JP3274809B2 - Method for analyzing elements in alcohol - Google Patents

Method for analyzing elements in alcohol

Info

Publication number
JP3274809B2
JP3274809B2 JP22866396A JP22866396A JP3274809B2 JP 3274809 B2 JP3274809 B2 JP 3274809B2 JP 22866396 A JP22866396 A JP 22866396A JP 22866396 A JP22866396 A JP 22866396A JP 3274809 B2 JP3274809 B2 JP 3274809B2
Authority
JP
Japan
Prior art keywords
alcohol
water
aqueous phase
present
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22866396A
Other languages
Japanese (ja)
Other versions
JPH10111220A (en
Inventor
正人 佐伯
哲正 坂野
良万 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP22866396A priority Critical patent/JP3274809B2/en
Publication of JPH10111220A publication Critical patent/JPH10111220A/en
Application granted granted Critical
Publication of JP3274809B2 publication Critical patent/JP3274809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルコール中の半
金属元素の新規な分析方法に関する。詳しくは、アルコ
ール中に微量存在し、アルコールと化合物を形成しうる
半金属元素、即ち、砒素、硼素、ゲルマニウム、及び珪
素(以下、これらを総称して「特定不純物」という)を
正確に定量することが可能な分析方法である。
[0001] The present invention relates to a novel method for analyzing metalloid elements in alcohol. Specifically, a metalloid element which is present in a small amount in alcohol and can form a compound with alcohol, that is, arsenic, boron, germanium, and silicon (hereinafter, collectively referred to as “specific impurities”) is accurately quantified. Is a possible analytical method.

【0002】[0002]

【従来の技術】近年益々高集積化が進む、半導体産業に
おいて、精密洗浄、乾燥工程で使用されるイソプロピル
アルコール(以下、IPAともいう)等のアルコールに
は高い純度が要求され、厳しい不純物管理が要求されて
いる。
2. Description of the Related Art In the semiconductor industry, which is becoming more and more highly integrated in recent years, alcohols such as isopropyl alcohol (hereinafter also referred to as IPA) used in precision cleaning and drying processes are required to have high purity, and strict impurity control is required. Has been requested.

【0003】従来、アルコール中の微量金属元素を定量
する分析方法は、蒸発乾固後、塩酸または硝酸で溶解し
て定量する方法が実施されている。
Conventionally, as an analytical method for quantifying trace metal elements in alcohol, a method of evaporating to dryness and then dissolving with hydrochloric acid or nitric acid for quantification has been carried out.

【0004】ところが、前記特定不純物は、アルコール
と低沸点の化合物を形成し、蒸発過程でアルコールと伴
に揮散するため、蒸発乾固後の残渣中に定量的に回収す
ることができない。
However, the specific impurities form a low-boiling compound with alcohol and volatilize with the alcohol during the evaporation process, so that it cannot be quantitatively recovered in the residue after evaporation to dryness.

【0005】このような特定不純物とアルコールとがど
のような化合物を形成するか定かではないが、砒酸エス
テル、硼酸エステル、ゲルマニウム酸エステル、珪酸エ
ステルのような、エステル化合物であると推定される。
Although it is not clear what kind of compound the specific impurities and alcohol form, it is presumed to be an ester compound such as arsenate, borate, germanate and silicate.

【0006】そのため、該化合物の生成を解消する目的
で、錯化剤、例えばマンニット、酒石酸を共存させ蒸発
乾固する方法が提案されている。
[0006] Therefore, for the purpose of eliminating the formation of the compound, there has been proposed a method in which a complexing agent such as mannitol and tartaric acid is coexistent and evaporated to dryness.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、錯化剤
を使用する方法では、特定不純物の揮散を十分に防止す
ることができないばかりでなく、多量に共存する錯化剤
の影響で試料導入系の詰まりが起こり易く、また、錯化
剤の干渉作用で高感度分析装置、例えば、誘導結合プラ
ズマ質量分析計(ICP−MS)等で測定できず、定量
下限も10ppb程度と精度が低いものであった。その
ため、高純度薬液を必要とする半導体産業用の薬液の品
質管理分析には使用することができないという問題があ
った。
However, in the method using a complexing agent, not only the volatilization of a specific impurity cannot be sufficiently prevented, but also a large amount of the complexing agent coexists with the sample introduction system. Clogging is liable to occur, and it cannot be measured by a high-sensitivity analyzer such as an inductively coupled plasma mass spectrometer (ICP-MS) due to the interference effect of the complexing agent, and the lower limit of quantification is as low as about 10 ppb. Was. Therefore, there is a problem that it cannot be used for quality control analysis of a chemical solution for the semiconductor industry that requires a high-purity chemical solution.

【0008】[0008]

【課題を解決するための手段】本発明者等は、特定不純
物を含有するアルコールの蒸発時における該特定不純物
の挙動について鋭意研究を重ねた。その結果、アルコー
ル中に特定量の水を存在させて蒸発操作を行うことによ
り、前記化合物が効果的に加水分解され、且つ該特定不
純物が定量的に水相に回収できることを見い出し、本発
明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies on the behavior of specific impurities during the evaporation of alcohol containing the specific impurities. As a result, it has been found that by performing an evaporation operation in the presence of a specific amount of water in alcohol, the compound is effectively hydrolyzed, and the specific impurities can be quantitatively recovered in the aqueous phase. It was completed.

【0009】本発明は、アルコールと化合物を形成しう
る半金属元素を含むアルコールに、蒸発により実質的に
水相のみが残存する量の水を添加した後、実質的に水相
のみが残存するまで蒸発操作を行い、該水相中に存在す
る該元素を分析することを特徴とするアルコール中の元
素の分析方法である。
According to the present invention, an alcohol containing a metalloid element capable of forming a compound with the alcohol is added with an amount of water in which substantially only an aqueous phase remains by evaporation, and then substantially only an aqueous phase remains. A method for analyzing elements in alcohols, comprising performing an evaporation operation until the water phase and analyzing the elements present in the aqueous phase.

【0010】本発明の方法が適用される分析対象試料
は、アルコールであれば特に限定されない。例えば、イ
ソプロピルアルコール、メタノール、エタノール等が挙
げられる。とりわけ、水と共沸組成を作るイソプロピル
アルコールに対して好適に使用される。
The sample to be analyzed to which the method of the present invention is applied is not particularly limited as long as it is alcohol. For example, isopropyl alcohol, methanol, ethanol and the like can be mentioned. In particular, it is suitably used for isopropyl alcohol which forms an azeotropic composition with water.

【0011】また、上記分析方法を必要とする用途を具
体例を示せば、半導体産業において、精密洗浄、乾燥工
程で使用されるIPA等のアルコールの品質管理が最も
代表的である。
[0011] In the semiconductor industry, quality control of alcohols such as IPA used in precision cleaning and drying processes is the most typical example of the application requiring the analysis method.

【0012】本発明の分析対象であるアルコールと化合
物を形成しうる半金属元素としては、砒素、硼素、ゲル
マニウム、及び珪素が代表的である。
As the metalloid element capable of forming a compound with the alcohol to be analyzed in the present invention, arsenic, boron, germanium, and silicon are typical.

【0013】本発明の方法の特徴は、上記特定不純物を
含有するアルコールに、蒸発により実質的に水相のみが
残存する量の水を添加した後、蒸発操作を行う点にあ
る。かかる水の具体的な添加量は、アルコールの種類に
よって異なるため、一概に限定することはできない。
A feature of the method of the present invention resides in that an evaporation operation is performed after an amount of water in which substantially only an aqueous phase remains by evaporation is added to the alcohol containing the specific impurities. Since the specific amount of such water varies depending on the type of alcohol, it cannot be unconditionally limited.

【0014】従って、分析対象のアルコール毎に適宜決
定すればよい。例えば、IPAについては、水との共沸
組成(水12重量%、IPA88重量%)の水の割合を
超える量、特に好ましくは、15〜25重量%の割合と
なるように水を添加すればよい。
Therefore, it may be determined appropriately for each alcohol to be analyzed. For example, with respect to IPA, water is added so as to have an azeotropic composition with water (water 12% by weight, IPA 88% by weight) in an amount exceeding the water ratio, particularly preferably 15 to 25% by weight. Good.

【0015】但し、添加する水の量をあまり過剰とする
と、後記の分析において、蒸発乾固のためのエネルギー
を多く必要とし、経済的ではない。従って、水を添加す
る上限は、上記範囲に止めることが望ましい。
However, if the amount of water to be added is excessively large, a large amount of energy for evaporating to dryness is required in the analysis described later, which is not economical. Therefore, it is desirable to keep the upper limit of adding water within the above range.

【0016】上記添加する水は可及的に高純度であるこ
とが望ましく、一般には、超純水が使用される。なお、
本発明において、上記超純水は、比抵抗値が18MΩ・
cm以上、0.2μm以上の粒子が1個/ml以下のも
のが使用される。
It is desirable that the water to be added has as high a purity as possible. In general, ultrapure water is used. In addition,
In the present invention, the ultrapure water has a specific resistance of 18 MΩ ·
Particles having a size of 1 cm / ml or more and 0.2 μm or more are used.

【0017】本発明において、水を添加されたアルコー
ルの蒸発操作は、一般に容器中で該混合物を加熱するこ
とによって行われる。上記容器は、イオンの溶出が実質
的にないものであれば特に限定されない。特定不純物の
器壁への吸着によるロスを防止するため、撥水性を有す
るものが好適に使用される。好適な材質としては、例え
ば、テフロン、ポリカーボネート等が挙げられる。
In the present invention, the operation of evaporating the alcohol to which water has been added is generally carried out by heating the mixture in a container. The container is not particularly limited as long as it does not substantially elute ions. In order to prevent loss due to adsorption of specific impurities to the vessel wall, a material having water repellency is preferably used. Suitable materials include, for example, Teflon, polycarbonate and the like.

【0018】また、上記加熱は、常圧下、減圧下或いは
加圧下のいずれの状態で行っても良い。この場合、蒸発
速度は、あまり速くすると、特定不純物を含有するミス
トが蒸気と共に飛散するため、かかる飛散が起こらない
程度に蒸発速度を調節することが望ましい。
The heating may be performed under normal pressure, reduced pressure or increased pressure. In this case, if the evaporation rate is too high, the mist containing the specific impurities is scattered together with the vapor, and therefore it is desirable to adjust the evaporation rate to such an extent that such scatter does not occur.

【0019】上記の蒸発操作において、特定不純物は水
相のみが容器中に残存する状態となったとき、その殆ど
が該水相中に存在する。
In the above-mentioned evaporation operation, most of the specific impurities are present in the aqueous phase when only the aqueous phase remains in the vessel.

【0020】従って、特定不純物の分析は、該水相中の
特定不純物を公知の方法によって分析すればよい。代表
的な分析方法を例示すれば、該水相を公知の分析装置、
例えば、砒素、硼素、ゲルマニウムについては、誘導結
合プラズマ質量分析計(ICP−MS)誘導結合プラズ
マ発光分析計(ICP−AES)等によって、珪素につ
いては、電気加熱式原子吸光光度計によって定量分析す
る方法が一般的である。勿論、本発明の分析方法におい
て、対象とするアルコールには、他の元素が存在してい
ても併せて分析することが可能である。
Therefore, the specific impurities in the aqueous phase may be analyzed by a known method. Illustrating a typical analysis method, the aqueous phase is a known analyzer,
For example, arsenic, boron, and germanium are quantitatively analyzed by an inductively coupled plasma mass spectrometer (ICP-MS) or an inductively coupled plasma emission spectrometer (ICP-AES), and silicon is quantitatively analyzed by an electrically heated atomic absorption spectrophotometer. The method is general. Of course, in the analysis method of the present invention, it is possible to analyze the alcohol of interest even if other elements are present.

【0021】[0021]

【発明の効果】以上の説明により理解されるように、本
発明によればアルコール中に含有される砒素、硼素、ゲ
ルマニウム、及び珪素をそれぞれ定量的に水相に回収
し、分析対象試料を水に置換することができるため、従
来使用されていた高感度分析装置を使用した分析が可能
となり、極微量の上記元素を正確に定量することができ
る。
As will be understood from the above description, according to the present invention, arsenic, boron, germanium, and silicon contained in alcohol are each quantitatively recovered in the aqueous phase, and the sample to be analyzed is water. Therefore, analysis using a conventionally used high-sensitivity analyzer becomes possible, and a trace amount of the element can be accurately quantified.

【0022】[0022]

【実施例】以下、本発明を具体的に説明するため、実施
例を示すが本発明はこれらの実施例に限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0023】実施例1 市販のIPAを200ml分取し、次に比抵抗値が18
MΩ・cm以上、0.2μm以上の粒子が1個/ml以
下の超純水40mlを加えて標準試料を作成した。
Example 1 200 ml of commercially available IPA was sampled, and then the specific resistance was 18
A standard sample was prepared by adding 40 ml of ultrapure water containing particles of MΩ · cm or more and 0.2 μm or more per particle / ml or less.

【0024】次いで、同上のIPA200mlを分取
し、超純水40mlを加え、次に砒素、硼素、ゲルマニ
ウムをそれぞれ10ng、珪素200ngを加え被検試
料を作成した。
Next, 200 ml of the above IPA was sampled, 40 ml of ultrapure water was added, and then 10 ng each of arsenic, boron and germanium and 200 ng of silicon were added to prepare a test sample.

【0025】上記試料二試料をそれぞれ容積300ml
のテフロン製の容器に入れ、水相のみが1〜2ml残る
まで蒸発操作を行った。
Each of the above two samples is 300 ml in volume.
And the evaporation operation was performed until only 1 to 2 ml of the aqueous phase remained.

【0026】得られた水相を超純水で10mlに定容し
砒素、硼素、ゲルマニウムをICP質量分析計で、珪素
を電気加熱式原子吸光光度計で測定した。
The resulting aqueous phase was made up to 10 ml with ultrapure water, and arsenic, boron and germanium were measured by an ICP mass spectrometer, and silicon was measured by an electric heating atomic absorption spectrophotometer.

【0027】標準試料の分析値と被検試料の分析値を表
1に示した。
Table 1 shows the analysis values of the standard sample and the test sample.

【0028】また、標準試料と被検試料との特定元素の
差を添加量と対比し、下に示す式より回収率として求
め、表1に併せて示した。
Further, the difference between the specific elements of the standard sample and the test sample was compared with the amount of addition, determined as a recovery rate by the following formula, and also shown in Table 1.

【0029】 回収率(%)= 差(ng)/添加量(ng)×100Recovery (%) = difference (ng) / addition amount (ng) × 100

【0030】[0030]

【表1】 [Table 1]

【0031】比較例1 実施例1と同様の市販のIPA200mlを分取してこ
れを標準試料とし、また、該同様の市販のIPA200
mlを分取して、これに砒素、硼素、ゲルマニウムをそ
れぞれ10ng、珪素200ngを加え被検試料を作成
した。
Comparative Example 1 200 ml of commercially available IPA similar to that of Example 1 was taken and used as a standard sample.
Then, 10 ng of each of arsenic, boron, and germanium and 200 ng of silicon were added thereto to prepare a test sample.

【0032】上記標準試料と被検試料とをそれぞれ容積
300mlのテフロン製の容器に入れ、蒸発乾固を行っ
た後、硝酸10ml添加して乾固物を溶解し、砒素、硼
素、ゲルマニウムをICP質量分析計で、珪素を電気加
熱式原子吸光光度計で測定した。
The standard sample and the test sample were each placed in a Teflon container having a volume of 300 ml, and evaporated to dryness. 10 ml of nitric acid was added to dissolve the dried product, and arsenic, boron and germanium were dissolved in ICP Silicon was measured with a mass spectrometer using an electrically heated atomic absorption spectrophotometer.

【0033】標準試料の分析値と被検試料の分析値を表
1に示した。
Table 1 shows the analysis values of the standard sample and the test sample.

【0034】また、標準試料と上記被検試料との特定元
素の差を添加量と対比し、下に示す式より回収率として
求め、表2に併せて示した。
The difference between the specific element of the standard sample and that of the test sample was compared with the amount of addition and determined as a recovery rate by the following equation.

【0035】 回収率(%)= 差(ng)/添加量(ng)×100Recovery (%) = difference (ng) / addition amount (ng) × 100

【0036】[0036]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 1/00 G01N 31/00 H01L 21/304 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G01N 1/00 G01N 31/00 H01L 21/304 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルコールと化合物を形成しうる半金属
元素を含むアルコールに、蒸発により実質的に水相のみ
が残存する量の水を添加した後、実質的に水相のみが残
存するまで蒸発操作を行い、該水相中に存在する該元素
を分析することを特徴とするアルコール中の元素の分析
方法。
1. An alcohol containing a metalloid element capable of forming a compound with an alcohol is added with an amount of water in which substantially only an aqueous phase remains by evaporation, and then evaporated until substantially only an aqueous phase remains. A method for analyzing an element in an alcohol, comprising performing an operation and analyzing the element present in the aqueous phase.
JP22866396A 1996-08-13 1996-08-29 Method for analyzing elements in alcohol Expired - Fee Related JP3274809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22866396A JP3274809B2 (en) 1996-08-13 1996-08-29 Method for analyzing elements in alcohol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21392796 1996-08-13
JP8-213927 1996-08-13
JP22866396A JP3274809B2 (en) 1996-08-13 1996-08-29 Method for analyzing elements in alcohol

Publications (2)

Publication Number Publication Date
JPH10111220A JPH10111220A (en) 1998-04-28
JP3274809B2 true JP3274809B2 (en) 2002-04-15

Family

ID=26520052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22866396A Expired - Fee Related JP3274809B2 (en) 1996-08-13 1996-08-29 Method for analyzing elements in alcohol

Country Status (1)

Country Link
JP (1) JP3274809B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671012B2 (en) * 2001-09-03 2011-04-13 三菱瓦斯化学株式会社 Method for analyzing metal components of high purity adamantanes
CN101545887B (en) * 2008-03-28 2013-07-10 中国科学院金属研究所 Quantitative analysis method for boride

Also Published As

Publication number Publication date
JPH10111220A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
da Silva et al. Determination of Ag and Au in geological samples by flame atomic absorption spectrometry after cloud point extraction
Köllensperger et al. Determination of Rh, Pd and Pt in environmental silica containing matrices: capabilities and limitations of ICP-SFMS
Vanhaecke et al. Recent trends in trace element determination and speciation using inductively coupled plasma mass spectrometry
Montperrus et al. Comparison of extraction procedures for arsenic speciation in environmental solid reference materials by high‐performance liquid chromatography–hydride generation‐atomic fluorescence spectroscopy
Wu et al. Selective determination of trace amounts of silver in complicated matrices by displacement-cloud point extraction coupled with thermospray flame furnace atomic absorption spectrometry
KR101491996B1 (en) Sample holder for MALDI mass spectrometric analysis, and mass spectrometric analysis method
Souza et al. Mercury determination in soil and sludge samples by HR CS GFAAS: comparison of sample preparation procedures and chemical modifiers
Karandashev et al. Analysis of high-purity materials by inductively coupled plasma mass spectrometry
Türker et al. Determination of iron and lead by flame atomic absorption spectrometry after preconcentration with sepiolite
Brindle et al. Convenient method for the determination of trace amounts of germanium by hydride generation direct current plasma atomic emission spectrometry: interference reduction by L-cystine and L-cysteine
JP3274809B2 (en) Method for analyzing elements in alcohol
Verbueken et al. Embedded ion exchange beads as standards for laser microprobe mass analysis of biological specimens
JP4512605B2 (en) Determination of trace impurity elements using inductively coupled plasma mass spectrometer
Hu et al. Determination of ruthenium in photographic materials using solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry
Panday et al. Trace analysis of rare earth elements and other impurities in high purity scandium by inductively coupled plasma mass spectrometry after liquid-liquid extraction of the matrix
JP2002368052A (en) Method for desorbing silicon and method for analyzing impurities in silicon wafer
JP2010190906A (en) Solvent for high-sensitivity analysis, and preservation method therefor
Fuyi et al. Use of polytetrafluoroethylene slurry for silica matrix removal in ETAAS direct determination of trace cobalt and nickel in silicon dioxide powder
JPH06230002A (en) Concentrating determination method of metal ion
JPH07151714A (en) Mass analyzing method for secondary ion and controlling method for standard specimen used for it
JP2005249546A (en) Analysis method for metal element on wafer surface
JP2004028884A (en) Quantitative analytical method for determining impurity element
Liang et al. Selective preconcentration of silver by one-step displacement dispersive liquid–liquid microextraction and determination by graphite furnace atomic absorption spectrometry
JP3495885B2 (en) Quantitative analysis of arsenic in liquid chemicals
Sahayam et al. Determination of ultra-trace impurities in high purity gallium arsenide by inductively coupled plasma mass spectrometry after volatilization of matrix

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees