Graft Polymerization Amount The amount of graft polymerization can be controlled by conditions such as the amount of radical generation or monomer concentration, the contact time, and the temperature. Graft polymerization amount (graft amount of polymer polymerized per unit area) is preferably 0.02~35mg / cm 2, more preferably 0.03~30mg / cm 2. Although it depends on the thickness of the microporous polyolefin membrane, it may be in the range of 0.1 to 1.0.
02mg / cm dissolution by electrolyte is less than 2, the swelling effect is insufficient, preventing deformation of the polyolefin porous membrane, the effect of reduction in strength prevent insufficient exceeds 35 mg / cm 2. With an increase in the amount of graft polymerization, the micropores of the polyolefin microporous membrane are gradually closed, the porosity is gradually lost, and finally, the membrane is substantially completely closed.
【0018】3.電子導電性材料及びグラフト重合体を
含有するポリオレフィン微多孔膜への非プロトン性電解
質溶液の固定化 a.電解質溶液 非プロトン性電解質溶液の電解質としては、アルカリ金
属塩、アルカリ土類金属塩が用いられ、例えばLiF、
NaI、LiI、LiClO4、LiAsF6、LiPF
6、LiBF4、LiCF3SO3、NaSCN等が挙げら
れる。また、非プロトン性電解質溶液の電解質を溶解す
る非プロトン性溶媒としては、アルカリ金属に対して安
定な溶媒で、具体的には、プロピレンカーボネート、エ
チレンカーボネート、γ−ブチロラクトン、ジメトキシ
エタン、アセトニトリル、フォルムアミド、テトラヒド
ロフラン、ジエチルエーテル等の非プロトン性の高誘電
率溶媒が、単独又は2種以上の組み合わせで使用され
る。3. Immobilization of aprotic electrolyte solution on microporous polyolefin membrane containing electronic conductive material and graft polymer a. Electrolyte solution As an electrolyte of the aprotic electrolyte solution, an alkali metal salt, an alkaline earth metal salt is used, for example, LiF,
NaI, LiI, LiClO 4 , LiAsF 6 , LiPF
6 , LiBF 4 , LiCF 3 SO 3 , NaSCN and the like. Further, as the aprotic solvent for dissolving the electrolyte of the aprotic electrolyte solution, a solvent stable to an alkali metal, specifically, propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethoxyethane, acetonitrile, form An aprotic high dielectric constant solvent such as amide, tetrahydrofuran, diethyl ether or the like is used alone or in combination of two or more.
【0019】b.固定化法 電子導電性材料及びグラフト重合体を含有するポリオレ
フィン微多孔膜に非プロトン性電解質溶液を固定化し非
プロトン性電解質薄膜とする方法としては、含浸、塗布
またはスプレーなどを単独あるいは組み合わせて使用す
ることができる。また、電解質溶液を固定化するのは、
電池に組み込む前でもよいし、電池組立途中工程でもよ
いし、電池組立最終工程でもよい。中でも、電池組立時
の取扱性、皺などの混入防止、正負極板表面との密着性
などの観点と、従来の電池組立工程をそのまま適用でき
ることから、電池組立途中工程あるいは電池組立最終工
程で電解質溶液を固定化する方法が好ましい。B. Immobilization method As a method of immobilizing an aprotic electrolyte solution on a polyolefin microporous membrane containing an electronic conductive material and a graft polymer to form an aprotic electrolyte thin film, impregnation, coating or spraying is used alone or in combination. can do. Also, immobilizing the electrolyte solution is
It may be before the battery is assembled, in the middle of battery assembly, or in the final battery assembly process. Among them, in view of the ease of handling during battery assembly, the prevention of wrinkles and the like, the adhesion to the positive and negative electrode surfaces, and the fact that the conventional battery assembly process can be applied as it is, the electrolyte may be used during the battery assembly process or the final battery assembly process. The method of immobilizing the solution is preferred.
【0020】4.固定化液膜導電体の比導電率 上記によって構成される本発明の固定化液膜導電体は、
10-5Scm-1以上、好ましくは10-3Scm-1以上の
比導電率を有する。比導電率が10-5Scm-1未満では
実効抵抗が大きくなり実用的でない。例えば、膜厚1μ
mのときの実効抵抗は1μm/10-5Scm-1、即ち1
0Ωcm2となる。4. The specific conductivity of the immobilized liquid film conductor The immobilized liquid film conductor of the present invention constituted by the above,
It has a specific conductivity of 10 -5 Scm -1 or more, preferably 10 -3 Scm -1 or more. If the specific conductivity is less than 10 -5 Scm -1 , the effective resistance becomes large and is not practical. For example, film thickness 1μ
m, the effective resistance is 1 μm / 10 −5 Scm −1 , that is, 1
It becomes 0 Ωcm 2 .
【0021】[0021]
【実施例】本発明を以下の具体的な実施例によりさらに
詳細に説明する。なお、実施例における試験方法は次の
通りである。 (1)膜厚:断面を走査型電子顕微鏡により測定。 (2)引張り破断強度:幅15mm短冊状試験片の破断
強度をASTMD882に準拠して測定。 (3)空孔率:重量法により測定。The present invention will be described in more detail with reference to the following specific examples. In addition, the test method in an Example is as follows. (1) Film thickness: The cross section was measured by a scanning electron microscope. (2) Tensile breaking strength: The breaking strength of a 15 mm wide strip test piece was measured in accordance with ASTM D882. (3) Porosity: measured by a gravimetric method.
【0022】実施例1 ポリエチレン(重量平均分子量40万のポリエチレン2
5重量部と重量平均分子量200万のポリエチレン5重
量部)30重量部と石油コークス粉末30重量部とケッ
チェンブラック粉末(Akzo Chemic社商標)
3重量部と流動パラフィン70重量部を含む混合物10
0重量部に酸化防止剤0.37重量部を加えて2軸押し
出し機で加熱混練した。これを長方形の口金を有するダ
イスから押出し、チルロールで引き取り1mm厚のシー
トとした。このシートをバッチ式2軸延伸機を用いて1
20℃で5×5倍に同時2軸延伸し、残留する流動パラ
フィンをn−ヘキサンで洗浄後、金枠に固定した状態で
120℃で乾燥、熱セットして電子導電性材料を含有す
るポリエチレン微多孔膜を得た。得られた電子導電性材
料を含有するポリエチレン微多孔膜(膜厚30μm、空
孔率38%、引張り強度1350kg/cm2)にアル
ゴン雰囲気下で0.1mba、10W、60秒プラズマ
を照射し、メチルアクリレート水溶液(モノマー濃度を
4容量%とし、溶媒として水を使用)に30℃で15分
間接触させてグラフト重合を行った。反応終了後、トル
エンで洗浄し、50℃オーブンにて乾燥し、グラフト重
合を施した電子導電性材料を含有するポリエチレン膜を
得た。重合前後の重量変化から、単位面積当たりで重合
したグラフトポリマー量は、2.5mg/cm2であっ
た。また、引っ張り破断強度は1240kg/cm2で
あった。Example 1 Polyethylene (polyethylene 2 having a weight average molecular weight of 400,000)
5 parts by weight, 30 parts by weight of petroleum coke powder and 30 parts by weight of Ketjen black powder (trademark of Akzo Chemical Co.)
Mixture 10 containing 3 parts by weight and 70 parts by weight of liquid paraffin
0.37 parts by weight of an antioxidant was added to 0 parts by weight, and the mixture was heated and kneaded with a twin screw extruder. This was extruded from a die having a rectangular die and taken up with a chill roll to form a 1 mm thick sheet. This sheet is subjected to batch stretching using a batch type biaxial stretching machine.
Polyethylene containing an electron conductive material is stretched simultaneously at 20 ° C. by 5 × 5 times, washed with n-hexane for remaining liquid paraffin, dried at 120 ° C. while fixed to a metal frame, and heat-set. A microporous membrane was obtained. The obtained microporous polyethylene film (thickness: 30 μm, porosity: 38%, tensile strength: 1350 kg / cm 2 ) containing the electron conductive material was irradiated with 0.1 mba, 10 W, and 60 seconds of plasma in an argon atmosphere. Graft polymerization was carried out by contacting an aqueous methyl acrylate solution (having a monomer concentration of 4% by volume and using water as a solvent) at 30 ° C. for 15 minutes. After the completion of the reaction, the resultant was washed with toluene and dried in a 50 ° C. oven to obtain a polyethylene film containing a graft-polymerized electronic conductive material. From the weight change before and after the polymerization, the amount of the graft polymer polymerized per unit area was 2.5 mg / cm 2 . Further, the tensile breaking strength was 1240 kg / cm 2 .
【0023】得られたグラフト重合を施した電子導電性
材料を含有するポリエチレン膜の10cm×10cm
角を、25℃の1モルのLiPF6を含むプロピレンカ
ーボネート溶液に1時間浸漬し、固定化液膜導電体を得
た。この固定化液膜導電体の表面の付着液を除いた後、
直ちに重量の経時変化を測定し、0秒後に外挿すること
によって求めた重量増加率は125.7%であった。ま
た、25℃で大気放置した状態で0秒後に外挿した重量
を起点とする重量の経時変化を測定した結果、1時間後
の重量減少率は0.5%未満であった。また、直径10
mmに打ち抜き、これを白金黒電極で挟み、周波数1k
Hzの交流で電気抵抗値を測定し、この値と固定化液膜
導電体の厚み及び面積より算出した比導電率は1.2×
10-1Scm-1であった。10 cm × 10 cm of the obtained polyethylene film containing the graft-polymerized electron conductive material.
The corner was immersed in a propylene carbonate solution containing 1 mol of LiPF 6 at 25 ° C. for 1 hour to obtain an immobilized liquid film conductor. After removing the adhering liquid on the surface of the immobilized liquid film conductor,
The change of the weight with time was immediately measured, and the weight increase rate determined by extrapolation after 0 seconds was 125.7%. In addition, the time-dependent change of the weight starting from the weight extrapolated after 0 seconds in the state of being left in the air at 25 ° C. was measured. As a result, the weight loss rate after 1 hour was less than 0.5%. In addition, diameter 10
mm, and this is sandwiched between platinum black electrodes, and the frequency is 1k.
The electrical conductivity was measured with an alternating current of Hz, and the specific conductivity calculated from this value and the thickness and area of the immobilized liquid film conductor was 1.2 ×
It was 10 -1 Scm -1 .
【0024】比較例1 実施例1において、グラフト重合を行う前の電子導電性
材料を含有するポリエチレン微多孔膜(膜厚30μm、
空孔率38%、引張り強度1350kg/cm2)の1
0cm×10cm 角を、25℃の1モルのLiPF6を
含むプロピレンカーボネート溶液に1時間浸漬し、固定
化液膜導電体を得た。この固定化液膜導電体の表面の付
着液を除いた後、直ちに重量の経時変化を測定し、0秒
後に外挿することによって求めた重量増加率は81.5
%であった。また、25℃で大気放置した状態で0秒後
に外挿した重量を起点とする重量の経時変化を測定した
結果、1時間後の重量減少率は2.7%であった。ま
た、直径10mmに打ち抜き、これを白金黒電極で挟
み、周波数1kHzの交流で電気抵抗値を測定し、この
値と固定化液膜導電体の厚み及び面積より算出した比導
電率は4×10-2Scm-1であった。Comparative Example 1 In Example 1, a microporous polyethylene film (thickness: 30 μm, containing an electron conductive material before the graft polymerization was performed)
1 with a porosity of 38% and a tensile strength of 1350 kg / cm 2 )
A 0 cm × 10 cm square was immersed in a propylene carbonate solution containing 1 mol of LiPF 6 at 25 ° C. for 1 hour to obtain an immobilized liquid membrane conductor. Immediately after removing the adhering liquid on the surface of the immobilized liquid film conductor, the time-dependent change in weight was measured, and extrapolated after 0 second, the weight increase rate was 81.5%.
%Met. Further, a change with time of the weight starting from the weight extrapolated after 0 seconds in a state of being left in the air at 25 ° C. was measured. As a result, the weight loss rate after 1 hour was 2.7%. Also, punched into a diameter of 10 mm, this was sandwiched between platinum black electrodes, the electrical resistance was measured with an alternating current of 1 kHz, and the specific conductivity calculated from this value and the thickness and area of the immobilized liquid film conductor was 4 × 10 -2 Scm -1 .
【0025】[0025]
【発明の効果】本発明の固定化液膜導電体はグラフト重
合したポリマーの溶解性により電解質溶液を固定化し、
ポリオレフィンでできた多孔膜基材骨格によりその過度
な膨潤を抑えることにより、広い温度範囲で安定的に電
解質溶液を保持することができると共に、電解質溶液の
蒸発速度を極めて低く保つことができることにより、良
好な導電性を広い温度にわたり維持できる。即ち、電子
導電性を著しく低下させることなく、過充電での安全性
を向上することができる。さらに、この固定化液膜導電
体はポリオレフィンでできた骨格により、機械強度が優
れており、従来の電池製造工程をほとんど変更すること
なく適用することができる。また、この固定化液膜導電
体は、イオンと電子の導電性を併せ持つため、電解質、
特に液体電解質を用いる電池、エレクトロクロミック素
子、電気二重層コンデンサー、液晶素子などの電極に有
用である。この固定化液膜導電体中のイオン導電体は電
極間の電解質と連続し、かつ多孔性導電膜とも広い面積
で密着しているので、電解質を用いる各種セル、素子の
電極材料として有効である。The immobilized liquid membrane conductor of the present invention immobilizes the electrolyte solution by the solubility of the graft-polymerized polymer,
By suppressing the excessive swelling by the porous membrane base skeleton made of polyolefin, it is possible to stably hold the electrolyte solution in a wide temperature range and to keep the evaporation rate of the electrolyte solution extremely low, Good conductivity can be maintained over a wide temperature range. That is, safety in overcharging can be improved without significantly lowering the electronic conductivity. Further, the immobilized liquid film conductor has excellent mechanical strength due to a skeleton made of polyolefin, and can be applied with almost no change in a conventional battery manufacturing process. In addition, since this immobilized liquid film conductor has both ion and electron conductivity, the electrolyte,
It is particularly useful for electrodes using a liquid electrolyte, such as batteries, electrochromic devices, electric double layer capacitors, and liquid crystal devices. Since the ionic conductor in the immobilized liquid membrane conductor is continuous with the electrolyte between the electrodes and is in close contact with the porous conductive film over a wide area, it is effective as an electrode material for various cells and elements using the electrolyte. .
Claims (2)
るグラフト重合体及び電子導電性材料を含有するポリオ
レフィン微多孔膜に、非プロトン性電解質溶液を固定化
した固定化液膜導電体。1. An immobilized liquid membrane conductor in which an aprotic electrolyte solution is immobilized on a microporous polyolefin membrane containing a graft polymer having solubility in an aprotic electrolyte solution and an electron conductive material.
ン微多孔膜の表面及び細孔表面に、非プロトン性電解質
溶液に溶解性を有するポリマーをグラフト重合し、これ
に非プロトン性電解質溶液を含浸させて固定化する固定
化液膜導電体の製造方法。2. A polymer having solubility in an aprotic electrolyte solution is graft-polymerized on the surface of a microporous polyolefin membrane containing an electron conductive material and on the surface of pores, and this is impregnated with an aprotic electrolyte solution. For producing an immobilized liquid film conductor to be immobilized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09146897A JP3586535B2 (en) | 1997-03-26 | 1997-03-26 | Immobilized liquid film conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09146897A JP3586535B2 (en) | 1997-03-26 | 1997-03-26 | Immobilized liquid film conductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10269845A true JPH10269845A (en) | 1998-10-09 |
JP3586535B2 JP3586535B2 (en) | 2004-11-10 |
Family
ID=14027228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09146897A Expired - Fee Related JP3586535B2 (en) | 1997-03-26 | 1997-03-26 | Immobilized liquid film conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3586535B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01158051A (en) * | 1987-09-24 | 1989-06-21 | Toa Nenryo Kogyo Kk | Thin membrane electrolyte |
JPH0387096A (en) * | 1989-04-29 | 1991-04-11 | Tonen Corp | Porous conducting film and immobilized liquid film conductor |
-
1997
- 1997-03-26 JP JP09146897A patent/JP3586535B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01158051A (en) * | 1987-09-24 | 1989-06-21 | Toa Nenryo Kogyo Kk | Thin membrane electrolyte |
JPH0387096A (en) * | 1989-04-29 | 1991-04-11 | Tonen Corp | Porous conducting film and immobilized liquid film conductor |
Also Published As
Publication number | Publication date |
---|---|
JP3586535B2 (en) | 2004-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0883137B1 (en) | Thin aprotic electrolyte film, immobilized liquid film conductor, and polymer cell | |
JP5280313B2 (en) | Lithium ion polymer battery comprising a polyolefin microporous membrane surface-modified with a hydrophilic polymer, a surface modification method thereof, and a surface-modified polyolefin microporous membrane as a separator | |
US5429891A (en) | Crosslinked hybrid electrolyte film and methods of making and using the same | |
KR101027120B1 (en) | The method for preparation of inorganic/organic composite membranes by radiation and inorganic/organic composite membranes thereof | |
JP2002541633A (en) | Porous electrode or partition used for non-aqueous battery and method for producing the same | |
KR20140040060A (en) | Method of preparing porous separator comprising elastic material, porous separator prepared by the method, and secondary battery comprising the separator | |
CN112332023A (en) | Ultrathin high-strength modified lithium ion battery diaphragm and preparation method thereof | |
Kim et al. | Enhanced separator properties by thermal curing of poly (ethylene glycol) diacrylate-based gel polymer electrolytes for lithium-ion batteries | |
KR100970021B1 (en) | Porous film, battery separator comprising the film, and non-aqueous electrolyte battery using the separator | |
JP3586535B2 (en) | Immobilized liquid film conductor | |
JP5657977B2 (en) | Porous film, electrical insulation sustaining film, separator for nonaqueous electrolyte battery, and electrochemical element | |
JP3318634B2 (en) | Semi-solid electrolyte secondary battery | |
JPH103897A (en) | Separator for battery | |
JP2004352863A (en) | Porous film | |
JP3927645B2 (en) | Immobilized liquid film conductor | |
JP4486168B2 (en) | Aprotic electrolyte thin film, method for producing the same, and secondary battery using the same | |
JP3927638B2 (en) | Aprotic electrolyte thin film and method for producing the same | |
JPH1176775A (en) | Substrate membrane for lithium ion conductive polymer | |
JP3581772B2 (en) | Aprotic electrolyte thin film and method for producing the same | |
JPH07245122A (en) | Semi-solid electrolytic secondary cell | |
JPH09306462A (en) | Battery separator | |
CN1780028B (en) | Porous membrane | |
JPH10302835A (en) | Polymeric battery | |
EP4372894A1 (en) | Separator for non-aqueous secondary battery, and non-aqueous secondary battery | |
EP4372897A1 (en) | Separator for non-aqueous secondary battery, and non-aqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040720 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040809 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080813 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080813 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090813 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090813 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100813 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120813 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120813 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |