JPH10267841A - Surface plasmon resonance-sensing device - Google Patents

Surface plasmon resonance-sensing device

Info

Publication number
JPH10267841A
JPH10267841A JP10799697A JP10799697A JPH10267841A JP H10267841 A JPH10267841 A JP H10267841A JP 10799697 A JP10799697 A JP 10799697A JP 10799697 A JP10799697 A JP 10799697A JP H10267841 A JPH10267841 A JP H10267841A
Authority
JP
Japan
Prior art keywords
thin film
plasmon resonance
surface plasmon
sensing device
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10799697A
Other languages
Japanese (ja)
Inventor
Yoshito Ikariyama
義人 碇山
Shigeru Toyama
滋 外山
Sachiko Ichikawa
幸子 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKURITSU SHINTAI SHOGAISHA RE
KOKURITSU SHINTAI SHOGAISHA REHABILITATION CENTER SOUCHIYOU
Original Assignee
KOKURITSU SHINTAI SHOGAISHA RE
KOKURITSU SHINTAI SHOGAISHA REHABILITATION CENTER SOUCHIYOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKURITSU SHINTAI SHOGAISHA RE, KOKURITSU SHINTAI SHOGAISHA REHABILITATION CENTER SOUCHIYOU filed Critical KOKURITSU SHINTAI SHOGAISHA RE
Priority to JP10799697A priority Critical patent/JPH10267841A/en
Publication of JPH10267841A publication Critical patent/JPH10267841A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes

Abstract

PROBLEM TO BE SOLVED: To measure a resonance angle economically and stably by forming a multilayer film of a metallic thin film and a dielectric thin film on a prism and forming a polymer film of polysaccharide or the like as a fixation carrier for biologic molecules on the multilayer film. SOLUTION: The surface plasmon resonance-sensing device has a first metallic thin film layer 16 formed on a prism or substrate, a dielectric layer 17 on the first metallic thin film layer and a second metallic thin film layer 18 on the dielectric layer. The prism is formed of, e.g. quarts or glass which is transparent to ultraviolet rays, visible rays and near infrared rays and has a larger index of refraction than a liquid sample. The metallic thin film layers 16, 18 are formed of, e.g. gold or silver in a uniform thickness, and preferably have flat surfaces and good adhesion to a layer therebelow. The dielectric thin film layer 17 is formed of a material transparent to ultraviolet rays, visible rays and near infrared rays, for example, SiO2 , SiO or the like. The polysaccharide is glucose or the like using, for instance, dextran sulfate as an antibody-fixing carrier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プリズム上に形成
した金属薄膜の表面近傍の媒体の屈折率の変化から、試
料溶液中の生体分子の濃度を測定する表面プラズモン共
鳴センシングデバイス、それを用いた装置、およびこの
装置を用いた計測法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface plasmon resonance sensing device for measuring the concentration of biomolecules in a sample solution from a change in the refractive index of a medium near the surface of a metal thin film formed on a prism. And a measuring method using the same.

【0002】[0002]

【従来の技術】金属薄膜を一つの側面に形成したプリズ
ムに、別の側面から金属薄膜形成面に対して全反射角度
で光線を入射したときに、金属薄膜の表面でエバネッセ
ント光と表面プラズマ波の共鳴が起きるために、反射光
強度が減少する現象は既に知られている。そして、この
現象を用いて金属薄膜の表面近傍の媒体の屈折率を測定
するための表面プラズモン共鳴センシングデバイス、さ
らには同デバイスを使って金属薄膜表面で生じる抗原抗
体反応等の生体分子どうしの相互作用を調べる装置およ
び測定法は既に知られている。
2. Description of the Related Art When a light beam is incident on a prism having a metal thin film formed on one side at a total reflection angle from the other side to the surface on which the metal thin film is formed, evanescent light and surface plasma waves are generated on the surface of the metal thin film. The phenomenon that the intensity of the reflected light decreases due to the resonance of the light is already known. Using this phenomenon, a surface plasmon resonance sensing device for measuring the refractive index of the medium near the surface of the metal thin film, and the mutual use of biomolecules such as an antigen-antibody reaction generated on the surface of the metal thin film using the device. Devices and measuring methods for determining the effect are already known.

【0003】このデバイスは、その特徴を生かして様々
な分野において利用されているが、特に抗原抗体反応の
計測の分野において盛んに利用されている。以下に表面
プラズモン共鳴方式抗原センシングデバイス、同デバイ
スを用いた抗原検出装置、同装置を用いた抗原検出方法
について詳細に説明する。なお、表面プラズモン共鳴セ
ンシングデバイスにはプリズムを用いず、回折格子やオ
プティカルファイバーを用いるものもあるが、本申請書
類の対象はプリズムを使用するものに限定する。
[0003] This device is used in various fields taking advantage of its features, but is particularly actively used in the field of measurement of antigen-antibody reactions. Hereinafter, a surface plasmon resonance type antigen sensing device, an antigen detection device using the device, and an antigen detection method using the device will be described in detail. Some surface plasmon resonance sensing devices do not use a prism but use a diffraction grating or an optical fiber. However, the subject of this application is limited to those using a prism.

【0004】図1に従来の表面プラズモン共鳴センシン
グデバイスを示す。従来の表面プラズモン共鳴センシン
グデバイスは、一般的に、多角形もしくは半円形のプリ
ズム1の一つの側面の上に金属薄膜2を形成したもので
ある。特にこのデバイスを利用して抗原抗体反応により
抗原を検出する場合には、金属薄膜の上に抗体を固定化
した構造を有している。金属薄膜としては厚さ50nm
〜60nm程度の金もしくは銀の薄膜が用いられる事が
多いが、ガラスとこれらの金属薄膜との密着性を向上さ
せる目的で通常は1〜5nm程度のクロムあるいはチタ
ン等の金属薄膜層を間に形成する。なお、デバイスの取
扱いを簡単にするために図2の様に実際にはプリズムに
直接金属薄膜を形成するのではなく、プリズム1と同じ
材質のガラス板3の上に金属薄膜2を形成し、使用時に
ガラスと同じ屈折率を有するマッチングオイル4を介し
てこのガラス板をプリズムに密着させる方式が取られる
ことが多いが、本申請書類では便宜上ガラス板がマッチ
ングオイルを介してプリズムに装着されたものも単にプ
リズムとして記述する。
FIG. 1 shows a conventional surface plasmon resonance sensing device. A conventional surface plasmon resonance sensing device generally has a polygonal or semicircular prism 1 having a metal thin film 2 formed on one side surface. In particular, when an antigen is detected by an antigen-antibody reaction using this device, the device has a structure in which an antibody is immobilized on a metal thin film. 50nm thickness as metal thin film
A gold or silver thin film of about 60 to 60 nm is often used, but in order to improve the adhesion between glass and these metal thin films, usually a metal thin film layer of chromium or titanium of about 1 to 5 nm is interposed. Form. In order to simplify the handling of the device, a metal thin film 2 is formed on a glass plate 3 of the same material as the prism 1 instead of actually forming a metal thin film directly on the prism as shown in FIG. In many cases, the glass plate is closely attached to the prism via a matching oil 4 having the same refractive index as glass when used, but in this application, the glass plate is attached to the prism via the matching oil for convenience. Things are simply described as prisms.

【0005】上述の様なプリズム型の表面プラズモン共
鳴センシングデバイス5は、図3の様に半導体レーザー
(LD)あるいは発光ダイオード(LED)等の単色光
源6、電荷結合素子(CCD)あるいはフォトトランジ
スタ等の光検出器7、偏光板33と組み合わせて一体化
された装置として使用される。表面プラズモン共鳴セン
シングデバイス、単色光源、および光検出器は、単色光
源の光がプリズムのガラス面から入射され、金属薄膜形
成面で全反射し、再びガラス面から出射されて偏光板を
通り光検出器で検出される様に配置される。ただし、偏
光板はP偏光(後述)のみが透過する様に配置される。
P偏光とは、この光線が金属層及び誘電体層からなる多
層膜が形成されているプリズムの側面で全反射する際
に、この光線の電場の振動面が多層膜に対して垂直方向
にあるものを意味する。一方、S偏光とはこの光線の磁
場の振動面が多層膜に対して垂直方向にあるものを意味
する。このうち、表面プラズモン共鳴センシングデバイ
スに入射した場合に表面プラズモン共鳴を起こしその結
果として反射光強度が減少しうるのはP偏光のみであ
る。
The prism type surface plasmon resonance sensing device 5 as described above includes a monochromatic light source 6 such as a semiconductor laser (LD) or a light emitting diode (LED), a charge coupled device (CCD) or a phototransistor as shown in FIG. Is used as an integrated device in combination with the photodetector 7 and the polarizing plate 33. In the surface plasmon resonance sensing device, monochromatic light source, and photodetector, light from the monochromatic light source enters from the glass surface of the prism, is totally reflected by the metal thin film forming surface, is emitted again from the glass surface, and is detected through the polarizing plate. It is arranged to be detected by a vessel. However, the polarizing plate is arranged so that only P-polarized light (described later) is transmitted.
P-polarized light means that when this light beam is totally reflected on the side of a prism on which a multilayer film composed of a metal layer and a dielectric layer is formed, the plane of vibration of the electric field of this light beam is perpendicular to the multilayer film. Means things. On the other hand, S-polarized light means that the vibration plane of the magnetic field of this light beam is perpendicular to the multilayer film. Of these, only P-polarized light can cause surface plasmon resonance when incident on a surface plasmon resonance sensing device, resulting in a decrease in reflected light intensity.

【0006】図4に示すように、この様な光学系が配置
された装置の光検出器の出力8は、表面プラズモン共鳴
現象のため、全反射であるにもかかわらず反射光の吸収
9が観測される。このとき反射光強度が最小となる角度
(共鳴角度)θと金属薄膜に接している媒体の屈折率n
との関係は次式で表されることが知られている: Kp・sin(θ)=ω/c・{ε・n/(ε+
)}1/2 但し、この式においてKpは入射光の波数、ωは入射光
の角周波数、Cは光速、εは金属薄膜の誘電率を表す。
この式から、金属薄膜に接する媒体の屈折率およびその
変化量を共鳴角度θから知ることができる。ただし、表
面プラズモン共鳴現象に影響を与える媒体層は、金属薄
膜の表面から高々数100nmの範囲に限られる。従っ
て、共鳴角度を計測することにより金属薄膜の表面から
高々数100nmの範囲の媒体の屈折率およびその変化
を知ることができる。
As shown in FIG. 4, the output 8 of the photodetector of the device in which such an optical system is disposed has an absorption 9 of the reflected light 9 despite the total reflection due to the surface plasmon resonance phenomenon. Observed. At this time, the angle (resonance angle) θ at which the reflected light intensity becomes minimum and the refractive index n of the medium in contact with the metal thin film
Is known to be expressed by the following equation: Kp · sin (θ) = ω / c · {ε · n 2 / (ε +
n 2 )} 1/2 where Kp is the wave number of the incident light, ω is the angular frequency of the incident light, C is the speed of light, and ε is the dielectric constant of the metal thin film.
From this equation, the refractive index of the medium in contact with the metal thin film and the amount of change thereof can be known from the resonance angle θ. However, the medium layer that affects the surface plasmon resonance phenomenon is limited to a range of at most several hundred nm from the surface of the metal thin film. Therefore, by measuring the resonance angle, the refractive index of the medium within a range of at most several hundred nm from the surface of the metal thin film and its change can be known.

【0007】屈折率およびその変化量が測定できる媒体
はプリズムより低い屈折率を有するもの全てが対象と成
りうるが、特に抗原抗体反応を検出する場合は水溶液と
なる。図5に示す様に表面プラズモン共鳴センシングデ
バイス5を組み込んだ抗原抗体反応検出装置は、フロー
セル11を金属薄膜の上に形成し、フローシステムとし
て用いられることが多い。この場合、抗体12(あるい
は抗原)が金属薄膜上に固定されており、対応する抗原
13(あるいは抗体)を含む溶液14がフローセルに入
ると金属薄膜表面で抗原抗体反応が起こり、金属薄膜表
面近傍の屈折率が変化するために共鳴角度θが変化す
る。このθを測定することにより、金属薄膜表面近傍の
屈折率の変化がわかり、このことから溶液中の抗原ある
いは抗体の濃度を知ることができる。
[0007] The medium in which the refractive index and the amount of change thereof can be measured can be any medium having a refractive index lower than that of a prism. As shown in FIG. 5, an antigen-antibody reaction detection device incorporating the surface plasmon resonance sensing device 5 has a flow cell 11 formed on a metal thin film and is often used as a flow system. In this case, the antibody 12 (or antigen) is fixed on the metal thin film, and when the solution 14 containing the corresponding antigen 13 (or antibody) enters the flow cell, an antigen-antibody reaction occurs on the surface of the metal thin film, and the vicinity of the surface of the metal thin film Changes the resonance angle θ. By measuring this θ, the change in the refractive index near the surface of the metal thin film can be determined, and from this, the concentration of the antigen or antibody in the solution can be determined.

【0008】なお、抗体は、一般的に、物理的吸着法、
化学的結合法、あるいは高分子担体法を使ってプリズム
上の金属薄膜に固定化される。ここで物理的吸着とは抗
体と金属薄膜との間の静電相互作用、ファンデルワール
スカ等の物理的相互作用により抗体が金属薄膜に吸着さ
れることを指すが、結合力が弱いために長時間溶液にさ
らされると抗体等が薄膜より脱落するために実用的な固
定化法とは言いがたい。一方、化学的結合法とは抗体を
金属薄膜に化学的結合力で固定化することを指す。この
方法では、金属薄膜層として金を用い、金メルカプチド
結合を介して抗体を金属薄膜に固定化することが多く、
シランカップリング剤等の他の手段で固定化することは
稀である。また、高分子担体法では、金属基板上に固定
化された高分子担体に抗体を結合させる。この場合も高
分子担体自身は金メルカプチド結合を介して金薄膜に固
定化されることが多い。
[0008] Antibodies are generally prepared by physical adsorption,
It is immobilized on a metal thin film on a prism using a chemical bonding method or a polymer carrier method. Here, the physical adsorption means that the antibody is adsorbed on the metal thin film due to an electrostatic interaction between the antibody and the metal thin film, or a physical interaction such as van der Waalska. This is not a practical immobilization method because antibodies and the like fall off from the thin film when exposed to the solution for a long time. On the other hand, the chemical bonding method refers to immobilizing an antibody to a metal thin film with a chemical bonding force. In this method, gold is used as the metal thin film layer, and the antibody is often immobilized on the metal thin film via a gold mercaptide bond.
It is rare to immobilize by other means such as a silane coupling agent. In the polymer carrier method, an antibody is bound to a polymer carrier immobilized on a metal substrate. Also in this case, the polymer carrier itself is often immobilized on the gold thin film via a gold mercaptide bond.

【0009】この様に金薄膜は抗体を固定化するのに適
しており、しかも銀薄膜の場合の様に容易に劣化される
こともないために最も実用的な薄膜材料であると言え
る。しかしながら、金薄膜をプリズム上に形成した場
合、反射光強度が減少する角度が銀薄膜の場合に比べて
5倍程度広がる傾向にある。共鳴角度の測定精度はその
分散幅に反比例することから、金薄膜の場合は銀薄膜に
比べて共鳴角度の測定精度が低下することが問題とな
る。
As described above, a gold thin film is suitable for immobilizing an antibody, and is not easily deteriorated as in the case of a silver thin film, and thus can be said to be the most practical thin film material. However, when a gold thin film is formed on a prism, the angle at which the intensity of reflected light decreases tends to be about five times larger than in the case of a silver thin film. Since the measurement accuracy of the resonance angle is inversely proportional to the dispersion width, there is a problem that the measurement accuracy of the resonance angle is lower in the case of a gold thin film than in the case of a silver thin film.

【0010】ところで、フローシステムでは、サンプル
溶液中の抗原あるいは抗体の濃度を測るときに、普段は
抗原あるいは抗体を含まない溶液を常に流した状態にし
ておき、測定の途中でサンプル溶液を注入し、共鳴角度
の変化を測定する。すなわち、サンプル溶液注入前後の
共鳴角度の変化量を測定することになるが、これはサン
プル注入時以外では共鳴角度が経時的に安定しているこ
とが前提となる。しかしながら、実際には溶液の温度変
動、圧力変動さらには組成の変動などが原因となり共鳴
角度を安定に保つことは容易ではない。例えば、水の温
度が1℃上昇すると屈折率が変化するため共鳴角度が
0.015度減少する。これに対し、従来の方式では、
装置やフローセルの温度を一定に保つことしか解決の手
段が無い。このことは装置の巨大化にもつながってい
る。
In the flow system, when measuring the concentration of an antigen or an antibody in a sample solution, a solution containing no antigen or antibody is usually kept flowing, and the sample solution is injected during the measurement. And the change in the resonance angle is measured. That is, the amount of change in the resonance angle before and after the injection of the sample solution is measured, which is based on the premise that the resonance angle is stable over time except when the sample is injected. However, in practice, it is not easy to keep the resonance angle stable due to temperature fluctuation, pressure fluctuation, and composition fluctuation of the solution. For example, when the temperature of water rises by 1 ° C., the refractive index changes, so that the resonance angle decreases by 0.015 degrees. On the other hand, in the conventional method,
The only solution is to keep the temperature of the device or flow cell constant. This has led to a huge device.

【0011】また、フローシステムで常時流している液
体とサンプル溶液の組成がわずかでも異なる場合には、
両者の屈折率が異なってくるため、抗原抗体反応とは別
の理由、例えば溶液の温度変動、あるいは圧力変動のた
めに、共鳴角度の値が変化するという問題があるが、従
来よりこの問題は解決の手段が無い。
If the composition of the liquid constantly flowing in the flow system and the composition of the sample solution are slightly different,
Since the refractive indices of the two are different, there is a problem that the value of the resonance angle changes due to a different reason from the antigen-antibody reaction, for example, temperature fluctuation or pressure fluctuation of the solution. There is no solution.

【0012】[0012]

【発明が解決しようとする課題】上述のような従来技術
の表面プラズモン共鳴センシングデバイス、装置および
方法に鑑み、発明が解決しようとする課題は、抗体ある
いは抗原を安定に保持でき、かつ高精度で共鳴角度を測
定できるような表面プラズモン共鳴センシングデバイ
ス、装置および方法を提供することと、温度制御システ
ムなどのモジュールを組み込むことで装置を巨大化、複
雑化すること無く、経時的に安定に共鳴角度を測定でき
る表面プラズモン共鳴センシングデバイス、装置および
方法を提供することである。
SUMMARY OF THE INVENTION In view of the prior art surface plasmon resonance sensing device, apparatus and method as described above, the problem to be solved by the present invention is to stably hold an antibody or an antigen and to achieve high precision. Providing a surface plasmon resonance sensing device, apparatus and method capable of measuring a resonance angle, and incorporating a module such as a temperature control system to make the resonance angle stable over time without making the apparatus huge and complicated. To provide a surface plasmon resonance sensing device, apparatus, and method capable of measuring the surface plasmon resonance.

【0013】[0013]

【課題を解決するための手段】上記の課題は、図6に示
すように、プリズムの上に形成する金属薄膜に誘電体を
挿入すること、さらには生体分子固定化用担体を使用す
ることで解決されることが見いだされた。
The above object is achieved, as shown in FIG. 6, by inserting a dielectric into a metal thin film formed on a prism and further using a biomolecule-immobilizing carrier. It was found to be solved.

【0014】即ち、第1の要旨において、本発明は金属
薄膜および誘電体薄膜から構成される多層膜をプリズム
の上に形成し、その上に生体分子の固定化のための担体
である多糖類等の高分子膜を形成することにより成る、
液体試料中の特定生体分子の濃度の光学的測定方法に使
用できる表面プラズモン共鳴センシングデバイスを提供
する。
That is, according to a first aspect, the present invention provides a polysaccharide, which is a carrier for immobilizing biomolecules, on which a multilayer film composed of a metal thin film and a dielectric thin film is formed on a prism. By forming a polymer film such as
Provided is a surface plasmon resonance sensing device that can be used for a method for optically measuring the concentration of a specific biomolecule in a liquid sample.

【0015】本発明において、液体試料とは、測定すべ
き対象である特定の生体分子が共存している液体であっ
て、液体自体は、溶液であっても、エマルジョンであっ
ても良い。具体的には、血液、血清、血漿、尿、髄液な
どの体液や果汁などの食品等を例示できる。
In the present invention, the liquid sample is a liquid in which a specific biomolecule to be measured coexists, and the liquid itself may be a solution or an emulsion. Specific examples include body fluids such as blood, serum, plasma, urine, and cerebrospinal fluid, and foods such as fruit juice.

【0016】本発明において、生体分子とは、生体由来
の分子もしくは分子集合体、及びこれらの分子もしくは
分子集合体と相補的に結合する分子もしくは分子集合体
のことである。具体的には、酵素、抗体、レクチン等の
蛋白質、DNAやRNAなどの核酸、デンプン、デキス
トラン等の糖類、カルシウムやマグネシウムなどの無機
物質、尿素や乳酸等の有機物質などが例示できる。
In the present invention, the term "biomolecule" refers to a molecule or a molecular aggregate derived from a living body, and a molecule or a molecular aggregate that complementarily binds to these molecules or a molecular aggregate. Specific examples include proteins such as enzymes, antibodies and lectins, nucleic acids such as DNA and RNA, sugars such as starch and dextran, inorganic substances such as calcium and magnesium, and organic substances such as urea and lactic acid.

【0017】本発明において、表面ブラズモン共鳴セン
シングデバイスとは図7あるいは図8に示すごとく、プ
リズム15もしくは基板20の上に、第一の金属薄膜層
16が形成され、その上に誘電体層17が形成され、さ
らにその上に第二の金属薄膜層18が形成された構造を
しているデバイスを意味する。さらには、図6に示すご
とく、金属薄膜層の上にさらに生体分子固定化用担体で
ある高分子膜25を形成したものをも意味する。
In the present invention, the surface plasmon resonance sensing device is, as shown in FIG. 7 or 8, a first metal thin film layer 16 is formed on a prism 15 or a substrate 20, and a dielectric layer 17 is formed thereon. Is formed, and the second metal thin film layer 18 is further formed thereon. Further, as shown in FIG. 6, it also means that a polymer film 25 which is a carrier for immobilizing biomolecules is further formed on a metal thin film layer.

【0018】本発明の表面プラズモン共鳴センシングデ
バイスに用いられるプリズムとは、石英やガラスやポリ
メチルメタクリレートなどを例とする紫外、可視、近赤
外領域の光に対して透明で、しかも液体試料より大きな
屈折率を有する材質より成る光学部品を意味する。その
形状に特に制限は無いが、半円柱、三角柱、台形柱など
の形状を有するものが多くの場合に使われている。な
お、プリズムと同じ材質の基板の上に金属薄膜を形成
し、使用時にプリズムや基板と同じ屈折率を有するマッ
チングオイルを介してこの基板をプリズムに密着させる
方式が取られることが多い。本申請書類では便宜上基板
がマッチングオイルを介してプリズムに装着されたもの
も単にプリズムと呼ぶ。
The prism used in the surface plasmon resonance sensing device of the present invention is transparent to ultraviolet, visible, and near-infrared light such as quartz, glass, and polymethyl methacrylate. An optical component made of a material having a large refractive index. Although the shape is not particularly limited, those having a shape such as a semicircular column, a triangular column, or a trapezoidal column are used in many cases. In many cases, a metal thin film is formed on a substrate made of the same material as the prism, and the substrate is brought into close contact with the prism via a matching oil having the same refractive index as the prism or the substrate when used. In this application document, for convenience, a substrate mounted on a prism via a matching oil is also simply referred to as a prism.

【0019】本発明の表面プラズモン共鳴センシングデ
バイスに用いられる金属薄膜とは、金、銀、銅、アルミ
ニウム、クロム、チタンなどの材質より成る金属の薄膜
を意味する。薄膜の厚みは、紫外、可視、近赤外領域の
光線を透過できる程度であり、通常は百ナノメートル以
下である。金属薄膜は厚さが均一でかつ表面が平坦であ
り、なおかつ下層との密着性が良いことが望ましい。こ
のような金属薄膜は真空蒸着法、スパッタリング法など
で形成されることが多いが、本発明では特定の成膜方法
に限定されるものではない。ただし、表面プラズモン共
鳴センシングデバイスの最表面層は金薄膜であることが
特に望ましく、この場合は抗原や抗体などの生体分子あ
るいは生体分子を固定化するための高分子担体を金メル
カプチド結合を介して固定化することが容易になる。
The metal thin film used in the surface plasmon resonance sensing device of the present invention means a metal thin film made of a material such as gold, silver, copper, aluminum, chromium, and titanium. The thickness of the thin film is such that it can transmit light in the ultraviolet, visible, and near-infrared regions, and is usually not more than 100 nanometers. It is desirable that the metal thin film has a uniform thickness, a flat surface, and good adhesion to a lower layer. Such a metal thin film is often formed by a vacuum deposition method, a sputtering method, or the like, but the present invention is not limited to a specific film forming method. However, it is particularly preferable that the outermost layer of the surface plasmon resonance sensing device is a gold thin film, in which case a biomolecule such as an antigen or an antibody or a polymer carrier for immobilizing the biomolecule is bonded via a gold mercaptide bond. It becomes easy to fix.

【0020】本発明の表面プラズモン共鳴センシングデ
バイスに用いられる誘電体薄膜とは、SiO、Si
O、MgF、CaFなどの紫外、可視、近赤外領域
の光線に対して透明な材質より成る無機物質の薄膜を意
味する。薄膜の厚みは、紫外、可視、近赤外領域の光線
の波長の半分から数倍程度であり、通常は百ナノメート
ルから数千ナノメートルである。誘電体薄膜は厚さが均
一でかつ表面が平坦であり、なおかつ下層との密着性が
良いことが望ましい。このような誘電体薄膜は真空蒸着
法、スパッタリング法、化学蒸着法、ゾルゲル法などで
形成できる。本発明では特定の成膜方法に限定されるも
のではない。
The dielectric thin film used in the surface plasmon resonance sensing device of the present invention is SiO 2 , Si
It refers to a thin film of an inorganic substance such as O, MgF 2 , or CaF 2 made of a material transparent to ultraviolet, visible, and near-infrared rays. The thickness of the thin film is about half to several times the wavelength of light in the ultraviolet, visible, and near-infrared regions, and is usually from one hundred nanometers to several thousand nanometers. It is desirable that the dielectric thin film has a uniform thickness, a flat surface, and good adhesion to a lower layer. Such a dielectric thin film can be formed by a vacuum deposition method, a sputtering method, a chemical vapor deposition method, a sol-gel method, or the like. The present invention is not limited to a specific film forming method.

【0021】上記の誘電体薄膜層は、入射光の波長に対
して第一の金属薄膜層、誘電体薄膜層、第二の金属薄膜
層の厚みが最適に選択された場合に、光導波路として機
能するために特定の入射角度の光線のみを薄膜に平行な
方向に伝搬する。このため、表面プラズモン共鳴現象に
よる共鳴角度の分散は、誘電体層を有しない表面プラズ
モン共鳴センシングデバイスのそれと比較して狭いもの
となる。図9にその様子を例示する。この図では、プリ
ズム(材質BK7)の上にクロム(1nm)、銀(30
nm)、クロム(1nm)、SiO(580nm)、
クロム(1nm)、金(25nm)の薄膜をこの順に形
成したデバイスに、波長660nmの単色光を入射した
時のP偏光の反射光強度を示している。この図には比較
のために従来型のデバイス、すなわち、プリズムの上に
クロム(1nm)、金(50nm)を形成したデバイ
ス、およびプリズムの上にクロム(1nm)、銀(50
nm)を形成したデバイスのP偏光の反射光強度も示し
ている。図9からわかるように、P偏光を入射した場
合、本発明によるデバイスは最表面層が金であるにもか
かわらず、銀薄膜を形成したデバイスに匹敵する鋭い吸
収を示している。この様に本発明のデバイスは共鳴角度
の分散が従来のデバイスより狭いため、共鳴角度の推定
はより精密なものとなり、その結果としてデバイス表面
近傍の媒体の屈折率変化の検出も精密なものとなる。従
って、本発明による表面プラズモン共鳴センシングデバ
イスを生体分子間の相互作用の検出に用いれば、溶液中
のより低い濃度の生体分子の検出が可能となる。
The above-mentioned dielectric thin film layer is used as an optical waveguide when the thicknesses of the first metal thin film layer, the dielectric thin film layer, and the second metal thin film layer are optimally selected with respect to the wavelength of incident light. In order to function, only light rays of a specific incident angle propagate in a direction parallel to the thin film. Therefore, the dispersion of the resonance angle due to the surface plasmon resonance phenomenon is narrower than that of the surface plasmon resonance sensing device having no dielectric layer. FIG. 9 illustrates this state. In this figure, chromium (1 nm) and silver (30 nm) are placed on a prism (material BK7).
nm), chromium (1 nm), SiO 2 (580 nm),
The graph shows the reflected light intensity of P-polarized light when monochromatic light having a wavelength of 660 nm is incident on a device in which a thin film of chromium (1 nm) and gold (25 nm) are formed in this order. In this figure, for comparison, a conventional device, that is, a device in which chromium (1 nm) and gold (50 nm) are formed on a prism, and a device in which chromium (1 nm) and silver (50 nm) are formed on a prism.
(nm) is also shown. As can be seen from FIG. 9, when P-polarized light is incident, the device according to the present invention shows sharp absorption comparable to that of the device formed with a silver thin film, even though the outermost layer is gold. Thus, the device of the present invention has a narrower dispersion of the resonance angle than the conventional device, so that the estimation of the resonance angle is more accurate, and as a result, the change in the refractive index of the medium near the device surface is also accurately detected. Become. Therefore, when the surface plasmon resonance sensing device according to the present invention is used for detecting an interaction between biomolecules, a lower concentration of biomolecules in a solution can be detected.

【0022】従来はP偏光のみが測定に用いられてお
り、デバイス上の金属薄膜近傍高々数百ナノメートルの
媒体中の屈折率変化のみが測定可能であった。そのため
媒体の温度変動や角度変動等の変動のために媒体の屈折
率の変化が起きた場合に、これがバルクを含む媒体全体
の屈折率の変化であるのか、金属薄膜近傍の屈折率の変
化であるのか区別することが困難であった。そのために
測定対象となる生体分子を含む溶液をデバイスに適用し
た際に、共鳴角度の変化から推定される生体分子の濃度
は必ずしも信頼性のおけるものではなかった。それに対
し、本発明の表面プラズモン共鳴センシングデバイスの
場合は、P偏光を入射した場合に従来のデバイスと同様
に表面プラズモン共鳴現象により反射光強度が減少する
ばかりでなく、S偏光を入射した場合にも反射光強度が
減少する。図10にその様子を例示する。この図では、
プリズム(材質BK7)の上にクロム(1nm)、銀
(30nm)、クロム(1nm)、SiO(580n
m)、クロム(1nm)、金(25nm)の薄膜をこの
順に形成したデバイスに、波長660nmの単色光を入
射した時のS偏光の反射光強度を示している。この図に
は比較のために従来型のデバイス、すなわち、プリズム
の上にクロム(1nm)、金(50nm)を形成したデ
バイス、およびプリズムの上にクロム(1nm)、銀
(50nm)を形成したデバイスのS偏光の反射光強度
も示している。本発明のデバイスはS偏光の反射光吸収
角度からデバイスの最表面にある金属薄膜から千ナノメ
ートル以上離れた媒体バルク中の屈折率の変化を測定す
ることが可能である。従って、本デバイスに測定対象と
なる生体分子を含む溶液を適用する際に、P偏光を入射
し共鳴角度を測定することで得たデバイス近傍の屈折率
変化Δnpから、S偏光を入射し共鳴角度を測定するこ
とで得た媒体バルク中の屈折率変化Δnsを引いた値Δ
np−Δnsは、デバイス近傍のみに起因する屈折率変
化であり、この値から計算される溶液中の生体分子の濃
度は溶液の温度変化、圧力変化などに影響を受けない信
頼性の高いものとなる。
Conventionally, only P-polarized light has been used for measurement, and only a change in the refractive index in a medium having a thickness of at most several hundred nanometers near a metal thin film on a device can be measured. Therefore, when the refractive index of the medium changes due to fluctuations in temperature, angle, etc. of the medium, whether this is the change in the refractive index of the entire medium including the bulk or the change in the refractive index near the metal thin film It was difficult to distinguish between them. Therefore, when a solution containing a biomolecule to be measured is applied to the device, the concentration of the biomolecule estimated from the change in the resonance angle is not always reliable. On the other hand, in the case of the surface plasmon resonance sensing device of the present invention, when P-polarized light is incident, not only the reflected light intensity decreases due to the surface plasmon resonance phenomenon as in the conventional device, but also when S-polarized light is incident. Also, the reflected light intensity decreases. FIG. 10 illustrates this state. In this figure,
Chrome (1 nm), silver (30 nm), chromium (1 nm), SiO 2 (580 n) are placed on the prism (material BK7).
m), chromium (1 nm), and gold (25 nm) thin films formed in this order show the intensity of reflected S-polarized light when monochromatic light having a wavelength of 660 nm is incident on the device. In this figure, for comparison, a conventional device, that is, a device having chromium (1 nm) and gold (50 nm) formed on a prism, and a device having chromium (1 nm) and silver (50 nm) formed on a prism. The reflected S-polarized light intensity of the device is also shown. The device of the present invention can measure the change in the refractive index in the bulk of the medium at a distance of 1000 nm or more from the metal thin film on the outermost surface of the device from the angle of absorption of the reflected S-polarized light. Therefore, when a solution containing a biomolecule to be measured is applied to the device, the S-polarized light is incident upon the S-polarized light from the refractive index change Δnp near the device obtained by entering the P-polarized light and measuring the resonance angle. Is obtained by subtracting the refractive index change Δns in the medium bulk obtained by measuring
np-Δns is a refractive index change caused only by the vicinity of the device, and the concentration of biomolecules in the solution calculated from this value is a reliable one that is not affected by changes in the temperature, pressure, etc. of the solution. Become.

【0023】本発明において、表面プラズモン共鳴セン
シングデバイスの抗体(あるいは抗原)固定化担体とし
て用いる多糖類とは、グルコースなどの単糖類が直鎖も
しくは分枝して多数結合した通常の意味での多糖類、も
しくはこれらを化学的に修飾した物を意味し、例えば硫
酸化デキストラン、可溶性スターチなどがある。図11
の様にデバイス最表面の金属層21に直接物理的あるい
は化学的方法によって抗体22(あるいは抗原)を固定
した場合には、この抗体(あるいは抗原)は金属薄膜表
面より高々10ナノメートル程度しか離れていない。し
かしながら、一般に表面プラズモン共鳴センシングデバ
イスが屈折率の変化を検出できる層は、エバネッセント
光24が到達する範囲、すなわち金属薄膜表面より数百
ナノメートルの範囲であり、抗体(あるいは抗原)が固
定されている層を除いて殆どの範囲が使用されていな
い。しかるに図12のごとく分子量が大きく長さの長い
多糖類25に抗体22(あるいは抗原)を固定化した場
合には、金属薄膜表面より数百ナノメートルの範囲にわ
たり抗体(あるいは抗原)が分布するので、抗原抗体等
の相補的結合反応によりこの全ての領域で屈折率変化が
生じるため抗原23(あるいは抗体)の測定感度が高ま
る。特に水に近い屈折率を有する多糖類を用いた場合に
は、溶液の温度、pH、イオン強度等の変化により担体
の立体構造の変化は極めて小さく屈折率の変化が生じな
いので信頼性の高い測定が可能である。
In the present invention, the polysaccharide used as a carrier for immobilizing an antibody (or antigen) in a surface plasmon resonance sensing device is a polysaccharide in the ordinary sense in which a large number of monosaccharides such as glucose are linearly or branched and bonded. It means sugars or those obtained by chemically modifying them, such as sulfated dextran and soluble starch. FIG.
When the antibody 22 (or antigen) is directly or physically immobilized on the metal layer 21 on the outermost surface of the device by the method described above, the antibody (or antigen) is separated from the surface of the metal thin film by at most about 10 nm. Not. However, the layer in which the surface plasmon resonance sensing device can detect a change in the refractive index is generally in a range where the evanescent light 24 reaches, that is, in a range of several hundred nanometers from the surface of the metal thin film, and the antibody (or antigen) is immobilized. Most of the area is not used except for some layers. However, when the antibody 22 (or antigen) is immobilized on the polysaccharide 25 having a large molecular weight and a long length as shown in FIG. 12, the antibody (or antigen) is distributed over a range of several hundred nanometers from the surface of the metal thin film. In addition, since the refractive index changes in all the regions due to the complementary binding reaction of the antigen and the antibody, the measurement sensitivity of the antigen 23 (or the antibody) is increased. In particular, when a polysaccharide having a refractive index close to that of water is used, a change in the temperature, pH, ionic strength, etc. of the solution causes a very small change in the three-dimensional structure of the carrier, and does not cause a change in the refractive index. Measurement is possible.

【0024】第2の要旨において、本発明は、液体試料
中の特定生体分子の濃度を光学的方法により測定するた
めの装置であって、上述の本発明の表面プラズモン共鳴
センシングデバイス、フローセル、インジェクションバ
ルブ、送液ポンプ、光源、光検出器、ビームスプリッタ
ー、偏光板を有してなる測定装置を提供する。
According to a second aspect, the present invention is an apparatus for measuring the concentration of a specific biomolecule in a liquid sample by an optical method, comprising the surface plasmon resonance sensing device, flow cell, and injection device of the present invention. Provided is a measuring device having a valve, a liquid feed pump, a light source, a photodetector, a beam splitter, and a polarizing plate.

【0025】このような測定装置の構成を模式的に図1
3に示す。本発明の測定装置は、通常は次の様な使用形
態で用いられる。まず、表面プラズモン共鳴センシング
デバイス26の金属薄膜と誘電体からなる多層膜が形成
された側面にフローセル27が装着される。このとき、
本デバイスには使用前に抗体(あるいは抗原)を結合し
た多糖類が固定されているものとする。溶液は送液ポン
プ28からインジェクションバルブ29を介してフロー
セルへと注入され、フローセルから出た溶液は廃液溜3
0に排出される。表面プラズモン共鳴センシングデバイ
スには光源31から光線が入射され、フローセルとの界
面で入射光線は全反射し、ビームスプリッター32、偏
光板33を通して光検出器34で反射光は検出される。
ただし、一方の偏光板はP偏光のみを通過させるよう
に、またもう一方の偏光板はS偏光のみを通過させるよ
うに配置させる。従って、一方の光検出器ではP偏光反
射光が、もう一方の光検出器ではS偏光反射光が検出さ
れる。両検出器の出力から反射光強度最小となる角度が
P偏光、S偏光それぞれに対して同時にリアルタイムで
モニタリングされるものとする。検出器で検出される反
射光強度から反射光強度最小角度を計算するアルゴリズ
ムは既存の手法が使用可能であり、当業者には周知のこ
とであり、これ以上の説明は不要である。抗原(あるい
は抗体)を含む試料はインジェクションバルブより注入
され、ポンプから送液される溶液の流れにのりフローセ
ルに入り、デバイス最表面の金属薄膜表面で抗原抗体反
応がおこる。このとき、試料溶液注入前後のP偏光の反
射光強度最小角度をそれぞれθp、θ′pとし、S偏光
の反射光強度最小角度をそれぞれθs、θ′sとすると
き従来は、(θ′p−θp)から試料溶液中の抗原(あ
るいは抗体)の濃度を算出していたが、本測定装置を用
いる場合には、(θ′p−θp)−α(θ′s−θs)
から抗原(あるいは抗体)の濃度を算出する。ただし、
αは係数である。抗原抗体反応などの金属薄膜表面に由
来する変動は(θ′p−θp)のみに現れ(θ′s−θ
s)には現れないが、金属薄膜表面に由来しない変動は
(θ′p−θp)と(θ′s−θs)の両方に現れるた
めその影響を除去することが可能となる。
FIG. 1 schematically shows the configuration of such a measuring apparatus.
3 is shown. The measuring device of the present invention is usually used in the following usage form. First, the flow cell 27 is mounted on the side surface of the surface plasmon resonance sensing device 26 where the multilayer film composed of the metal thin film and the dielectric is formed. At this time,
It is assumed that a polysaccharide to which an antibody (or antigen) is bound is immobilized on the device before use. The solution is injected from the liquid sending pump 28 into the flow cell via the injection valve 29, and the solution discharged from the flow cell is discharged into the waste liquid reservoir 3.
Discharged to zero. Light is incident on the surface plasmon resonance sensing device from a light source 31, the incident light is totally reflected at an interface with the flow cell, and the reflected light is detected by a photodetector 34 through a beam splitter 32 and a polarizing plate 33.
However, one polarizing plate is arranged to pass only P-polarized light, and the other polarizing plate is arranged to pass only S-polarized light. Accordingly, one photodetector detects P-polarized reflected light, and the other photodetector detects S-polarized reflected light. It is assumed that the angles at which the reflected light intensity becomes minimum from the outputs of both detectors are simultaneously monitored in real time for each of the P-polarized light and the S-polarized light. An algorithm for calculating the minimum angle of the reflected light intensity from the intensity of the reflected light detected by the detector can use an existing method, is well known to those skilled in the art, and does not require further explanation. A sample containing an antigen (or antibody) is injected from an injection valve, flows into a flow of a solution sent from a pump, enters a flow cell, and an antigen-antibody reaction occurs on the surface of a metal thin film on the outermost surface of the device. At this time, when the minimum angles of the reflected light intensity of the P-polarized light before and after the injection of the sample solution are θp and θ′p, and the minimum angles of the reflected light intensity of the S-polarized light are θs and θ ′s, respectively, conventionally, (θ′p Although the concentration of the antigen (or antibody) in the sample solution was calculated from (−θp), when using the present measurement device, (θ′p−θp) −α (θ′s−θs)
The antigen (or antibody) concentration is calculated from the above. However,
α is a coefficient. Variations derived from the surface of the metal thin film such as antigen-antibody reactions appear only in (θ′p−θp) (θ′s−θ
Although the variation does not appear in (s), but does not originate in the metal thin film surface, it appears in both (θ′p−θp) and (θ′s−θs), so that the influence can be removed.

【0026】[0026]

【実施例1】本発明の表面プラズモン共鳴センシングデ
バイスを10μMアミノエタンチオール溶液に浸漬し洗
浄した後、硫酸化デキストラン溶液を2%過ヨウ素酸ナ
トリウム溶液と重量比で5:2の割合で混合し一晩撹拌
した溶液に浸漬し次いで洗浄した。次にこのデバイスを
ヒトアルブミン溶液(フラクションV、0.5mg/m
l)に浸漬し洗浄した後、10mM水素化ホウ素ナトリ
ウム溶液(pH7.5〜8、4℃)に浸漬し洗浄した。
このデバイスを表面プラズモン共鳴測定装置に装着し、
20mMリン酸緩衝液(pH7)を送液下、50μLの
抗ヒトアルブミン(ヤギ)をインジェクションバルブよ
り注入した後グリシン−塩酸緩衝液(pH2.5)を注
入するという動作を繰り返すことによって図14のデー
タを得た。
Example 1 A surface plasmon resonance sensing device of the present invention was immersed in a 10 μM aminoethanethiol solution and washed, and then a sulfated dextran solution was mixed with a 2% sodium periodate solution at a weight ratio of 5: 2. It was immersed in the solution stirred overnight and then washed. Next, the device was added to a human albumin solution (fraction V, 0.5 mg / m2).
After immersion in 1) for washing, the substrate was immersed in a 10 mM sodium borohydride solution (pH 7.5 to 8, 4 ° C.) for washing.
This device is mounted on a surface plasmon resonance measurement device,
The operation of injecting 50 μL of anti-human albumin (goat) from an injection valve while injecting a 20 mM phosphate buffer (pH 7) and then injecting a glycine-hydrochloric acid buffer (pH 2.5) is repeated. Data obtained.

【0027】[0027]

【実施例2】実施例1と同様の方法にて作製した表面プ
ラズモン共鳴センシングデバイス(硫酸化デキストラン
固定化膜担体法)、10μMアミノエタンチオール溶液
に浸漬し洗浄した後、1%グルタルアルデヒド溶液に浸
漬し洗浄し、さらにアルブミン溶液(0.5mg/m
l)に浸漬し洗浄したデバイス(化学結合法)、および
アルブミン溶液(0.5mg/ml)に浸漬し洗浄した
デバイス(物理吸着法)を用い、50μLの抗ヒトアル
ブミン(ヤギ)をインジェクションバルブより注入した
後グリシン−塩酸緩衝液(pH2.5)を注入するとい
う動作を繰り返し、このときの抗ヒトアルブミンに対す
る共鳴角度の変化量を、試料溶液注入回数に対してプロ
ットしたものを図15に示す。
Example 2 A surface plasmon resonance sensing device (sulfated dextran-immobilized membrane carrier method) prepared in the same manner as in Example 1 was immersed and washed in a 10 μM aminoethanethiol solution, and then washed with a 1% glutaraldehyde solution. After immersion and washing, the albumin solution (0.5 mg / m
1) Using a device (chemical bonding method) immersed and washed in an albumin solution (0.5 mg / ml) and a device washed (physical adsorption method) in an albumin solution (0.5 mg / ml), 50 μL of anti-human albumin (goat) was injected from an injection valve. The operation of injecting a glycine-hydrochloric acid buffer (pH 2.5) after the injection is repeated, and the amount of change in the resonance angle with respect to anti-human albumin at this time is plotted against the number of sample solution injections in FIG. .

【0028】[0028]

【実施例3】実施例1と同様の方法にて作製した表面プ
ラズモン共鳴センシングデバイスおよび同デバイスを有
する測定装置を用いて、20mMリン酸緩衝液(pH
7)を送液下、50μLの抗ヒトアルブミンをインジェ
クションバルブより注入した後グリシン−塩酸緩衝液
(pH2.5)を注入するという動作を抗ヒトアルブミ
ンの濃度変えて繰り返し行った結果を図16に示す。
Example 3 Using a surface plasmon resonance sensing device manufactured by the same method as in Example 1 and a measuring apparatus having the device, a 20 mM phosphate buffer (pH
FIG. 16 shows the result of repeatedly performing the operation of injecting 50 μL of anti-human albumin from the injection valve and then injecting a glycine-hydrochloric acid buffer (pH 2.5) while changing the concentration of anti-human albumin. Show.

【0029】[0029]

【発明の効果】本発明の表面プラズモン共鳴センシング
デバイス、測定装置および測定方法を使用することによ
り、溶液の温度、圧力、組成などの変動に影響されにく
く、かつ高感度に試料溶液中の生体分子の濃度を測定で
きる。このことによって、従来よりも、より迅速に、か
つより正確に、かつリアルタイムに、血液、血清、血
漿、尿、髄液などの体液や果汁などの食品等に含まれる
特定成分の検出が可能となる。
By using the surface plasmon resonance sensing device, measuring apparatus and measuring method of the present invention, biomolecules in a sample solution are less sensitive to fluctuations in temperature, pressure, composition and the like of a solution and highly sensitive. Can be measured. This makes it possible to detect specific components contained in body fluids such as blood, serum, plasma, urine, and cerebrospinal fluid, and foods such as fruit juices more quickly, more accurately, and in real time than before. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の表面プラズモン共鳴センシングデバイ
スの一つの形態を模式的に示す概略図である。
FIG. 1 is a schematic diagram schematically showing one form of a conventional surface plasmon resonance sensing device.

【図2】 従来の表面プラズモン共鳴センシングデバイ
スの別の形態を模式的に示す概略図である。
FIG. 2 is a schematic view schematically showing another embodiment of the conventional surface plasmon resonance sensing device.

【図3】 従来の表面プラズモン共鳴センシングデバイ
スを用い、表面プラズモン共鳴現象を観測するための最
小の装置構成を模式的に示す概略図である。
FIG. 3 is a schematic diagram schematically showing a minimum apparatus configuration for observing a surface plasmon resonance phenomenon using a conventional surface plasmon resonance sensing device.

【図4】 従来の表面プラズモン共鳴センシングデバイ
スを用い表面プラズモン共鳴現象を観測したときに、光
検出器で観測される反射光強度の角度依存性を示した図
である。
FIG. 4 is a diagram showing the angle dependence of reflected light intensity observed by a photodetector when a surface plasmon resonance phenomenon is observed using a conventional surface plasmon resonance sensing device.

【図5】 従来の表面プラズモン共鳴センシングデバイ
スを組み込んだ抗原抗体反応検出装置を模式的に示す概
略図である。
FIG. 5 is a schematic diagram schematically showing an antigen-antibody reaction detection device incorporating a conventional surface plasmon resonance sensing device.

【図6】 本発明の表面プラズモン共鳴センシングデバ
イスの一つの形態を模式的に示す概略図である。
FIG. 6 is a schematic view schematically showing one embodiment of the surface plasmon resonance sensing device of the present invention.

【図7】 本発明の表面プラズモン共鳴センシングデバ
イスの一つの形態を模式的に示す概略図である。
FIG. 7 is a schematic diagram schematically showing one embodiment of the surface plasmon resonance sensing device of the present invention.

【図8】 本発明の表面プラズモン共鳴センシングデバ
イスの一つの形態を模式的に示す概略図である。
FIG. 8 is a schematic view schematically showing one embodiment of the surface plasmon resonance sensing device of the present invention.

【図9】 従来方式の表面プラズモン共鳴センシングデ
バイスと本発明の表面プラズモン共鳴センシングデバイ
スを用い、水を試料としたときのP偏光の反射光強度を
示した図である。
FIG. 9 is a diagram showing the reflected light intensity of P-polarized light when water is used as a sample using a conventional surface plasmon resonance sensing device and the surface plasmon resonance sensing device of the present invention.

【図10】 従来方式の表面プラズモン共鳴センシング
デバイスと本発明の表面プラズモン共鳴センシングデバ
イスを用い、水を試料としたときのS偏光の反射光強度
を示した図である。
FIG. 10 is a diagram showing the intensity of reflected S-polarized light when water is used as a sample, using a conventional surface plasmon resonance sensing device and the surface plasmon resonance sensing device of the present invention.

【図11】 抗体(あるいは抗原)を表面プラズモン共
鳴センシングデバイスの金属薄膜表面に直接固定化した
場合の金属薄膜表面近傍の様子を示した図である。
FIG. 11 is a diagram showing a state near a metal thin film surface when an antibody (or antigen) is directly immobilized on the metal thin film surface of a surface plasmon resonance sensing device.

【図12】 抗体(あるいは抗原)固定化担体である多
糖類を表面プラズモン共鳴センシングデバイスに用いた
場合の金属薄膜表面近傍の様子を示した図である。
FIG. 12 is a diagram showing a state near a metal thin film surface when a polysaccharide as an antibody (or antigen) immobilization carrier is used for a surface plasmon resonance sensing device.

【図13】 本発明の表面プラズモン共鳴センシングデ
バイスを用い、試料溶液中の特定の生体分子の濃度を測
定するための装置を模式的に示す概略図である。
FIG. 13 is a schematic diagram schematically showing an apparatus for measuring the concentration of a specific biomolecule in a sample solution using the surface plasmon resonance sensing device of the present invention.

【図14】 硫酸化デキストラン固定化膜担体法を用い
てヒトアルブミンを固定化した本発明の表面プラズモン
共鳴センシングデバイスに抗ヒトアルブミンを注入した
ときの共鳴角度の時間変化を示した図である。
FIG. 14 is a diagram showing a time change of a resonance angle when anti-human albumin is injected into a surface plasmon resonance sensing device of the present invention in which human albumin is immobilized by using a sulfated dextran-immobilized membrane carrier method.

【図15】 物理吸着法、化学結合法および硫酸化デキ
ストラン固定化膜担体法を用いてヒトアルブミンを固定
化した本発明の表面プラズモン共鳴センシングデバイス
の抗ヒトアルブミンに対する繰り返し応答を示した図で
ある。
FIG. 15 is a diagram showing the repetitive response to anti-human albumin of the surface plasmon resonance sensing device of the present invention in which human albumin is immobilized using a physical adsorption method, a chemical bonding method, and a sulfated dextran-immobilized membrane carrier method. .

【図16】 抗ヒトアルブミン濃度と、硫酸化デキスト
ラン固定化膜担体法を用いてヒトアルブミンを固定化し
た本発明の表面プラズモン共鳴センシングデバイスの応
答との関係を示した図である。
FIG. 16 is a graph showing the relationship between the concentration of anti-human albumin and the response of the surface plasmon resonance sensing device of the present invention in which human albumin is immobilized using a sulfated dextran-immobilized membrane carrier method.

【符号の説明】[Explanation of symbols]

1 プリズム 2 金属薄膜 3 ガラス板 4 マッチングオイル 5 従来の表面プラズモン共鳴センシングデバイス 6 光源 7 光検出器 8 表面プラズモン共鳴曲線 9 反射光強度吸収 10 臨界角 11 フローセル 12 抗体 13 抗原 14 溶液 15 本発明による表面プラズモン共鳴センシングデバ
イス 16 金属薄膜 17 誘電体 18 金属薄膜 19 マッチングオイル 20 ガラス板 21 金属薄膜 22 抗体 23 抗原 24 エバネッセント光のエネルギー分布 25 多糖類 26 本発明による表面プラズモン共鳴センシングデバ
イス 27 フローセル 28 送液ポンプ 29 インジェクションバルブ 30 廃液溜 31 光源 32 ビームスプリッター 33 偏光板 34 光検出器
Reference Signs List 1 prism 2 metal thin film 3 glass plate 4 matching oil 5 conventional surface plasmon resonance sensing device 6 light source 7 photodetector 8 surface plasmon resonance curve 9 reflected light intensity absorption 10 critical angle 11 flow cell 12 antibody 13 antigen 14 solution 15 according to the present invention Surface Plasmon Resonance Sensing Device 16 Metal Thin Film 17 Dielectric 18 Metal Thin Film 19 Matching Oil 20 Glass Plate 21 Metal Thin Film 22 Antibody 23 Antigen 24 Energy Distribution of Evanescent Light 25 Polysaccharide 26 Surface Plasmon Resonance Sensing Device According to the Present Invention 27 Flow Cell 28 Liquid Transfer Pump 29 injection valve 30 waste liquid reservoir 31 light source 32 beam splitter 33 polarizing plate 34 photodetector

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 プリズムの上に第一の金属薄膜を形成
し、この金属薄膜の上に誘電体薄膜を形成し、さらにこ
の誘電体薄膜の上に第二の金属薄膜を形成することで、
薄膜に接する媒体の薄膜近傍およびバルクの屈折率変化
を鋭敏に検出できることを特徴とする表面プラズモン共
鳴センシングデバイス。
A first metal thin film formed on the prism, a dielectric thin film formed on the metal thin film, and a second metal thin film formed on the dielectric thin film;
A surface plasmon resonance sensing device capable of sharply detecting a change in refractive index in the vicinity of a thin film and a bulk of a medium in contact with the thin film.
【請求項2】 プリズムへの入射光の波長に関して誘電
体薄膜の屈折率がプリズムの屈折率より小さい材質のも
のを用いる請求項1の表面プラズモン共鳴センシングデ
バイス。
2. The surface plasmon resonance sensing device according to claim 1, wherein a material having a refractive index of the dielectric thin film smaller than that of the prism with respect to the wavelength of light incident on the prism is used.
【請求項3】 プリズムとして透明石英ガラス、バイコ
ール、パイレックス、アルミノ珪酸ガラス、アルミノ硼
珪酸ガラス、硼珪酸ガラス、BaO−Al−B
−SiOガラス、並板ガラス、低アルカリガラ
ス、フリントガラス、ソーダ石灰ガラス等のいずれかを
用い、誘電体薄膜がLiF、NaF、NaAlF
SiO、SiO、MgF、CaF等のうち少なく
とも一つの成分を含む層からなる請求項2の表面プラズ
モン共鳴センシングデバイス。
3. A prism made of transparent quartz glass, Vycor, Pyrex, aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, BaO—Al 2 O 3 —B 2
Using any of O 3 —SiO 2 glass, side-by-side glass, low alkali glass, flint glass, soda-lime glass, and the like, the dielectric thin film is LiF, NaF, Na 3 AlF 6 ,
3. The surface plasmon resonance sensing device according to claim 2, comprising a layer containing at least one component of SiO 2 , SiO, MgF 2 , CaF 2 and the like.
【請求項4】 プリズムと誘電体薄膜の間に形成される
金属薄膜が銀の単層膜もしくは銀の層を含む金属多層膜
より成る請求項1〜3のいずれかの表面プラズモン共鳴
センシングデバイス。
4. The surface plasmon resonance sensing device according to claim 1, wherein the metal thin film formed between the prism and the dielectric thin film is a silver single layer film or a metal multilayer film including a silver layer.
【請求項5】 プリズムと誘電体薄膜の間に形成される
金属薄膜を構成する多層膜にタロム層もしくはチタン層
を含む請求項4の表面プラズモン共鳴センシングデバイ
ス。
5. The surface plasmon resonance sensing device according to claim 4, wherein the multilayer film constituting the metal thin film formed between the prism and the dielectric thin film includes a talom layer or a titanium layer.
【請求項6】 誘電体薄膜の上に形成される金属薄膜と
して金の単層膜もしくは金の層を含む金属多層膜を用い
る請求項1〜5のいずれかの表面プラズモン共鳴センシ
ングデバイス。
6. The surface plasmon resonance sensing device according to claim 1, wherein a metal single-layer film or a metal multilayer film including a gold layer is used as the metal thin film formed on the dielectric thin film.
【請求項7】 誘電体薄膜の上に形成される金属薄膜を
構成する多層膜にクロム、チタン、アルミニウムのうち
少なくとも一つの層を含む請求項6の表面プラズモン共
鳴センシングデバイス。
7. The surface plasmon resonance sensing device according to claim 6, wherein the multilayer film forming the metal thin film formed on the dielectric thin film includes at least one layer of chromium, titanium, and aluminum.
【請求項8】 請求項1〜7のいずれかの表面プラズモ
ン共鳴センシングデバイスを用い、P偏光をプリズムへ
の入射光として、同デバイスの最外層の金属薄膜に接す
る媒体の金属薄膜近傍の屈折率を測定する装置。
8. A refractive index near a metal thin film of a medium in contact with an outermost metal thin film of the device using the surface plasmon resonance sensing device according to claim 1 as P-polarized light incident on a prism. Device to measure.
【請求項9】 S偏光をプリズムへの入射光として、表
面プラズモン共鳴センシングデバイスの最外層の金属薄
膜に接する媒体のバルクの屈折率を測定する請求項8の
装置。
9. The apparatus according to claim 8, wherein the refractive index of the bulk of the medium in contact with the outermost metal thin film of the surface plasmon resonance sensing device is measured using S-polarized light as incident light on the prism.
【請求項10】請求項9の装置を用い、表面プラズモン
共鳴センシングデバイスの最外層の金属薄膜に接する媒
体の金属薄膜近傍の屈折率と、同媒体のバルクの屈折率
との差を測定する方法。
10. A method for measuring a difference between a refractive index near a metal thin film of a medium in contact with an outermost metal thin film of a surface plasmon resonance sensing device and a bulk refractive index of the medium using the apparatus according to claim 9. .
【請求項11】請求項8もしくは9の装置を用い、表面
プラズモン共鳴センシングデバイスの最外層の金属薄膜
に接する媒体の金属薄膜近傍の屈折率の変化から、金属
薄膜に固定化された生体分子と、媒体中の別の生体分子
との相互作用を測定する方法。
11. The method according to claim 8 or 9, wherein a change in the refractive index of the medium in contact with the outermost metal thin film of the surface plasmon resonance sensing device in the vicinity of the metal thin film indicates that the biomolecules immobilized on the metal thin film are different from each other. , A method for measuring the interaction with another biomolecule in a medium.
【請求項12】水に屈折率が近い分子量数万以下の多糖
類等の高分子を上記請求項2〜8のいずれかの方法で得
られる金属表面に固定し、この高分子に固定化担体とし
て抗体(あるいは抗原)を固定化し、ここで起こる抗原
抗体反応に伴う著しい屈折率変化を鋭敏に検知できるよ
うにした表面プラズモン共鳴センシングデバイス及びそ
の調製法。
12. A polymer having a refractive index close to that of water, such as a polysaccharide having a molecular weight of tens of thousands or less, is fixed on the metal surface obtained by the method according to any one of claims 2 to 8, and the carrier is immobilized on the polymer. A surface plasmon resonance sensing device and a method for preparing the same, wherein an antibody (or an antigen) is immobilized thereon so that a remarkable refractive index change accompanying the antigen-antibody reaction occurring here can be detected sharply.
【請求項13】指数関数的に減衰するエバネッセント波
を有効に利用するように、50,000ダルトン以下の
分子量を有する多糖類を固定化担体とする上記請求項1
2の方法で得られる薄膜表面を有する表面プラズモン共
鳴センシングデバイス及びその調製法。
13. The immobilization carrier according to claim 1, wherein a polysaccharide having a molecular weight of 50,000 daltons or less is used so as to effectively use the evanescent wave that decays exponentially.
A surface plasmon resonance sensing device having a thin film surface obtained by the method 2 and a method for preparing the same.
【請求項14】分子量数万以上の多糖類を上記請求項1
2もしくは13の方法で得られる薄膜表面に放射方向に
配置させることを特徴とする支持担体の調製法及び同方
法で得られた表面プラズモン共鳴センシングデバイス。
14. The method according to claim 1, wherein the polysaccharide having a molecular weight of tens of thousands or more is used.
A method for preparing a support, characterized by being radially arranged on the surface of a thin film obtained by the method 2 or 13, and a surface plasmon resonance sensing device obtained by the method.
【請求項15】多糖類が可溶性デンプン、硫酸化デキス
トランのいずれかである上記請求項12〜14のいずれ
かの表面プラズモン共鳴センシングデバイスとその調製
法。
15. The surface plasmon resonance sensing device according to any one of claims 12 to 14, wherein the polysaccharide is any of soluble starch and sulfated dextran, and a method for preparing the same.
【請求項16】請求項9の装置を用い、表面プラズモン
共鳴センシングデバイスの最外層の金属薄膜に接する媒
体の金属薄膜近傍の屈折率と同媒体のバルクの屈折率と
の差の変化から、金属薄膜に固定化された生体分子と、
媒体中の相補的結合を行う生体分子との相互作用を調べ
る方法。
16. The method according to claim 9, wherein the difference between the refractive index near the metal thin film of the medium in contact with the outermost metal thin film of the surface plasmon resonance sensing device and the refractive index of the bulk of the medium is determined from the change in the refractive index. Biomolecules immobilized on a thin film,
A method for examining the interaction with a biomolecule that performs complementary binding in a medium.
JP10799697A 1997-03-24 1997-03-24 Surface plasmon resonance-sensing device Pending JPH10267841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10799697A JPH10267841A (en) 1997-03-24 1997-03-24 Surface plasmon resonance-sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10799697A JPH10267841A (en) 1997-03-24 1997-03-24 Surface plasmon resonance-sensing device

Publications (1)

Publication Number Publication Date
JPH10267841A true JPH10267841A (en) 1998-10-09

Family

ID=14473350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10799697A Pending JPH10267841A (en) 1997-03-24 1997-03-24 Surface plasmon resonance-sensing device

Country Status (1)

Country Link
JP (1) JPH10267841A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041881A (en) * 1999-07-30 2001-02-16 Japan Science & Technology Corp Spr apparatus and method for spr measuring using polarization
JP2001242072A (en) * 2000-03-02 2001-09-07 Kanagawa Acad Of Sci & Technol Light absorption responsive spr sensor, its measurement method, and device thereof
WO2001069207A1 (en) * 2000-03-16 2001-09-20 Fuji Photo Film Co., Ltd. Measuring method and instrument utilizing total reflection attenuation
JP2001330560A (en) * 2000-03-16 2001-11-30 Fuji Photo Film Co Ltd Measuring method using total reflection attenuation and its device
JP2002048707A (en) * 2000-05-22 2002-02-15 Fuji Photo Film Co Ltd Measuring method and device using total reflection decay
JP2002250690A (en) * 2001-02-23 2002-09-06 Fuji Photo Film Co Ltd Measuring method and measuring instrument using attenuation of total reflection
JP2002365210A (en) * 2001-06-11 2002-12-18 Hitachi Ltd Method of detecting living-body molecule
JP2002544516A (en) * 1999-05-17 2002-12-24 ザ フロリダ インターナショナル ユニバーシティ ボード オブ トラスティーズ Method for detecting surface plasmon resonance with high angular resolution and fast response time
WO2002057776A3 (en) * 2001-01-19 2003-05-08 Quantech Ltd Method of reducing particulate interference in analyte detection
JP2003202285A (en) * 2001-10-26 2003-07-18 Fuji Photo Film Co Ltd Measuring plate of measuring device utilizing total reflection
JP2003222589A (en) * 2002-01-31 2003-08-08 Communication Research Laboratory Dual-wavelength surface plasmon resonance spectroscopic device
JP2003240705A (en) * 2001-12-14 2003-08-27 Fuji Photo Film Co Ltd Measurement chip
EP1538436A1 (en) 2003-12-02 2005-06-08 Fuji Photo Film Co. Ltd. Method for measuring surface plasmon resonance
JP2006208375A (en) * 2005-01-29 2006-08-10 Samsung Electronics Co Ltd Surface plasmon resonance element using nano size porous material, and manufacturing method therefor
JP2006250668A (en) * 2005-03-10 2006-09-21 Tatsuro Endo Non-labelled biochip
WO2007015556A1 (en) * 2005-08-01 2007-02-08 Canon Kabushiki Kaisha Target substance detecting device, target substance detecting method using the same, and detecting apparatus and kit therefor
JP2007064968A (en) * 2005-08-01 2007-03-15 Canon Inc Target material sensing element and target material sensing method using it, sensing device and kit therefor
WO2007132795A1 (en) * 2006-05-12 2007-11-22 Canon Kabushiki Kaisha Detecting element, detecting device and detecting method
EP1943500A1 (en) * 2005-09-30 2008-07-16 Fujifilm Corporation Sensing system
JP2008232720A (en) * 2007-03-19 2008-10-02 Canon Inc Detection element, detection element device, and detection method
EP2019309A3 (en) * 2007-07-20 2009-03-11 Hitachi High-Technologies Corporation Nucleic acid analysis device and nucleic acid analyzer using the same
US7602495B2 (en) 2004-08-24 2009-10-13 Fujifilm Corporation Method for measuring dissociation constant by surface plasmon resonance analysis
JP2009539085A (en) * 2006-06-01 2009-11-12 ユニベルシテ・ド・リエージュ Sensors based on surface plasmon resonance
WO2009135388A1 (en) * 2008-05-09 2009-11-12 Zhiping Liu A molecule detecting system
JP2010008263A (en) * 2008-06-27 2010-01-14 Fujifilm Corp Detection method, detecting sample cell and detecting kit
US20100128273A1 (en) * 2008-11-27 2010-05-27 Korea Institute Of Science And Technology High resolution surface plasmon resonance sensor and sensor system thereof
KR100991563B1 (en) * 2008-06-30 2010-11-04 재단법인서울대학교산학협력재단 Surface plasmon resonance sensor chip, method for manufacturing the same, surface plasmon resonance sensor system, and method for detecting analyzed material with surface plasmon resonance sensor system
KR101000675B1 (en) 2008-08-07 2010-12-10 연세대학교 산학협력단 Optical nanometer scale gap sensing device based on Surface Plasmon Resonance and optical nanometer scale gap sensing method using the same
JP2010286331A (en) * 2009-06-11 2010-12-24 Fujifilm Corp Detection method
WO2011001597A1 (en) * 2009-07-02 2011-01-06 日本板硝子株式会社 Substrate for immobilizing biological substance and method for producing same
US7898667B2 (en) 2006-12-27 2011-03-01 Canon Kabushiki Kaisha Optical element and method for preparing the same, sensor apparatus and sensing method
WO2011115445A2 (en) * 2010-03-19 2011-09-22 경원대학교 산학협력단 Biochip
JP2012519271A (en) * 2009-02-27 2012-08-23 ライブニッツ−インスティテュート・フュア・アナリティシェ・ビッセンシャフテン−イー・エス・アー・エス−アインゲトラーゲナー・フェライン Method for high resolution detection of nanoparticles on the surface of a two-dimensional detector
CN103196867A (en) * 2013-04-01 2013-07-10 中山大学 Local plasma resonance refraction index sensor and manufacturing method thereof
US9081005B2 (en) 2010-03-19 2015-07-14 Gachon University Industry University Cooperation Foundation Biochip
KR101637806B1 (en) * 2015-01-08 2016-07-07 경희대학교 산학협력단 Biosensor and manufacturing method thereof
CN107389619A (en) * 2017-06-26 2017-11-24 北京理工大学 A kind of surface plasma resonance sensor chip of aqueous phase detection estradiol and preparation method thereof
CN108132232A (en) * 2017-12-28 2018-06-08 中国地质大学(武汉) A kind of surface plasma resonance sensor
JP2018531397A (en) * 2015-09-24 2018-10-25 ラクリサイエンス・エルエルシー Optical sensor, system, and method of using the same
CN111521567A (en) * 2020-03-30 2020-08-11 青岛海关技术中心 Nano coating plasma chip and preparation method thereof
US11650154B2 (en) 2015-11-10 2023-05-16 Lacrisciences, Llc Systems and methods for determining sample osmolarity
EP4133253A4 (en) * 2020-04-07 2023-08-16 James I. Scholtz Apparatus and methods for selective detection of pathogens and/or chemicals

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544516A (en) * 1999-05-17 2002-12-24 ザ フロリダ インターナショナル ユニバーシティ ボード オブ トラスティーズ Method for detecting surface plasmon resonance with high angular resolution and fast response time
JP2001041881A (en) * 1999-07-30 2001-02-16 Japan Science & Technology Corp Spr apparatus and method for spr measuring using polarization
JP2001242072A (en) * 2000-03-02 2001-09-07 Kanagawa Acad Of Sci & Technol Light absorption responsive spr sensor, its measurement method, and device thereof
WO2001069207A1 (en) * 2000-03-16 2001-09-20 Fuji Photo Film Co., Ltd. Measuring method and instrument utilizing total reflection attenuation
JP2001330560A (en) * 2000-03-16 2001-11-30 Fuji Photo Film Co Ltd Measuring method using total reflection attenuation and its device
US6864984B2 (en) 2000-03-16 2005-03-08 Fuji Photo Film Co., Ltd. Measuring method and apparatus using attenuation in total reflection
JP2002048707A (en) * 2000-05-22 2002-02-15 Fuji Photo Film Co Ltd Measuring method and device using total reflection decay
WO2002057776A3 (en) * 2001-01-19 2003-05-08 Quantech Ltd Method of reducing particulate interference in analyte detection
JP2002250690A (en) * 2001-02-23 2002-09-06 Fuji Photo Film Co Ltd Measuring method and measuring instrument using attenuation of total reflection
JP2002365210A (en) * 2001-06-11 2002-12-18 Hitachi Ltd Method of detecting living-body molecule
JP2003202285A (en) * 2001-10-26 2003-07-18 Fuji Photo Film Co Ltd Measuring plate of measuring device utilizing total reflection
JP2003240705A (en) * 2001-12-14 2003-08-27 Fuji Photo Film Co Ltd Measurement chip
JP2003222589A (en) * 2002-01-31 2003-08-08 Communication Research Laboratory Dual-wavelength surface plasmon resonance spectroscopic device
EP1538436A1 (en) 2003-12-02 2005-06-08 Fuji Photo Film Co. Ltd. Method for measuring surface plasmon resonance
US7417737B2 (en) 2003-12-02 2008-08-26 Fujilfilm Corporation Method for measuring surface plasmon resonance
EP1978350A3 (en) * 2003-12-02 2008-10-15 Fujifilm Corporation Method for measuring surface plasmon resonance
US7602495B2 (en) 2004-08-24 2009-10-13 Fujifilm Corporation Method for measuring dissociation constant by surface plasmon resonance analysis
JP2006208375A (en) * 2005-01-29 2006-08-10 Samsung Electronics Co Ltd Surface plasmon resonance element using nano size porous material, and manufacturing method therefor
JP2006250668A (en) * 2005-03-10 2006-09-21 Tatsuro Endo Non-labelled biochip
WO2007015556A1 (en) * 2005-08-01 2007-02-08 Canon Kabushiki Kaisha Target substance detecting device, target substance detecting method using the same, and detecting apparatus and kit therefor
JP2007064968A (en) * 2005-08-01 2007-03-15 Canon Inc Target material sensing element and target material sensing method using it, sensing device and kit therefor
US8023114B2 (en) 2005-08-01 2011-09-20 Canon Kabushiki Kaisha Target substance detecting device, target substance detecting method using the same, and detecting apparatus and kit therefor
EP1943500A1 (en) * 2005-09-30 2008-07-16 Fujifilm Corporation Sensing system
EP1943500A4 (en) * 2005-09-30 2013-01-16 Fujifilm Corp Sensing system
WO2007132795A1 (en) * 2006-05-12 2007-11-22 Canon Kabushiki Kaisha Detecting element, detecting device and detecting method
US8045141B2 (en) 2006-05-12 2011-10-25 Canon Kabushiki Kaisha Detecting element, detecting device and detecting method
JP2009539085A (en) * 2006-06-01 2009-11-12 ユニベルシテ・ド・リエージュ Sensors based on surface plasmon resonance
US7898667B2 (en) 2006-12-27 2011-03-01 Canon Kabushiki Kaisha Optical element and method for preparing the same, sensor apparatus and sensing method
JP2008232720A (en) * 2007-03-19 2008-10-02 Canon Inc Detection element, detection element device, and detection method
US8865459B2 (en) 2007-07-20 2014-10-21 Hitachi High-Technologies Corporation Nucleic acid analysis device and nucleic acid analyzer using the same
EP2019309A3 (en) * 2007-07-20 2009-03-11 Hitachi High-Technologies Corporation Nucleic acid analysis device and nucleic acid analyzer using the same
WO2009135388A1 (en) * 2008-05-09 2009-11-12 Zhiping Liu A molecule detecting system
JP2010008263A (en) * 2008-06-27 2010-01-14 Fujifilm Corp Detection method, detecting sample cell and detecting kit
KR100991563B1 (en) * 2008-06-30 2010-11-04 재단법인서울대학교산학협력재단 Surface plasmon resonance sensor chip, method for manufacturing the same, surface plasmon resonance sensor system, and method for detecting analyzed material with surface plasmon resonance sensor system
KR101000675B1 (en) 2008-08-07 2010-12-10 연세대학교 산학협력단 Optical nanometer scale gap sensing device based on Surface Plasmon Resonance and optical nanometer scale gap sensing method using the same
US20100128273A1 (en) * 2008-11-27 2010-05-27 Korea Institute Of Science And Technology High resolution surface plasmon resonance sensor and sensor system thereof
KR101052504B1 (en) * 2008-11-27 2011-08-01 한국과학기술연구원 High Resolution Surface Plasmon Resonance Sensor and Sensor System Using It
US8786859B2 (en) 2008-11-27 2014-07-22 Korea Institute Of Science And Technology High resolution surface plasmon resonance sensor and sensor system thereof
WO2010062116A3 (en) * 2008-11-27 2010-10-21 Korea Institute Of Science And Technology High resolution surface plasmon resonance sensor and sensor system thereof
JP2012519271A (en) * 2009-02-27 2012-08-23 ライブニッツ−インスティテュート・フュア・アナリティシェ・ビッセンシャフテン−イー・エス・アー・エス−アインゲトラーゲナー・フェライン Method for high resolution detection of nanoparticles on the surface of a two-dimensional detector
JP2010286331A (en) * 2009-06-11 2010-12-24 Fujifilm Corp Detection method
WO2011001597A1 (en) * 2009-07-02 2011-01-06 日本板硝子株式会社 Substrate for immobilizing biological substance and method for producing same
WO2011115445A2 (en) * 2010-03-19 2011-09-22 경원대학교 산학협력단 Biochip
WO2011115445A3 (en) * 2010-03-19 2012-02-09 경원대학교 산학협력단 Biochip
US9081005B2 (en) 2010-03-19 2015-07-14 Gachon University Industry University Cooperation Foundation Biochip
CN103196867A (en) * 2013-04-01 2013-07-10 中山大学 Local plasma resonance refraction index sensor and manufacturing method thereof
KR101637806B1 (en) * 2015-01-08 2016-07-07 경희대학교 산학협력단 Biosensor and manufacturing method thereof
JP2018531397A (en) * 2015-09-24 2018-10-25 ラクリサイエンス・エルエルシー Optical sensor, system, and method of using the same
JP2022008642A (en) * 2015-09-24 2022-01-13 ラクリサイエンス・エルエルシー Optical sensors, systems, and methods of using same
US11406259B2 (en) 2015-09-24 2022-08-09 Lacrisciences, Llc Optical sensors, systems and methods of using same
US11650154B2 (en) 2015-11-10 2023-05-16 Lacrisciences, Llc Systems and methods for determining sample osmolarity
CN107389619A (en) * 2017-06-26 2017-11-24 北京理工大学 A kind of surface plasma resonance sensor chip of aqueous phase detection estradiol and preparation method thereof
CN107389619B (en) * 2017-06-26 2020-02-14 北京理工大学 Surface plasma resonance sensor chip for detecting estradiol in water phase and preparation method thereof
CN108132232A (en) * 2017-12-28 2018-06-08 中国地质大学(武汉) A kind of surface plasma resonance sensor
CN111521567A (en) * 2020-03-30 2020-08-11 青岛海关技术中心 Nano coating plasma chip and preparation method thereof
EP4133253A4 (en) * 2020-04-07 2023-08-16 James I. Scholtz Apparatus and methods for selective detection of pathogens and/or chemicals

Similar Documents

Publication Publication Date Title
JPH10267841A (en) Surface plasmon resonance-sensing device
EP0205236B1 (en) Improvements in or relating to optic-waveguide biosensors
Lundström Real-time biospecific interaction analysis
Dostalek et al. Surface plasmon resonance biosensor based on integrated optical waveguide
US4815843A (en) Optical sensor for selective detection of substances and/or for the detection of refractive index changes in gaseous, liquid, solid and porous samples
Homola et al. Surface plasmon resonance sensors
Lukosz Integrated optical chemical and direct biochemical sensors
US6320991B1 (en) Optical sensor having dielectric film stack
Harris et al. Integrated optical surface plasmon resonance immunoprobe for simazine detection
Haake et al. Label-free detection of biomolecular interaction by optical sensors
JP3816072B2 (en) Optical waveguide sensor and measuring device using the same
JP4581135B2 (en) Chip for optical waveguide mode sensor
JPH06506298A (en) Analysis equipment
US8940238B2 (en) Optical sensor of bio-molecules using thin-film interferometer
Liu et al. Wavelength-modulation surface plasmon resonance sensor
WO2001090728A1 (en) Differential spr sensor and measuring method using it
US20230194425A1 (en) Optical sensor of bio-molecules using interferometer
JPH11271219A (en) Surface plasmon resonance system immunoassay device
Xu et al. Development of a novel label-free all-fiber optofluidic biosensor based on Fresnel reflection and its applications
Choi et al. Label-free detection of glycoproteins using reflectometric interference spectroscopy-based sensing system with upright episcopic illumination
US7267797B1 (en) Nanofabricated photon tunneling based sensor
Dougherty A compact optoelectronic instrument with a disposable sensor based on surface plasmon resonance
CN112268874A (en) Rapid ultra-sensitive sensing device based on optical fiber biochemical probe
Preininger et al. Polymer-coated optical fibres for application in a direct evanescent wave immunoassay
WO2018141070A1 (en) Biosensor chip combining surface plasmon and electrochemical detection