JPH10267836A - Method for analyzing microelement - Google Patents

Method for analyzing microelement

Info

Publication number
JPH10267836A
JPH10267836A JP7553597A JP7553597A JPH10267836A JP H10267836 A JPH10267836 A JP H10267836A JP 7553597 A JP7553597 A JP 7553597A JP 7553597 A JP7553597 A JP 7553597A JP H10267836 A JPH10267836 A JP H10267836A
Authority
JP
Japan
Prior art keywords
boron
sample
silicon
added
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7553597A
Other languages
Japanese (ja)
Inventor
Yukiko Nakajima
由紀子 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7553597A priority Critical patent/JPH10267836A/en
Publication of JPH10267836A publication Critical patent/JPH10267836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To analyze a trace of silicon in a solution including fluorine with high sensitivity, by adding boron as a modification agent when a sample is analyzed by a frameless atomic absorption spectrometer. SOLUTION: For instance, hydrofluoric acid is added to a trace of silicon of a cleaning chemical solution on a wafer surface, which is separated and condensed, thereby obtaining a sample solution including fluorine. When the silicon in the sample solution is to be analyzed by frameless atomic absorption spectrometry, preferably, an aqueous solution of boron is added to an atomization part and dried hard beforehand, and then boron is added to the sample before the sample is measured. The boron is used generally in a form of the aqueous solution and the amount of boron added to the atomization part is generally approximately 0.4 μg. An addition concentration to the sample is required to be 0.25 times or more a concentration of the fluorine in the sample. Although the effect may be insufficient if the boron is added too small, an excessive amount is not preferable. According to the method, the silicon is prevented from volatilizing when a solvent evaporates in the presence of the fluorine, thus enabling analyses with high sensitivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フッ素を含む溶液
中のケイ素を、フレームレス原子吸光法により分析する
技術に関する。
The present invention relates to a technique for analyzing silicon in a solution containing fluorine by flameless atomic absorption spectrometry.

【0002】[0002]

【従来の技術】半導体製造プロセスにおいて集積度の向
上に伴い、ウエハ表面の金属汚染の低減がますます重要
である。そのため、ウエハ表面を洗浄する薬液中の金属
不純物元素は0.1ppbレベルのものが要求されてい
る。ケイ素の分析法は、モリブデンブルー比色法で測定
する手段が一般的に用いられるが、この手法では上記の
ような高清浄な試料の分析には感度が不足している。
2. Description of the Related Art In a semiconductor manufacturing process, as the degree of integration increases, it is increasingly important to reduce metal contamination on the wafer surface. Therefore, the metal impurity element in the chemical solution for cleaning the wafer surface is required to have a level of 0.1 ppb. As a method for analyzing silicon, a means for measuring by a molybdenum blue colorimetric method is generally used. However, this method is insufficient in sensitivity for the analysis of a highly clean sample as described above.

【0003】そのため高感度の分析法として、フッ化水
素酸を加え分離濃縮してICP質量分析法で測定する方
法が考えられるが、いぜんとして満足な検出下限が得ら
れていない。その理由として、一般に四重極型ICP質
量分析法の場合、試料導入部に石英トーチを使用してお
り、測定においてケイ素のバックグランドが生じ、さら
に分子イオンの重なりによって著しく検出感度を悪化す
ることが挙げられる。
[0003] For this reason, a method of adding hydrofluoric acid, separating and concentrating the solution and measuring it by ICP mass spectrometry can be considered as a highly sensitive analysis method, but a satisfactory lower limit of detection has not yet been obtained. The reason for this is that in the case of quadrupole ICP mass spectrometry, a quartz torch is generally used for the sample introduction part, a silicon background occurs in the measurement, and the detection sensitivity is significantly deteriorated due to the overlap of molecular ions. Is mentioned.

【0004】加熱気化導入法を用いたICP質量分析法
では、予備加熱により溶媒を除去できることから、溶媒
由来の分子イオンピークが低減し高感度化が期待でき
る。しかしながら、この場合も石英トーチからのケイ素
のバックグランドが生じ、さらに測定液中のケイ素は溶
媒蒸発段階でフッ化ケイ素として揮散するため分析でき
ない。
[0004] In the ICP mass spectrometry using the heat vaporization introduction method, since the solvent can be removed by preheating, the molecular ion peak derived from the solvent is reduced and high sensitivity can be expected. However, also in this case, a background of silicon is generated from the quartz torch, and the silicon in the measurement solution is volatilized as silicon fluoride in the solvent evaporation stage, so that it cannot be analyzed.

【0005】フレームレス原子吸光法は試料導入部に石
英を使用していないため、ケイ素のバックグランドは生
じないが、加熱気化ICP質量分析法と同様にケイ素が
溶媒蒸発段階で揮散するため分析できない。このよう
に、今後ますます集積度を増すであろう半導体プロセス
において、洗浄薬品中のケイ素不純物を高感度に分析で
きない現状は大きな問題である。
[0005] In the flameless atomic absorption spectrometry, no quartz background is used because no quartz is used in the sample introduction part, but it cannot be analyzed because silicon is volatilized in the solvent evaporation stage as in the case of the heat vaporization ICP mass spectrometry. . As described above, in a semiconductor process that will be increasingly integrated in the future, the present situation in which silicon impurities in cleaning chemicals cannot be analyzed with high sensitivity is a serious problem.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、前記
の背景に鑑み、薬液中のケイ素をフッ化物として分離濃
縮分析するに当たり、ケイ素の損失なくフレームレス原
子吸光装置を用いて高感度にケイ素分析を行うことがで
きる新規な元素分析法を提案することにある。
DISCLOSURE OF THE INVENTION In view of the above background, an object of the present invention is to provide a method for separating and concentrating silicon in a chemical solution as a fluoride with high sensitivity using a flameless atomic absorption apparatus without loss of silicon. It is to propose a new elemental analysis method capable of performing silicon analysis.

【0007】[0007]

【議題を解決するための手段】上記課題は、試料をフレ
ームレス原子吸光装置で分析する際、修飾剤としてホウ
素を添加することにより解決される。
The above object can be attained by adding boron as a modifier when analyzing a sample with a flameless atomic absorption spectrometer.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で言う微量ケイ素とは、具体的に100ppb以
下の量のケイ素を言う。100ppb以上のケイ素につ
いては希釈測定により対応する。本発明において原子化
部に導入されるケイ素は、溶存あるいは均一に分散して
おれば特に制限はない。ケイ素形態として、例えばケイ
酸イオン、ケイフッ化イオン、コロイダルケイ素などが
挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The trace silicon in the present invention specifically refers to silicon in an amount of 100 ppb or less. For silicon of 100 ppb or more, it corresponds by dilution measurement. In the present invention, the silicon introduced into the atomized portion is not particularly limited as long as it is dissolved or uniformly dispersed. Examples of the silicon form include silicate ions, silicofluoride ions, and colloidal silicon.

【0009】本発明における、フレームレス原子吸光分
析法とは、加熱気化部で原子化せしめられた金属原子に
固有な波長の吸収を検出する装置である。本装置は、予
備加熱により溶媒成分を予め蒸発・灰化した後、目的元
素を蒸発させるものであり、蒸発・灰化時に目的元素が
揮散してはならない。本発明において添加するホウ素の
形態としては特に制限はないが、通常ホウ酸水溶液とし
て添加される。添加ホウ素は微量分析に使用するもので
あるため、高純度のものが要求され、99.99%以上
の純度のものが好ましい。
The flameless atomic absorption spectrometry according to the present invention is an apparatus for detecting absorption of a wavelength specific to metal atoms atomized in a heated vaporizing section. The present device evaporates the solvent component in advance by preheating, and then evaporates the target element, and the target element must not volatilize during the evaporation / ashing. The form of boron added in the present invention is not particularly limited, but is usually added as an aqueous boric acid solution. Since the added boron is used for trace analysis, it is required to have a high purity, and a purity of 99.99% or more is preferable.

【0010】本発明におけるホウ素の添加方法として
は、試料にホウ素を添加してもよいし、予め原子化部に
ホウ素水溶液を添加してもよい。好ましくは、予め原子
化部にホウ素水溶液を添加し乾固した後、試料にホウ素
を添加したものを添加する。本発明において、予め原子
化部に添加するホウ素水溶液の添加量はホウ素原子とし
て4ng以上であり、通常は0.4μg程度添加する。
試料へのホウ素添加濃度は、試料中のフッ素量に対して
0.25倍以上必要であり、少なすぎると効果が十分で
ない場合がある。一方、ホウ素の添加が大過剰の場合に
は、ホウ素溶液中のケイ素不純物によるブランク値が大
きくなり、また、自己吸収による感度低下の問題も起こ
るので、ホウ素の添加濃度は好ましくは1000重量p
pm以下、より好ましくは100重量ppm以下とす
る。
In the method of adding boron in the present invention, boron may be added to the sample, or an aqueous boron solution may be added to the atomized portion in advance. Preferably, after adding an aqueous boron solution to the atomized portion in advance and drying it, a sample obtained by adding boron to the sample is added. In the present invention, the added amount of the boron aqueous solution to be added to the atomization part in advance is 4 ng or more as a boron atom, and usually about 0.4 μg is added.
The concentration of boron added to the sample must be at least 0.25 times the amount of fluorine in the sample, and if too small, the effect may not be sufficient. On the other hand, when the addition of boron is excessively large, the blank value due to the silicon impurity in the boron solution becomes large, and a problem of a decrease in sensitivity due to self-absorption occurs.
pm or less, more preferably 100 ppm by weight or less.

【0011】[0011]

【実施例】以下、本発明を実施例により詳細に説明す
る。以下の実施例では、フレームレス原子吸光装置とし
てパーキンエンマー(株)製GFAAS4100ZLを用い、波長
251.6nmの吸光度を測定した。 参考例 まず、検量線を得るために、Na2SiO3をケイ素濃度が30n
g/gで含有する0.1%NH4OHを調製し、これを試料としてフ
レームレス原子吸光装置で測定したところ、吸光度が0.
050であった。これから、ケイ素濃度30ng/gの本来の吸
光度は0.050と判断できた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. In the following Examples, the absorbance at a wavelength of 251.6 nm was measured using GFAAS4100ZL manufactured by Perkin-Emmer Co., Ltd. as a flameless atomic absorption device. Reference Example First, in order to obtain a calibration curve, a Na 2 SiO 3 is silicon concentration 30n
0.1% NH 4 OH containing g / g was prepared, and this was used as a sample and measured with a flameless atomic absorption spectrometer.
It was 050. From this, the original absorbance at a silicon concentration of 30 ng / g could be determined to be 0.050.

【0012】比較例1 H2SiF6をケイ素濃度が30ng/gとなるように含有する0.1%
NH4OHの水溶液を調製し、これを試料として参考例と同
一条件で測定したところ、吸光度が0.003であり十分な
ケイ素の検出ができなかった。 比較例2 H2SiF6をケイ素濃度が30ng/g、HFをフッ素濃度が10重量
ppmとなるように含有する0.1%NH4OHの水溶液を調製し、
これを試料として参考例と同一条件で測定したところ、
吸光度は0.000となり、ケイ素の検出ができなかった。
Comparative Example 1 0.1% containing H 2 SiF 6 at a silicon concentration of 30 ng / g
When an aqueous solution of NH 4 OH was prepared and used as a sample and measured under the same conditions as in the Reference Example, the absorbance was 0.003, and sufficient silicon could not be detected. Comparative Example 2 H 2 SiF 6 having a silicon concentration of 30 ng / g and HF having a fluorine concentration of 10 wt.
Prepare an aqueous solution of 0.1% NH 4 OH containing to be ppm,
When this was measured as a sample under the same conditions as the reference example,
The absorbance was 0.000, and no silicon could be detected.

【0013】実施例1 H2SiF6をケイ素濃度が30ng/g、HFをフッ素濃度が10重量
ppm、及びホウ酸をホウ素濃度が10重量ppmとなるように
含有する0.1%NH4OHの水溶液を調製し、これを試料とし
て参考例と同一条件で測定したところ、吸光度が0.030
となり、ケイ素の検出が可能となった。
Example 1 H 2 SiF 6 has a silicon concentration of 30 ng / g and HF has a fluorine concentration of 10 wt.
ppm, and prepared an aqueous solution of 0.1% NH 4 OH containing boric acid so that the boron concentration becomes 10 wt ppm, and when this was measured as a sample under the same conditions as in the reference example, the absorbance was 0.030.
It became possible to detect silicon.

【0014】実施例2 ホウ素濃度が10重量ppmとなるようにホウ酸水溶液を調
製し、加熱炉に導入した。水蒸発後、実施例1で調製し
た試料を導入して参考例と同一条件で測定したところ、
吸光度が0.053となり、ケイ素の定量測定が可能であっ
た。 実施例3 実施例1で調製した試料を加熱炉に導入し、水蒸発後、
実施例2で調製したホウ酸水溶液を導入して参考例と同
一条件で測定したところ、吸光度が0.049となり、ケイ
素の定量測定が可能であった。
Example 2 An aqueous boric acid solution was prepared so that the boron concentration became 10 ppm by weight, and introduced into a heating furnace. After water evaporation, the sample prepared in Example 1 was introduced and measured under the same conditions as in Reference Example.
The absorbance was 0.053, and quantitative measurement of silicon was possible. Example 3 The sample prepared in Example 1 was introduced into a heating furnace, and after water evaporation,
When the boric acid aqueous solution prepared in Example 2 was introduced and measured under the same conditions as in Reference Example, the absorbance was 0.049, and quantitative measurement of silicon was possible.

【0015】実施例4 実施例2で調製したホウ酸水溶液を加熱炉に導入し、水
蒸発後、実施例1で調製した試料を導入し、さらに水蒸
発後、前記のホウ酸水溶液を導入した後に参考例と同一
条件で測定したところ、吸光度が0.043となり、ケイ素
の検出が可能であった。
Example 4 The boric acid aqueous solution prepared in Example 2 was introduced into a heating furnace, and after water evaporation, the sample prepared in Example 1 was introduced. After water evaporation, the above boric acid aqueous solution was introduced. When measured under the same conditions as in the Reference Example later, the absorbance was 0.043, and it was possible to detect silicon.

【0016】参考例、比較例1、2、実施例1〜4の結
果を表−1にまとめて示す。
The results of Reference Example, Comparative Examples 1 and 2, and Examples 1 to 4 are summarized in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】本発明により、微量ケイ素の高感度分析
が可能となる。
According to the present invention, highly sensitive analysis of a trace amount of silicon becomes possible.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 フッ素を含む溶液中の微量のケイ素を、
フレームレス原子吸光分析法により分析する際、修飾剤
としてホウ素を添加することを特徴とする微量元素の分
析方法。
1. A method according to claim 1, wherein a trace amount of silicon in a solution containing fluorine is
A method for analyzing trace elements, characterized by adding boron as a modifier when analyzing by flameless atomic absorption spectrometry.
【請求項2】 ホウ素源として、ホウ酸を用いる請求項
1に記載の分析方法。
2. The method according to claim 1, wherein boric acid is used as the boron source.
【請求項3】 ホウ素の添加方法が、加熱炉に測定サン
プルを導入する前にホウ素を導入する方法である請求項
1又は2に記載の分析方法。
3. The analysis method according to claim 1, wherein the method of adding boron is a method of introducing boron before introducing a measurement sample into a heating furnace.
【請求項4】 ホウ素の添加濃度が0.1ppm以上で
ある請求項3に記載の分析方法。
4. The analysis method according to claim 3, wherein the boron concentration is 0.1 ppm or more.
【請求項5】 ホウ素の添加方法が、測定サンプルとホ
ウ素を混合して加熱炉に導入する方法である請求項1又
は2に記載の分析方法。
5. The analysis method according to claim 1, wherein the method of adding boron is a method of mixing a measurement sample and boron and introducing the mixture into a heating furnace.
【請求項6】 ホウ素の添加量が、フッ素量に対して
0.25倍以上である請求項5に記載の分析方法。
6. The method according to claim 5, wherein the amount of boron is at least 0.25 times the amount of fluorine.
JP7553597A 1997-03-27 1997-03-27 Method for analyzing microelement Pending JPH10267836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7553597A JPH10267836A (en) 1997-03-27 1997-03-27 Method for analyzing microelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7553597A JPH10267836A (en) 1997-03-27 1997-03-27 Method for analyzing microelement

Publications (1)

Publication Number Publication Date
JPH10267836A true JPH10267836A (en) 1998-10-09

Family

ID=13579015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7553597A Pending JPH10267836A (en) 1997-03-27 1997-03-27 Method for analyzing microelement

Country Status (1)

Country Link
JP (1) JPH10267836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680563A (en) * 2018-05-15 2018-10-19 郑勋领 A kind of solid organic fertilizer element silicon detection method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680563A (en) * 2018-05-15 2018-10-19 郑勋领 A kind of solid organic fertilizer element silicon detection method and application

Similar Documents

Publication Publication Date Title
US6833273B2 (en) Method for evaluating concentration of metallic impurities in silicon wafer
JP2013108759A (en) Impurity analysis method of hydrofluoric acid solution for semiconductor wafer process, and management method of replacement time of hydrofluoric acid solution
Prange et al. Determination of trace element impurities in ultrapure reagents by total reflection X-ray spectrometry
JP4857973B2 (en) Method for analyzing polishing slurry of silicon wafer
Shabani et al. Recent advanced applications of AAS and ICP-MS in the semiconductor industry
JP2003133381A (en) Method and apparatus for etching silicon wafer and impurity analyzing method
JP4512605B2 (en) Determination of trace impurity elements using inductively coupled plasma mass spectrometer
Krushevska et al. Advances in trace element analysis of silicon wafer surfaces by vapor phase decomposition (VPD) and inductively coupled plasma mass spectrometry (ICP-MS) Presented at the 2000 Winter Conference on Plasma Spectrochemistry, Fort Lauderdale, FL, USA, January 10–15, 2000.
JPH10267836A (en) Method for analyzing microelement
JP2002368052A (en) Method for desorbing silicon and method for analyzing impurities in silicon wafer
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
Buhrer Application of vapor phase decomposition/total reflection X-ray fluorescence in the silicon semiconductor manufacturing environment
De Smedt et al. A wet chemical method for the determination of thickness of SiO2 layers below the nanometer level
Vereecke et al. Quantitative analysis of trace metals in silicon nitride films by a vapor phase decomposition/solution collection approach
JP2001108583A (en) Method for measuring concentration of impurity in silicon wafer
JPH1092888A (en) Apparatus and method of decomposing semiconductor sample
JPH10332554A (en) Method for measuring surface impurities
JP2950310B2 (en) Method for analyzing metal impurities on semiconductor substrate surface and substrate
Fuyi et al. Use of polytetrafluoroethylene slurry for silica matrix removal in ETAAS direct determination of trace cobalt and nickel in silicon dioxide powder
US7399635B2 (en) Impurity measuring method for Ge substrates
US6146909A (en) Detecting trace levels of copper
Fuchs-Pohl et al. Determination of silicon traces in process chemicals for semiconductor production by ETAAS
JP3274809B2 (en) Method for analyzing elements in alcohol
JP4000027B2 (en) Semiconductor sample impurity analysis method and semiconductor sample impurity concentration apparatus
Lu et al. Evaluation of cleaning efficiency with a radioactive tracer and development of a microwave digestion method for semiconductor processes