JPH1026523A - Diameter measuring method, diameter working and measuring method and instrument, and work centering device - Google Patents

Diameter measuring method, diameter working and measuring method and instrument, and work centering device

Info

Publication number
JPH1026523A
JPH1026523A JP18082696A JP18082696A JPH1026523A JP H1026523 A JPH1026523 A JP H1026523A JP 18082696 A JP18082696 A JP 18082696A JP 18082696 A JP18082696 A JP 18082696A JP H1026523 A JPH1026523 A JP H1026523A
Authority
JP
Japan
Prior art keywords
outer peripheral
workpiece
measurement reference
diameter
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18082696A
Other languages
Japanese (ja)
Inventor
Katsutoshi Tanaka
克敏 田中
Masahiko Nishioka
昌彦 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP18082696A priority Critical patent/JPH1026523A/en
Publication of JPH1026523A publication Critical patent/JPH1026523A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the diameter of an inject with accuracy of measurement of about 0.1μm. SOLUTION: While a outer periphery reference receiving member 7 supports the outer peripheries of a discoid measurement reference member 9 for measurement and an object M to be measured at two points, the radial displacement of a measurement reference to the outer peripheral surface of the member 9 from the original position of the measurement reference set on the opposite side of the member 7 and the radial displacement of the object M to the outer peripheral surface of the object M are measured by means of a displacement gauge 21. Then the diameter of the object M is calculated from the deviation of the displacement of the object from the displacement of the measurement reference.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は 直径測定方法、
直径加工・測定方法および装置、被加工物の心出し装置
に関し、特に0.1μm程度の精度を要求される直径加
工における直径測定方法、直径加工・測定方法および装
置と被加工物の心出し装置に関するものである。
The present invention relates to a method for measuring diameter,
Diameter processing / measuring method and apparatus, and work centering apparatus, particularly diameter measuring method, diameter processing / measuring method and apparatus in diameter processing requiring accuracy of about 0.1 μm, and work centering apparatus It is about.

【0002】[0002]

【従来の技術】従来一般に、円盤状、円筒状、円柱状な
どをした被測定物や被加工物の直径測定は、マイクロメ
ータ等の測長器や三次元測定器などを使用して直径を直
接計測することにより行われている。
2. Description of the Related Art Conventionally, when measuring the diameter of a workpiece, such as a disk, a cylinder, or a column, the diameter is measured using a length measuring instrument such as a micrometer or a three-dimensional measuring instrument. This is done by direct measurement.

【0003】また被加工物の外周面などを切削する直径
加工は、主軸に真空チャック面板を取り付け、真空チャ
ック面板の被加工物吸着面に吸着された被加工物の外周
面などを主軸の回転により刃物台のバイト工具などで切
削することにより行われている。
[0003] In diameter machining for cutting the outer peripheral surface of a workpiece, a vacuum chuck face plate is attached to a main spindle, and the outer peripheral surface of the workpiece adsorbed to the workpiece suction surface of the vacuum chuck face plate is rotated by the main spindle. This is done by cutting with a cutting tool such as a tool bit.

【0004】また真空チャック面板の被加工物吸着面に
吸着されている被加工物の心出しは、従来一般には、ダ
イヤルゲーシや電気マイクロメータ等を使用して被加工
物の直径を計測し、この計測情報を参照してハンマなど
で被加工物を叩いて被加工物の吸着位置を調整する手作
業により行われている。
The centering of a workpiece adsorbed on the workpiece suction surface of a vacuum chuck face plate is generally performed by measuring the diameter of the workpiece using a dial gauge, an electric micrometer, or the like. It is performed manually by adjusting the suction position of the workpiece by hitting the workpiece with a hammer or the like with reference to the measurement information.

【0005】[0005]

【発明が解決しようとする課題】マイクロメータ等の測
長器や三次元測定器などを使用した直径測定では、0.
5〜1.0μm程度の測定精度が限界であり、このた
め、従来は、0.1μm程度の精度を要求される直径加
工における直径測定を加工ラインで行うことが不可能で
あった。
In a diameter measurement using a length measuring device such as a micrometer or a three-dimensional measuring device, a diameter of 0.1 mm is required.
The measurement accuracy of about 5 to 1.0 μm is the limit, and therefore, conventionally, it has been impossible to perform the diameter measurement in the processing line in the diameter processing requiring the accuracy of about 0.1 μm.

【0006】真空チャック面板には、銅製、アルミニウ
ム製、インバー製などがあり、銅製やアルミニウム製の
ものでは、面板表面の再加工の際の切削(セルフカッ
ト)が構成材料の快削性により高精度に行われ得るが、
熱膨張変形し易いと云う欠点がある。これに対し、イン
バー製のものは、低熱膨張材であるから熱膨張変形の問
題はないが、難削性のために高精度な切削加工精度を得
ることが難しい。これらのことから、従来は、何れのも
のでも0.1μm程度の精度を要求される直径加工を行
うことができない。
The vacuum chuck face plate is made of copper, aluminum, invar, or the like. In the case of copper or aluminum, the cutting (self-cutting) at the time of reworking the surface of the face plate is high due to the free cutting property of the constituent material. Can be done with precision,
There is a disadvantage that thermal expansion deformation easily occurs. On the other hand, those made of Invar do not have a problem of thermal expansion deformation because they are low thermal expansion materials, but it is difficult to obtain high-precision machining accuracy due to difficulty in cutting. For these reasons, conventionally, any one cannot perform the diameter processing which requires an accuracy of about 0.1 μm.

【0007】また手作業による被加工物の心出しには、
経験を要すると共に精度のばらつきがあり、高精度な心
出しを行うには多大な時間を要する。
In order to center the workpiece by hand,
Experience is required and accuracy varies, and it takes a lot of time to perform high-precision centering.

【0008】この発明は、上述の如き問題点に着目して
なされたものであり、0.1μm程度の測定精度が得ら
れる直径測定方法および装置と、0.1μm程度の加工
および測定精度が得られる直径加工・測定方法および装
置と、それらの直径加工・測定装置において高精度な心
出しを繰り返し再現性よく、しかも迅速に行うことがで
きる被加工物の心出し装置を提供することを目的として
いる。
The present invention has been made in view of the above problems, and has a diameter measuring method and apparatus capable of obtaining a measuring accuracy of about 0.1 μm, and a processing and measuring accuracy of about 0.1 μm. With the aim of providing a method and an apparatus for machining and measuring diameters, and a centering apparatus for workpieces that can perform high-precision centering with good reproducibility and quickness in these diameter machining and measuring apparatuses. I have.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1による発明は、直径測定方法において、
円盤状の測定基準部材と被測定物とを外周基準受け部材
によって外周面を基準として2点支持し、前記外周基準
受け部材と対向する側に設置された計測基準位置から前
記測定基準部材の外周面までの径方向の計測基準変位量
および前記被測定物の外周面までの径方向の被測定物変
位量を各々変位計によって計測し、前記計測基準変位量
に対する被測定物変位量の偏差より前記被測定物の直径
を算出することを特徴としている。
In order to achieve the above object, the invention according to claim 1 provides a method for measuring diameter, comprising:
The disk-shaped measurement reference member and the object to be measured are supported at two points by an outer circumference reference receiving member with respect to the outer peripheral surface, and the outer circumference of the measurement reference member is measured from a measurement reference position installed on the side facing the outer circumference reference receiving member. The measurement reference displacement amount in the radial direction up to the surface and the displacement amount of the measurement object in the radial direction up to the outer peripheral surface of the measurement object are each measured by a displacement meter, and the deviation of the measurement object displacement amount with respect to the measurement reference displacement amount is calculated. It is characterized in that the diameter of the measured object is calculated.

【0010】この直径測定方法では、測定基準部材と被
測定物とが共に外周基準受け部材によって外周面を基準
として2点支持された状態で、変位計によって計測基準
位置から測定基準部材の外周面までの径方向の計測基準
変位量と、被測定物の外周面までの径方向の被測定物変
位量を各々計測し、計測基準変位量に対する被測定物変
位量の偏差より被測定物の直径を算出し、測定基準部材
(基準ピース)の直径を基準として被測定物の直径を比
較測定する。変位計には、非接触式静電容量型微少変位
計など、測定精度が0.01μm程度のものがあるか
ら、0.1μm程度の直径測測定精度は充分確保でき
る。
In this diameter measuring method, the outer peripheral surface of the measuring reference member is moved from the measuring reference position by the displacement meter while the measuring reference member and the object to be measured are both supported by the outer peripheral reference receiving member at two points with respect to the outer peripheral surface. Measure the radial displacement of the DUT to the outer peripheral surface of the DUT, and measure the displacement of the DUT to the outer peripheral surface of the DUT. Is calculated, and the diameter of the object to be measured is compared and measured based on the diameter of the measurement reference member (reference piece). Some displacement gages have a measurement accuracy of about 0.01 μm, such as a non-contact capacitance type micro displacement meter, so that a diameter measurement accuracy of about 0.1 μm can be sufficiently ensured.

【0011】請求項2による発明は、請求項1に記載の
直径測定方法において、前記測定基準部材として前記被
測定物の熱膨張特性と同一の熱膨張特性を有する材質の
ものを使用することを特徴としている。
According to a second aspect of the present invention, in the diameter measuring method according to the first aspect, a material having the same thermal expansion characteristic as that of the object to be measured is used as the measurement reference member. Features.

【0012】この発明の直径測定方法では、温度変化が
あると、測定基準部材と被測定物とが同等に熱変形し、
測定基準部材の直径を基準とした被測定物の直径の比較
測定が温度状態の如何に拘らず熱変形誤差を含むことな
く行われる。
According to the diameter measuring method of the present invention, when there is a temperature change, the measurement reference member and the object to be measured are thermally deformed equally,
The comparative measurement of the diameter of the object to be measured based on the diameter of the measurement reference member is performed without including a thermal deformation error regardless of the temperature state.

【0013】請求項3による発明は、直径測定装置にお
いて、円盤状の測定基準部材と被測定物とを、外周面を
基準として2点支持する外周基準受け部材と、前記外周
基準受け部材と対向する側に設置された計測基準位置か
ら前記測定基準部材の外周面までの径方向の計測基準変
位量および前記被測定物の外周面までの径方向の被測定
物変位量を各々計測する変位計とを有し、前記計測基準
変位量に対する被測定物変位量の偏差より前記被測定物
の直径を算出することを特徴としている。
According to a third aspect of the present invention, in the diameter measuring apparatus, an outer peripheral reference receiving member for supporting the disk-shaped measuring reference member and the object to be measured at two points with respect to the outer peripheral surface, and facing the outer peripheral reference receiving member. A displacement meter for measuring a radial measurement reference displacement amount from a measurement reference position installed on a side to be measured to an outer peripheral surface of the measurement reference member and a radial measurement object displacement amount to an outer peripheral surface of the measurement object, respectively. Wherein the diameter of the measured object is calculated from the deviation of the measured object displacement amount from the measurement reference displacement amount.

【0014】この発明による直径測定装置では、測定基
準部材と被測定物とが共に外周基準受け部材によって外
周面を基準として2点支持された状態で、変位計によっ
て計測基準位置から測定基準部材の外周面までの径方向
の計測基準変位量と、被測定物の外周面までの径方向の
被測定物変位量を各々計測し、計測基準変位量に対する
被測定物変位量の偏差より被測定物の直径を算出し、測
定基準部材の直径を基準として被測定物の直径を比較測
定する。
In the diameter measuring apparatus according to the present invention, the displacement reference is used to move the measurement reference member from the measurement reference position by the displacement meter in a state where both the measurement reference member and the object to be measured are supported by the outer reference surface receiving member at two points with reference to the outer peripheral surface. The measured reference displacement amount in the radial direction to the outer peripheral surface and the measured displacement amount of the measured object in the radial direction to the outer peripheral surface of the measured object are each measured, and the measured object displacement is calculated from the deviation of the measured object displacement amount from the measured reference displacement amount. Is calculated, and the diameter of the measured object is compared and measured based on the diameter of the measurement reference member.

【0015】請求項4による発明は、請求項3に記載の
直径測定装置において、前記外周基準受け部材は、互い
に所定間隔をおいて固定配置された円形横断面の二つの
支持ピンにより構成されていることを特徴としている。
According to a fourth aspect of the present invention, in the diameter measuring device according to the third aspect, the outer peripheral reference receiving member is constituted by two support pins having a circular cross section fixed and arranged at a predetermined interval from each other. It is characterized by having.

【0016】この発明による直径測定装置では、測定基
準部材と被測定物とが円形横断面の二つの支持ピンによ
って完全に2点支持される。
In the diameter measuring apparatus according to the present invention, the measurement reference member and the object to be measured are completely supported at two points by two support pins having a circular cross section.

【0017】請求項5による発明は、請求項3または4
に記載の直径測定装置において、前前記変位計は前記外
周基準受け部材に対して前記測定基準部材の径方向に所
定量離れた位置に固定配置され、前記外周基準受け部材
は前記測定基準部材の径方向に直線移動可能な移動台に
設けられ、当該移動台による前記外周基準受け部材の直
線移動により前記変位計が前記測定基準部材の外周面あ
るいは前記被測定物の外周面と選択的に対向することを
特徴としている。
The invention according to claim 5 is the invention according to claim 3 or 4.
In the diameter measuring device described in the above, the front displacement meter is fixedly arranged at a position separated by a predetermined amount in the radial direction of the measurement reference member with respect to the outer circumference reference receiving member, and the outer circumference reference receiving member is The displacement meter is provided on a movable table that can move linearly in the radial direction, and the displacement meter selectively faces the outer peripheral surface of the measurement reference member or the outer peripheral surface of the object to be measured by the linear movement of the outer peripheral reference receiving member by the movable table. It is characterized by doing.

【0018】この発明による直径測定装置では、移動台
による外周基準受け部材の直線移動により変位計が前記
測定基準部材の外周面あるいは前記被測定物の外周面と
選択的に対向することによって、変位計による計測基準
変位量と被測定物変位量の計測とが各々行われる。
In the diameter measuring apparatus according to the present invention, the displacement gauge is selectively opposed to the outer peripheral surface of the measurement reference member or the outer peripheral surface of the object to be measured by the linear movement of the outer peripheral reference receiving member by the movable table, thereby providing a displacement. The measurement reference displacement and the measured object displacement are measured by the meter.

【0019】請求項6による発明は、請求項3〜5の何
れかに記載の直径測定装置において、前記変位計は非接
触式静電容量型微少変位計であることを特徴としてい
る。
According to a sixth aspect of the present invention, in the diameter measuring device according to any one of the third to fifth aspects, the displacement meter is a non-contact type capacitive minute displacement meter.

【0020】この発明による直径測定装置では、計測基
準変位量と被測定物変位量とが非接触式静電容量型微少
変位計により計測される。非接触式静電容量型微少変位
計は0.01μm程度の測定精度を有しているから、
0.1μm程度の直径測定精度は充分確保できる。
In the diameter measuring apparatus according to the present invention, the measurement reference displacement amount and the measured object displacement amount are measured by a non-contact capacitance type minute displacement meter. Since the non-contact capacitance type micro displacement meter has a measurement accuracy of about 0.01 μm,
A diameter measurement accuracy of about 0.1 μm can be sufficiently ensured.

【0021】請求項7による発明は、請求項3〜6の何
れかに記載の直径測定装置において、前記外周基準受け
部材は前記被測定物と同一材料により構成されているこ
とを特徴としている。
The invention according to claim 7 is characterized in that, in the diameter measuring device according to any one of claims 3 to 6, the outer peripheral reference receiving member is made of the same material as the object to be measured.

【0022】この発明による直径測定装置では、温度変
化があると、測定基準部材と被測定物とが同等に熱変形
し、測定基準部材の直径を基準とした被測定物の直径の
比較測定が温度状態の如何に拘らず熱変形誤差を含むこ
となく行われる。
In the diameter measuring apparatus according to the present invention, when there is a temperature change, the measurement reference member and the object to be measured are thermally deformed equally, and the comparative measurement of the diameter of the object to be measured based on the diameter of the measurement reference member is performed. This operation is performed without including a thermal deformation error regardless of the temperature state.

【0023】請求項8による発明は、直径加工・測定方
法において、主軸に円盤状の測定基準部材と真空チャッ
ク面板とを取り付け、主軸を回転させて機上で前記測定
基準部材の外周面と前記真空チャック面板の被加工物吸
着面とを切削して前記測定基準部材の主軸に対する同心
度出しと前記被加工物吸着面の主軸に対する垂直度出し
とを行い、前記被加工物吸着面に被加工物を取り付け、
主軸を回転させて前記被加工物の外周切削を行い、所定
の計測基準位置から前記測定基準部材の外周面までの径
方向の計測基準変位量および前記被加工物の外周面まで
の径方向の被加工物変位量を各々変位計によって計測
し、前記計測基準変位量に対する被加工物変位量の偏差
より前記被加工物の直径を算出することを特徴としてい
る。
According to an eighth aspect of the present invention, in the diameter machining / measuring method, a disk-shaped measurement reference member and a vacuum chuck face plate are mounted on a main shaft, and the main shaft is rotated to form an outer peripheral surface of the measurement reference member on the machine. The workpiece chucking surface of the vacuum chuck face plate is cut to obtain concentricity with respect to the main axis of the measurement reference member and verticality setting with respect to the main axis of the workpiece chucking surface. Attach things,
The outer periphery of the workpiece is cut by rotating the spindle, and a measured reference displacement amount in a radial direction from a predetermined measurement reference position to an outer peripheral surface of the measurement reference member and a radial measured displacement amount to an outer peripheral surface of the workpiece are measured. Each of the workpiece displacements is measured by a displacement meter, and the diameter of the workpiece is calculated from a deviation of the workpiece displacement from the measured reference displacement.

【0024】この発明による直径加工・測定方法では、
主軸を回転させて機上で、測定基準部材の外周面と真空
チャック面板の被加工物吸着面とを切削するから、測定
基準部材の主軸に対する同心度出しと、被加工物吸着面
の主軸に対する垂直度出しとが大きい誤差成分を含むこ
となく正確に行われる。
In the diameter machining / measuring method according to the present invention,
Since the spindle is rotated and the outer peripheral surface of the measurement reference member and the workpiece chucking surface of the vacuum chuck face plate are cut on the machine, the concentricity of the measurement reference member with respect to the spindle is determined, and the workpiece suction surface is aligned with the spindle. Verticality determination is performed accurately without including a large error component.

【0025】上述のような切削によって垂直度出しされ
た被加工物吸着面に被加工物を取り付け、主軸を回転さ
せて被加工物の外周切削を行い、変位計によって計測基
準位置から既に切削によって同心度出しされている測定
基準部材の外周面までの径方向の計測基準変位量と、被
加工物の外周面までの径方向の被加工物変位量を各々計
測し、計測基準変位量に対する被加工物変位量の偏差よ
り被加工物測定物の直径を算出し、測定基準部材(基準
ピース)の直径を基準として被測定物の直径を比較測定
する。この場合も、変位計には、非接触式静電容量型微
少変位計など、測定精度が0.01μm程度のものがあ
るから、0.1μm程度の直径測測定精度は充分確保で
きる。
The workpiece is attached to the workpiece suction surface which has been set vertically by the above-described cutting, and the outer periphery of the workpiece is cut by rotating the main shaft. The radially measured reference displacement to the outer peripheral surface of the measurement reference member and the radially measured workpiece displacement to the outer peripheral surface of the workpiece are measured, and the measured displacement relative to the measured reference displacement is measured. The diameter of the workpiece is calculated from the deviation of the workpiece displacement, and the diameter of the workpiece is compared and measured based on the diameter of the measurement reference member (reference piece). Also in this case, since some displacement meters have a measurement accuracy of about 0.01 μm, such as a non-contact capacitance type minute displacement meter, a diameter measurement accuracy of about 0.1 μm can be sufficiently ensured.

【0026】請求項9による発明は、請求項8に記載の
直径加工・測定方法において、前記測定基準部材と前記
真空チャック面板とをインバー等の低熱膨張材により構
成し、前記測定基準部材の外周面と前記真空チャック面
板の被加工物吸着面とに銅、アルミニウム等による快削
材層を設け、当該快削材層を機上で切削することを特徴
としている。
According to a ninth aspect of the present invention, in the diameter machining / measuring method according to the eighth aspect, the measurement reference member and the vacuum chuck face plate are formed of a low thermal expansion material such as invar, and an outer periphery of the measurement reference member is provided. A free-cutting material layer made of copper, aluminum, or the like is provided on the surface and the workpiece suction surface of the vacuum chuck face plate, and the free-cutting material layer is cut on a machine.

【0027】快削材層の厚さは0.3〜1.0mm程度
であってよく、鍍金、溶射などの厚膜成形技術により成
膜することができる。
The thickness of the free-cutting material layer may be about 0.3 to 1.0 mm, and it can be formed by a thick film forming technique such as plating and thermal spraying.

【0028】この発明による直径加工・測定方法では、
測定基準部材の外周面と真空チャック面板の被加工物吸
着面の切削は快削材層について行われるから、インバー
等の切削に比して高精度な所要の切削精度が得られ、測
定基準部材と真空チャック面板の本体(母体)はインバ
ー等の低熱膨張材により構成されているから、これらの
熱変形による誤差が少ない。
In the diameter machining / measuring method according to the present invention,
Since the outer peripheral surface of the measurement reference member and the workpiece chucking surface of the vacuum chuck face plate are cut on the free-cutting material layer, the required cutting accuracy, which is higher than that of invar or the like, can be obtained. Since the main body (base body) of the vacuum chuck face plate is made of a low thermal expansion material such as invar, errors due to these thermal deformations are small.

【0029】請求項10による発明は、主軸に取り付け
られた円盤状の測定基準部材と真空チャック面板とを有
し、前記測定基準部材の外周面と前記真空チャック面板
の被加工物吸着面とを主軸を回転させて機上で切削して
前記測定基準部材の主軸に対する同心度出しと前記被加
工物吸着面の主軸に対する垂直度出しとを行い、主軸を
回転させて前記被加工物吸着面に取り付けられた被加工
物の外周切削を行い、所定の計測基準位置から前記測定
基準部材の外周面までの径方向の計測基準変位量および
前記被加工物の外周面までの径方向の被加工物変位量を
各々変位計によって計測し、前記計測基準変位量に対す
る被加工物変位量の偏差より前記被加工物の直径を算出
する直径加工・測定装置において、前記測定基準部材と
前記真空チャック面板とがインバー等の低熱膨張材によ
り構成され、前記測定基準部材の外周面と前記真空チャ
ック面板の被加工物吸着面とに銅、アルミニウム等によ
る快削材層が設けられ、当該快削材層が機上で切削され
ることを特徴としている。
According to a tenth aspect of the present invention, there is provided a disk-shaped measurement reference member attached to a main shaft and a vacuum chuck face plate, and an outer peripheral surface of the measurement reference member and a workpiece suction surface of the vacuum chuck face plate are connected to each other. By rotating the main shaft and cutting on the machine, the concentricity of the measurement reference member with respect to the main shaft and the perpendicularity of the workpiece suction surface with respect to the main shaft are performed, and the main shaft is rotated to fix the workpiece suction surface. The outer peripheral cutting of the attached workpiece is performed, a radial measurement reference displacement amount from a predetermined measurement reference position to an outer peripheral surface of the measurement reference member, and a radial workpiece to the outer peripheral surface of the workpiece. In a diameter machining / measuring device for measuring a displacement amount by a displacement meter and calculating a diameter of the workpiece from a deviation of the workpiece displacement amount from the measurement reference displacement amount, the measurement reference member and the vacuum chuck The plate is made of a low thermal expansion material such as Invar, and a free-cutting material layer made of copper, aluminum, or the like is provided on an outer peripheral surface of the measurement reference member and a workpiece suction surface of the vacuum chuck face plate. It is characterized in that the layer is cut on machine.

【0030】この発明による直径加工・測定装置では、
測定基準部材の外周面と真空チャック面板の被加工物吸
着面の切削は快削材層について行われるから、インバー
等の切削に比して高精度な所要の切削精度が得られ、測
定基準部材と真空チャック面板の本体(母体)はインバ
ー等の低熱膨張材により構成されているから、これらの
熱変形による誤差が少ない。
In the diameter machining / measuring device according to the present invention,
Since the outer peripheral surface of the measurement reference member and the workpiece chucking surface of the vacuum chuck face plate are cut on the free-cutting material layer, the required cutting accuracy, which is higher than that of invar or the like, can be obtained. Since the main body (base body) of the vacuum chuck face plate is made of a low thermal expansion material such as invar, errors due to these thermal deformations are small.

【0031】請求項11による発明は、請求項10に記
載の直径加工・測定装置において、前記測定基準部材の
外周面を選択的に遮蔽する円筒状の可動シャッタが設け
られていることを特徴としている。
According to an eleventh aspect of the present invention, in the diameter machining / measuring apparatus according to the tenth aspect, a cylindrical movable shutter for selectively shielding an outer peripheral surface of the measurement reference member is provided. I have.

【0032】この発明による直径加工・測定装置では、
可動シャッタによって測定基準部材の外周面が選択的に
遮蔽され、測定基準部材の外周面が切削屑などによって
汚損されることがない。
In the diameter machining / measuring device according to the present invention,
The outer peripheral surface of the measurement reference member is selectively shielded by the movable shutter, and the outer peripheral surface of the measurement reference member is not contaminated by cutting chips or the like.

【0033】請求項12による発明は、真空チャック面
板の被加工物吸着面と吸着されている被加工物の心出し
を行う心出し装置において、被加工物の径方向に移動可
能に設けられ、被加工物の外周面を2点支持する外周基
準心出し受け部材と、前記外周基準心出し受け部材を前
記被加工物の径方向に位置決め駆動するサーボ式軸駆動
装置とを有しているものである。
According to a twelfth aspect of the present invention, there is provided a centering device for centering a workpiece suction surface of a vacuum chuck face plate and a workpiece being sucked, the centering device being provided movably in a radial direction of the workpiece. An apparatus having an outer peripheral reference centering receiving member for supporting the outer peripheral surface of the workpiece at two points, and a servo-type shaft driving device for positioning and driving the outer peripheral reference centering receiving member in the radial direction of the workpiece. It is.

【0034】この発明による心出し装置では、被加工物
の外周面を2点支持する外周基準心出し受け部材がサー
ボ式軸駆動装置によって被加工物の径方向に位置決め駆
動されることにより被加工物の心出しが行われる。
In the centering apparatus according to the present invention, the outer peripheral reference centering receiving member for supporting the outer peripheral surface of the workpiece at two points is driven in the radial direction of the workpiece by the servo-type shaft driving device to drive the workpiece. The centering of things is performed.

【0035】[0035]

【発明の実施の形態】以下にこの発明の実施の形態を図
面を用いて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0036】図1はこの発明による直径測定装置の一つ
の実施の形態を示している。この直径測定装置は、基台
1上に、エアスライド等によって図1で見て左右方向に
高精度に直線移動(水平移動)可能な移動台3が設けら
れており、移動台3上にコラム5に外周基準受け部材と
して円形横断面の二つの支持ピン7,7が水平に植設さ
れている。
FIG. 1 shows an embodiment of the diameter measuring apparatus according to the present invention. This diameter measuring device is provided with a movable base 3 on a base 1 which can be moved linearly (horizontally) with high precision in the horizontal direction as viewed in FIG. 5, two support pins 7, 7 having a circular cross-section are horizontally implanted as outer peripheral reference receiving members.

【0037】支持ピン7,7は、円盤状の測定基準部材
9と被測定物Mとを搭載され、これらを共に外周面を基
準として2点支持するものであり、図2に示されている
ように、測定基準部材9、被測定物Mの中心垂直線Cb
に対して30度程度の回転角θをもって中心垂直線Cb
の両側に対称に配置されている。
The support pins 7, 7 are provided with a disk-shaped measurement reference member 9 and an object M to be measured, and both of them are supported at two points with reference to the outer peripheral surface, as shown in FIG. As described above, the measurement reference member 9 and the center vertical line Cb of the DUT M
With a rotation angle θ of about 30 degrees with respect to the center vertical line Cb.
Are arranged symmetrically on both sides.

【0038】測定基準部材9は、高度の円筒性と真円性
とを有しており、被測定物Mの熱膨張特性と同一の熱膨
張特性を有する材質のもの、ここでは被測定物Mと同一
材料のもの、例えば無酸素銅により構成されている。
The measurement reference member 9 has a high degree of cylindricality and roundness, and is made of a material having the same thermal expansion characteristics as the thermal expansion characteristics of the DUT M. And the same material as above, for example, oxygen-free copper.

【0039】移動台3は送りねじ11によって図1で見
て左右方向(Z軸方向)に駆動され、送りねじ11はロ
ータリエンコーダ13を有するサーボモータ15によっ
て回転駆動される。サーボモータ15には軸駆動・制御
装置17が接続されている。
The moving table 3 is driven in the left-right direction (Z-axis direction) as viewed in FIG. 1 by a feed screw 11, and the feed screw 11 is driven to rotate by a servomotor 15 having a rotary encoder 13. An axis drive / control device 17 is connected to the servo motor 15.

【0040】軸駆動・制御装置17は、サーボコントロ
ーラであり、ロータリエンコーダ13が出力する位置信
号を入力し、サーボモータ15の電流制御によって移動
台3のZ軸位置を帰還制御する。
The axis drive / control device 17 is a servo controller, which receives a position signal output from the rotary encoder 13 and feedback-controls the Z-axis position of the movable base 3 by controlling the current of the servo motor 15.

【0041】測定基準部材9を隔てて支持ピン7,7と
対向する側、即ち上側には非接触式静電容量型微少変位
計19の測定子21がマウント部材23によって基台1
に固定装着されている。測定子21には非接触式静電容
量型微少変位計19の変位量演算手段25が接続されて
おり、変位量演算手段25は測定子21の対向面との静
電容量より測定子21が対向する面部との間の変位量を
0.01μm程度の精度をもって計測する。
On the side facing the support pins 7, 7 with the measurement reference member 9 interposed therebetween, that is, on the upper side, the measuring element 21 of the non-contact type capacitive micro displacement meter 19 is mounted on the base 1 by the mount member 23.
It is fixedly attached to. The measuring element 21 is connected to the displacement calculating means 25 of the non-contact capacitance type micro displacement meter 19, and the displacement calculating means 25 determines the measuring element 21 based on the capacitance between the measuring element 21 and the opposing surface. The amount of displacement between the opposing surfaces is measured with an accuracy of about 0.01 μm.

【0042】この場合、測定子21は支持ピン7,7に
対して測定基準部材の径方向に所定量離れた位置に固定
配置され、移動台3による支持ピン7,7の直線移動に
より測定子21が測定基準部材9の外周面あるいは被測
定物Mの外周面と選択的に対向する。
In this case, the tracing stylus 21 is fixedly disposed at a predetermined distance in the radial direction of the measurement reference member with respect to the support pins 7 and 7, and the tracing stylus is linearly moved by the movable base 3. Reference numeral 21 selectively faces the outer peripheral surface of the measurement reference member 9 or the outer peripheral surface of the device under test M.

【0043】変位量演算手段25は、移動台3のZ軸移
動によって測定子21が支持ピン7,7上に搭載されて
いる測定基準部材9、あるいは被測定物Mの外周面に対
向することにより、測定基準部材9を隔てて支持ピン
7,7と対向する側に設置された計測基準位置(測定子
13の固定位置により画一的に決まる)から測定基準部
材9の外周面までの径方向の計測基準変位量Lo、ある
いは被測定物Mの外周面までの径方向の被測定物変位量
Lmを各々計測する。
The displacement calculating means 25 causes the tracing stylus 21 to face the measurement reference member 9 mounted on the support pins 7 or the outer peripheral surface of the object M by the Z-axis movement of the movable base 3. Accordingly, the diameter from the measurement reference position (uniformly determined by the fixed position of the tracing stylus 13) to the outer peripheral surface of the measurement reference member 9 is set on the side facing the support pins 7, 7 with the measurement reference member 9 interposed therebetween. The measurement reference displacement amount Lo in the direction or the measured object displacement amount Lm in the radial direction up to the outer peripheral surface of the measured object M is measured.

【0044】変位量演算手段25によって計測された計
測基準変位量Loと被測定物変位量Lmの情報は、直径
算出手段27に入力される。直径算出手段27は、Lm
−Loなる演算を行い、測定基準部材9の直径が既知で
あることにより、計測基準変位量Loに対する被測定物
変位量Lmの偏差ΔLから被測定物Mの直径を算出す
る。なお、偏差ΔLの1/2を削り代として出力するこ
とも可能である。
Information on the measurement reference displacement Lo and the measured object displacement Lm measured by the displacement calculator 25 is input to the diameter calculator 27. The diameter calculating means 27 calculates Lm
The calculation of -Lo is performed, and the diameter of the measured object M is calculated from the deviation ΔL of the measured object displacement amount Lm with respect to the measured reference displacement amount Lo because the diameter of the measured reference member 9 is known. Incidentally, it is also possible to output 1/2 of the deviation ΔL as a cutting allowance.

【0045】これにより被測定物Mの直径を0.1μm
程度の精度をもって測定でき、また0.1μm程度の精
度をもって削り代を設定することが可能になる。
Thus, the diameter of the object to be measured M is 0.1 μm.
Measurement can be performed with an accuracy of about a degree, and a shaving allowance can be set with an accuracy of about 0.1 μm.

【0046】測定基準部材9と被測定物Mとが円形横断
面の二つの支持ピン7,7によって完全に2点支持され
るから、外周基準受け部材がVブロックなどによる場合
に比して計測基準変位量Lo、被測定物変位量Lmの計
測が外周基準受け側の誤差成分を含むことなく高精度に
行われる。このことによっても被測定物Mの直径計測が
高精度に行われることになる。
Since the measurement reference member 9 and the object M are completely supported at two points by the two support pins 7, 7 having a circular cross section, the measurement is carried out as compared with the case where the outer peripheral reference receiving member is a V-block or the like. The measurement of the reference displacement Lo and the measured object displacement Lm is performed with high accuracy without including an error component on the outer peripheral reference receiving side. This also allows the diameter of the object M to be measured with high accuracy.

【0047】また外周基準受け部材9が被測定物Mと同
一材料により構成されていることにより、測定基準部材
9と被測定物Mとが同等に熱変形し、測定基準部材9の
直径を基準とした被測定物Mの直径の比較測定が温度状
態の如何に拘らず熱変形誤差を含むことなく行われるよ
うになり、このことによっても被測定物Mの直径計測が
高精度に行われることになる。
Further, since the outer peripheral reference receiving member 9 is made of the same material as the object to be measured M, the measuring reference member 9 and the object to be measured M are equally thermally deformed, and the diameter of the measuring reference member 9 is set as a reference. The comparative measurement of the diameter of the object M can be performed without including the thermal deformation error irrespective of the temperature state, and the diameter of the object M can be measured with high accuracy. become.

【0048】図3〜図5はこの発明による直径加工・測
定装置および心出し装置の実施の形態を示している。
FIGS. 3 to 5 show an embodiment of the diameter machining / measuring device and the centering device according to the present invention.

【0049】この直径測定装置は、基台31上に、エア
スライド等によって図3で見て左右方向に高精度に直線
移動(水平移動)可能なZ軸移動台33が設けられてお
り、Z軸移動台33上に主軸台35が搭載されている。
In this diameter measuring apparatus, a Z-axis moving table 33 is provided on a base 31, which can be linearly moved (moved horizontally) with high precision in the horizontal direction as viewed in FIG. A headstock 35 is mounted on the shaft moving base 33.

【0050】主軸台35には、主軸37、主軸モータ3
9が設けられている。主軸37には円盤状の測定基準部
材41と真空チャック面板43とが取り付けられてお
り、測定基準部材41と真空チャック面板43は主軸3
7によって回転駆動される。
On the headstock 35, a spindle 37, a spindle motor 3
9 are provided. A disk-shaped measurement reference member 41 and a vacuum chuck face plate 43 are attached to the spindle 37. The measurement reference member 41 and the vacuum chuck face plate 43 are attached to the spindle 3.
7 is driven to rotate.

【0051】真空チャック面板43は前面を被加工物吸
着面45とされ、被加工物吸着面45に被加工物Wを吸
着保持する。
The front surface of the vacuum chuck face plate 43 is a workpiece suction surface 45, and the workpiece W is suction-held on the workpiece suction surface 45.

【0052】測定基準部材41は、高度の円筒性と真円
性とを有しており、インバー等の低熱膨張材により構成
され、外周面に銅、アルミニウム等による快削材層47
を形成されている。また真空チャック面板45はインバ
ー等の低熱膨張材により構成され、被加工物吸着面45
に銅、アルミニウム等による快削材層49を形成されて
いる。快削材層47、49の厚さは0.3〜1.0mm
程度であってよく、鍍金、溶射などの厚膜成形技術によ
り成膜することができる。
The measurement reference member 41 has a high degree of cylindricality and roundness, is made of a low thermal expansion material such as invar, and has a free-cutting material layer 47 made of copper, aluminum or the like on its outer peripheral surface.
Is formed. Further, the vacuum chuck face plate 45 is made of a low thermal expansion material such as invar, and
A free-cutting material layer 49 made of copper, aluminum, or the like is formed. The thickness of the free-cutting material layers 47 and 49 is 0.3 to 1.0 mm
It can be formed by a thick film forming technique such as plating and thermal spraying.

【0053】主軸台35には、測定基準部材41の外周
面を選択的に遮蔽する円筒状の可動シャッタ51が設け
られている。可動シャッタ51は、図3にて仮想線によ
り示されている位置にて測定基準部材41の外周面に切
屑などの異物が付着することを防止し、主軸台35に取
り付けられた固定フード53と共働として、主軸37の
静圧軸受部より排出される空気を異物吹き飛ばし用空気
として測定基準部材41の外周面へ導くダクトをなす。
The headstock 35 is provided with a cylindrical movable shutter 51 for selectively shielding the outer peripheral surface of the measurement reference member 41. The movable shutter 51 prevents foreign matter such as chips from adhering to the outer peripheral surface of the measurement reference member 41 at a position indicated by a virtual line in FIG. In cooperation therewith, a duct is formed to guide the air discharged from the hydrostatic bearing of the main shaft 37 to the outer peripheral surface of the measurement reference member 41 as air for blowing off foreign matter.

【0054】Z軸移動台33は送りねじ55によって図
3で見て左右方向(Z軸方向)に駆動され、送りねじ5
5はロータリエンコーダ57を有するZ軸サーボモータ
59によって回転駆動される。サーボモータ59には軸
駆動・制御装置61が接続されている。
The Z-axis moving table 33 is driven in the left-right direction (Z-axis direction) as viewed in FIG.
5 is rotationally driven by a Z-axis servo motor 59 having a rotary encoder 57. The shaft drive / control device 61 is connected to the servo motor 59.

【0055】軸駆動・制御装置61は、図示されていな
いNC装置より軸移動指令を与えられるサーボコントロ
ーラであり、ロータリエンコーダ57が出力する位置信
号を入力し、Z軸サーボモータ59の電流制御によって
Z軸移動台33のZ軸位置を帰還制御する。
The axis drive / control device 61 is a servo controller to which an axis movement command is given from an NC device (not shown). The axis drive / control device 61 receives a position signal output from the rotary encoder 57 and controls the current by a Z-axis servo motor 59. The Z-axis position of the Z-axis moving table 33 is feedback-controlled.

【0056】真空チャック面板43の前方には、X軸方
向(図3の紙面を垂直に貫通する方向)に移動可能なX
軸移動台63と、X軸移動台63上に搭載された刃物台
65とが設けられており、刃物台65には切削工具とし
てバイト工具67が取り付けられている。なお、X軸移
動台63は、Z軸移動台33と同様に、図には示されて
いないX軸サーボモータがNC装置より軸移動指令を与
えられるサーボコントローラによって電流制御されるこ
とによりX軸位置を帰還制御される。
In front of the vacuum chuck face plate 43, there is an X-axis (moving in the direction perpendicular to the plane of FIG. 3) which is movable in the X-axis direction.
An axis moving stand 63 and a tool rest 65 mounted on the X-axis moving stand 63 are provided, and a tool bit 67 is attached to the tool rest 65 as a cutting tool. Similar to the Z-axis moving table 33, the X-axis moving table 63 is controlled by an X-axis servomotor (not shown) by a current being controlled by a servo controller which receives an axis moving command from the NC device. The position is feedback controlled.

【0057】基台31には被加工物Wの径方向であるY
軸方向(図3にて上下方向)に移動可能に外周基準心出
し受け台69が設けられている。外周基準心出し受け台
69は、被加工物Wの外周面を2点支持する円柱ピン7
1,71が設けられており、送りねじ73によってY軸
方向に駆動される。
On the base 31, Y which is the radial direction of the workpiece W
An outer peripheral reference centering pedestal 69 is provided so as to be movable in the axial direction (the vertical direction in FIG. 3). The outer peripheral reference centering pedestal 69 is provided with a cylindrical pin 7 that supports the outer peripheral surface of the workpiece W at two points.
1, 71 are provided, and are driven in the Y-axis direction by a feed screw 73.

【0058】送りねじ73はロータリエンコーダ77を
有するY軸サーボモータ79によって回転駆動される。
Y軸サーボモータ79には軸駆動・制御装置81が接続
されている。
The feed screw 73 is driven to rotate by a Y-axis servomotor 79 having a rotary encoder 77.
An axis drive / control device 81 is connected to the Y-axis servo motor 79.

【0059】軸駆動・制御装置81は、図示されていな
いNC装置より軸移動指令を与えられるサーボコントロ
ーラであり、ロータリエンコーダ79が出力する位置信
号を入力し、Y軸サーボモータ79の電流制御によって
Y軸移動台である外周基準心出し受け台69のY軸位置
を帰還制御する。
The axis drive / control device 81 is a servo controller to which an axis movement command is given from an NC device (not shown). The axis drive / control device 81 receives a position signal output from the rotary encoder 79 and controls the current by the Y-axis servo motor 79. The Y-axis position of the outer peripheral reference centering pedestal 69 serving as the Y-axis moving table is feedback-controlled.

【0060】測定基準部材41の上側には非接触式静電
容量型微少変位計83の測定子85がマウント部材87
によって基台1に固定装着されている。測定子85には
非接触式静電容量型微少変位計83の変位量演算手段8
9が接続されており、変位量演算手段89は測定子85
の対向面との静電容量より測定子85が対向する面部と
の間の変位量を0.01μm程度の精度をもって計測す
る。
On the upper side of the measuring reference member 41, a measuring element 85 of a non-contact type capacitance type minute displacement meter 83 is mounted.
Fixedly attached to the base 1. The measuring element 85 has a displacement calculating means 8 of the non-contact type capacitive minute displacement meter 83.
9 is connected, and the displacement amount calculating means 89 is
Is measured with an accuracy of about 0.01 [mu] m from the capacitance with the opposing surface.

【0061】この場合、測定子85はZ軸移動台33に
よるZ軸移動により測定基準部材41の外周面あるいは
被加工物Wの外周面と選択的に対向する。
In this case, the tracing stylus 85 selectively faces the outer peripheral surface of the measurement reference member 41 or the outer peripheral surface of the workpiece W by the Z-axis movement by the Z-axis moving table 33.

【0062】変位量演算手段89は、Z軸移動台33の
Z軸移動によって測定子85が測定基準部材41、ある
いは真空チャック面板43に取り付けられている被加工
物Wの外周面に対向することにより、測定子85の固定
位置により画一的に決まる計測基準位置から測定基準部
材41の外周面までの径方向の計測基準変位量、あるい
は被加工物Wの外周面までの径方向の被測定物変位量を
各々計測する。
The displacement calculating means 89 causes the tracing stylus 85 to face the outer peripheral surface of the workpiece W attached to the measurement reference member 41 or the vacuum chuck face plate 43 by the Z-axis movement of the Z-axis moving table 33. As a result, the measurement reference displacement amount in the radial direction from the measurement reference position uniformly determined by the fixed position of the tracing stylus 85 to the outer peripheral surface of the measurement reference member 41 or the radial measurement to the outer peripheral surface of the workpiece W Each object displacement is measured.

【0063】変位量演算手段89によって計測された計
測基準変位量と被加工変位量の情報は、直径算出手段9
1に入力される。直径算出手段91は、(計測基準変位
量)−(被加工変位量)なる演算を行い、測定基準部材
41の直径が既知であることにより、計測基準変位量に
対する被加工物変位量の偏差から被加工物Wの直径を算
出する。なお、この場合も、偏差の1/2を削り代とし
て出力することが可能である。
The information on the measured reference displacement and the workpiece displacement measured by the displacement calculating means 89 is calculated by the diameter calculating means 9.
1 is input. The diameter calculating means 91 performs an operation of (measurement reference displacement amount)-(working displacement amount), and since the diameter of the measurement reference member 41 is known, the deviation of the workpiece displacement amount with respect to the measurement reference displacement amount is calculated. The diameter of the workpiece W is calculated. In this case, it is also possible to output 1/2 of the deviation as a cutting allowance.

【0064】これにより被測定物Mの直径を0.1μm
程度の精度をもって測定でき、また0.1μm程度の精
度をもって削り代を設定することが可能になる。
As a result, the diameter of the object to be measured M is set to 0.1 μm.
Measurement can be performed with an accuracy of about a degree, and a shaving allowance can be set with an accuracy of about 0.1 μm.

【0065】この直径加工・測定装置では、直径計測に
先立って、主軸37を回転させて機上で、測定基準部材
41の外周面をなす快削材層47をバイト工具67によ
って所定直径にまで切削して測定基準部材41の主軸3
7に対する同心度出しを完全に行い、また主軸37を回
転させて機上で、真空チャック面板43の被加工物吸着
面45をなす快削材層49をバイト工具67によって切
削して被加工物吸着面45の主軸37に対する垂直度出
しを完全に行う。
In this diameter machining / measuring apparatus, prior to diameter measurement, the main shaft 37 is rotated and the free-cutting material layer 47 forming the outer peripheral surface of the measurement reference member 41 is brought to a predetermined diameter by the cutting tool 67 on the machine. The main shaft 3 of the measuring reference member 41 after cutting
7 is completed, the spindle 37 is rotated, and the free-cutting material layer 49 forming the workpiece suction surface 45 of the vacuum chuck face plate 43 is cut by the cutting tool 67 on the machine. The verticality of the suction surface 45 with respect to the main shaft 37 is completely set.

【0066】これにより上述のような直径計測が大きい
誤差成分を含むことなく正確に行われるようになる。
As a result, the diameter measurement as described above can be accurately performed without including a large error component.

【0067】測定基準部材41の外周面と真空チャック
面板43の被加工物吸着面45の切削は快削材層47、
49について行われるから、インバー等の切削に比して
高精度な所要の切削精度が得られ、しかも測定基準部材
41と真空チャック面板43の本体はインバー等の低熱
膨張材により構成されているから、これらの熱変形によ
る誤差が少ない。このことによっても直径計測が大きい
誤差成分を含むことなく正確に行われるようになる。
The outer peripheral surface of the measurement reference member 41 and the workpiece suction surface 45 of the vacuum chuck face plate 43 are cut by the free-cutting material layer 47,
Since this is performed for 49, the required cutting accuracy that is higher than that of cutting such as Invar can be obtained, and the main body of the measurement reference member 41 and the vacuum chuck face plate 43 is made of a low thermal expansion material such as Invar. In addition, errors due to these thermal deformations are small. This also allows the diameter measurement to be performed accurately without including a large error component.

【0068】被加工物Wの真空チャック面板43に対す
る取り付けを表裏反転させ、裏面側の切削残しを切削す
るような場合には、被加工物Wの真空チャック面板43
に対する取り付けについて厳格に心出しする必要があ
る。この心出しは、直径算出91より被加工物Wの直径
情報をY軸用の軸駆動・制御手段81に与え、Y軸サー
ボモータ79によって外周基準心出し受け台69をY軸
方向に駆動することにより自動的に行われる。この外周
基準心出し受け台69のY軸方向駆動はNC装置の軸移
動指令に行われ、NC装置の分解能は、通常0.01μ
m程度であるから、この心出し精度に関しても0.1μ
m程度の必要精度が確実に得られる。
In the case where the attachment of the workpiece W to the vacuum chuck face plate 43 is turned upside down to cut the uncut portion on the back side, the vacuum chuck face plate 43 of the workpiece W is cut.
Strict attention must be paid to the installation of In this centering, the diameter information of the workpiece W is given to the Y axis drive / control means 81 from the diameter calculation 91, and the outer reference centering pedestal 69 is driven in the Y axis direction by the Y axis servo motor 79. This is done automatically. The Y-axis direction driving of the outer peripheral reference centering pedestal 69 is performed according to an axis movement command of the NC device, and the resolution of the NC device is usually 0.01 μm.
m, the centering accuracy is also 0.1 μm.
The required accuracy of about m can be reliably obtained.

【0069】以上に於ては、この発明を特定の実施の形
態について詳細に説明したが、この発明は、これに限定
されるものではなく、この発明の範囲内にて種々の実施
の形態が可能であることは当業者にとって明らかであろ
う。
Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to these embodiments, and various embodiments may be made within the scope of the present invention. The possibilities will be clear to the skilled person.

【0070】[0070]

【発明の効果】以上の説明から理解される如く、請求項
1による直径測定方法によれば、測定基準部材と被測定
物とが共に外周基準受け部材によって外周面を基準とし
て2点支持された状態で、変位計によって計測基準位置
から測定基準部材の外周面までの径方向の計測基準変位
量と、被測定物の外周面までの径方向の被測定物変位量
を各々計測し、計測基準変位量に対する被測定物変位量
の偏差より被測定物の直径を算出し、測定基準部材の直
径を基準として被測定物の直径を比較測定するから、変
位計の測定精度が0.01μm程度であることと相俟っ
て直径測定精度が0.1μm程度の高精度な直径測定が
行われるようになる。
As can be understood from the above description, according to the diameter measuring method of the first aspect, both the measuring reference member and the object to be measured are supported at two points on the outer peripheral surface by the outer peripheral reference receiving member. In this state, the displacement meter measures the radial measurement reference displacement from the measurement reference position to the outer peripheral surface of the measurement reference member and the radial measurement object displacement from the measurement object to the outer peripheral surface of the measurement object. Since the diameter of the object to be measured is calculated from the deviation of the amount of displacement of the object to be measured with respect to the amount of displacement, and the diameter of the object to be measured is compared and measured with reference to the diameter of the measurement reference member, the measurement accuracy of the displacement meter is about 0.01 μm. In conjunction with this, highly accurate diameter measurement with a diameter measurement accuracy of about 0.1 μm is performed.

【0071】請求項2による直径測定方法によれば、測
定基準部材と被測定物とが同等に熱変形し、測定基準部
材の直径を基準とした被測定物の直径の比較測定が温度
状態の如何に拘らず熱変形誤差を含むことなく行われる
から、温度変化に拘らず高精度な直径測定が行われるよ
うになる。
According to the diameter measuring method according to the second aspect, the measurement reference member and the object to be measured are thermally deformed equally, and the comparative measurement of the diameter of the object to be measured based on the diameter of the measurement reference member is performed in a temperature state. Irrespective of the temperature, the measurement is performed without any thermal deformation error, so that the diameter measurement can be performed with high accuracy regardless of the temperature change.

【0072】請求項3による直径測定装置によれば、測
定基準部材と被測定物とが共に外周基準受け部材によっ
て外周面を基準として2点支持された状態で、変位計に
よって計測基準位置から測定基準部材の外周面までの径
方向の計測基準変位量と、被測定物の外周面までの径方
向の被測定物変位量を各々計測し、計測基準変位量に対
する被測定物変位量の偏差より被測定物の直径を算出
し、測定基準部材の直径を基準として被測定物の直径を
比較測定するから、変位計の測定精度が0.01μm程
度であることと相俟って直径測定精度が0.1μm程度
の高精度な直径測定が行われるようになる。
According to the diameter measuring apparatus of the third aspect, the measurement is performed from the measurement reference position by the displacement meter in a state in which both the measurement reference member and the object to be measured are supported by the outer reference surface receiving member at two points with respect to the outer peripheral surface. The measured reference displacement amount in the radial direction up to the outer peripheral surface of the reference member and the measured object displacement amount in the radial direction up to the outer peripheral surface of the measured object are each measured, and the deviation of the measured object displacement amount from the measured reference displacement amount is calculated. Since the diameter of the object to be measured is calculated and the diameter of the object to be measured is compared and measured based on the diameter of the measurement reference member, the measurement accuracy of the displacement meter is approximately 0.01 μm, and the accuracy of the diameter measurement is reduced. High-precision diameter measurement of about 0.1 μm is performed.

【0073】請求項4による直径測定装置によれば、測
定基準部材と被測定物とが円形横断面の二つの支持ピン
によって完全に2点支持されるから、測定基準部材の直
径を基準とした被測定物の直径の比較測定が、より一
層、高精度に行われるようになる。
According to the diameter measuring apparatus of the fourth aspect, the measuring reference member and the object to be measured are completely supported at two points by the two support pins having a circular cross section. The comparative measurement of the diameter of the measured object is performed with higher accuracy.

【0074】請求項5による直径測定装置によれば、移
動台による外周基準受け部材の直線移動により変位計が
測定基準部材の外周面あるいは被測定物の外周面と選択
的に対向することによって、変位計による計測基準変位
量と被測定物変位量の計測とが各々行われるから、測定
基準部材の直径を基準とした被測定物の直径の比較測定
が、確実に行われるようになる。
According to the diameter measuring apparatus according to the fifth aspect, the displacement meter selectively opposes the outer peripheral surface of the measurement reference member or the outer peripheral surface of the object to be measured by the linear movement of the outer peripheral reference receiving member by the movable table. Since the displacement of the measurement reference and the displacement of the object to be measured are each performed by the displacement meter, the comparative measurement of the diameter of the object to be measured based on the diameter of the measurement reference member is reliably performed.

【0075】請求項6による直径測定装置によれば、計
測基準変位量と被測定物変位量とが非接触式静電容量型
微少変位計により計測され、非接触式静電容量型微少変
位計は0.01μm程度の測定精度を有しているから、
0.1μm程度の直径測定精度が充分確保される。
According to the diameter measuring apparatus of the present invention, the measurement reference displacement amount and the measured object displacement amount are measured by the non-contact type capacitive minute displacement meter, and the non-contact type capacitive minute displacement meter is used. Has a measurement accuracy of about 0.01 μm,
A diameter measurement accuracy of about 0.1 μm is sufficiently ensured.

【0076】請求項7による直径測定装置によれば、測
定基準部材と被測定物とが同等に熱変形し、測定基準部
材の直径を基準とした被測定物の直径の比較測定が温度
状態の如何に拘らず熱変形誤差を含むことなく行われる
から、温度変化に拘らず高精度な直径測定が行われるよ
うになる。
According to the diameter measuring apparatus of the present invention, the measurement reference member and the object to be measured are thermally deformed equally, and the comparative measurement of the diameter of the object to be measured with respect to the diameter of the measurement reference member is performed in a temperature state. Irrespective of the temperature, the measurement is performed without any thermal deformation error, so that the diameter measurement can be performed with high accuracy regardless of the temperature change.

【0077】請求項8による直径加工・測定方法によれ
ば、主軸を回転させて機上で、測定基準部材の外周面と
真空チャック面板の被加工物吸着面とを切削するから、
測定基準部材の主軸に対する同心度出しと、被加工物吸
着面の主軸に対する垂直度出しとが大きい誤差成分を含
むことなく正確に行われ、このようにして垂直度出しさ
れた被加工物吸着面に被加工物を取り付け、主軸を回転
させて被加工物の外周切削を行い、変位計によって計測
基準位置から既に切削によって同心度出しされている測
定基準部材の外周面までの径方向の計測基準変位量と、
被加工物の外周面までの径方向の被加工物変位量を各々
計測し、計測基準変位量に対する被加工物変位量の偏差
より被加工物測定物の直径を算出し、測定基準部材の直
径を基準として被測定物の直径を比較測定するから、変
位計の測定精度が0.01μm程度であることと相俟っ
て直径測定精度が0.1μm程度の高精度な直径測定が
行われるようになる。
According to the diameter machining / measuring method of the present invention, the outer peripheral surface of the measurement reference member and the workpiece suction surface of the vacuum chuck face plate are cut on the machine by rotating the main shaft.
The concentricity with respect to the main axis of the measurement reference member and the perpendicularity with respect to the main axis of the workpiece suction surface are accurately performed without including a large error component. The workpiece is mounted on the workpiece, the main shaft is rotated, the outer circumference of the workpiece is cut, and the displacement gauge measures the radial measurement standard from the measurement reference position to the outer peripheral surface of the measurement reference member that has already been concentrically set by cutting. Displacement amount,
Measure the amount of workpiece displacement in the radial direction up to the outer peripheral surface of the workpiece, calculate the diameter of the workpiece workpiece from the deviation of the workpiece displacement from the measurement reference displacement, and calculate the diameter of the measurement reference member. Since the diameter of the object to be measured is compared and measured with reference to the above, it is possible to measure the diameter with high accuracy of about 0.1 μm in combination with the measurement accuracy of the displacement meter being about 0.01 μm. become.

【0078】請求項9、10による直径加工・測定方法
および装置によれば、測定基準部材の外周面と真空チャ
ック面板の被加工物吸着面の切削は快削材層について行
われるから、インバー等の切削に比して高精度な所要の
切削精度が得られ、測定基準部材と真空チャック面板の
本体はインバー等の低熱膨張材により構成されているか
ら、これらの熱変形による誤差が少なく、このことによ
っても高精度な直径測定が行われるようになる。
According to the diameter machining / measuring method and the apparatus according to the ninth and tenth aspects, the cutting of the outer peripheral surface of the measurement reference member and the suction surface of the workpiece of the vacuum chuck face plate are performed on the free cutting material layer. The required cutting accuracy, which is higher than the required cutting accuracy, is obtained.The measurement reference member and the main body of the vacuum chuck face plate are made of a low thermal expansion material such as invar. As a result, highly accurate diameter measurement can be performed.

【0079】請求項11による発明による直径加工・測
定装置によれば、可動シャッタによって測定基準部材の
外周面が選択的に遮蔽され、測定基準部材の外周面が切
削屑などによって汚損されることがなく、このことによ
っても高精度な直径測定が行われるようになる。
According to the diameter machining / measuring device according to the eleventh aspect, the outer peripheral surface of the measurement reference member is selectively shielded by the movable shutter, and the outer peripheral surface of the measurement reference member is contaminated by cutting chips or the like. Instead, this also enables highly accurate diameter measurement.

【0080】請求項12による発明による被加工物の心
出し装置によれば、被加工物の外周面を2点支持する外
周基準受け部材がサーボ式軸駆動装置によって被加工物
の径方向に位置決め駆動されることにより被加工物の心
出しが行われるから、高精度な心出しが繰り返し再現性
よく、しかも迅速に行われるようになる。
According to the apparatus for centering a workpiece according to the twelfth aspect of the present invention, an outer peripheral reference receiving member that supports two points on the outer peripheral surface of the workpiece is positioned in the radial direction of the workpiece by a servo-type shaft driving device. Since the workpiece is centered by being driven, high-precision centering is repeatedly performed with good reproducibility and quickly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による直径測定装置の一つの実施の形
態を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing one embodiment of a diameter measuring device according to the present invention.

【図2】この発明による直径測定装置の要部を示す説明
図である。
FIG. 2 is an explanatory view showing a main part of a diameter measuring device according to the present invention.

【図3】この発明による直径・加工測定装置および心出
し装置の一つの実施の形態を示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing one embodiment of a diameter / working measuring device and a centering device according to the present invention.

【図4】この発明による直径・加工測定装置の要部を示
す説明図である。
FIG. 4 is an explanatory view showing a main part of a diameter / working measuring apparatus according to the present invention.

【図5】この発明による心出し装置の要部を示す説明図
である。
FIG. 5 is an explanatory view showing a main part of a centering device according to the present invention.

【符号の説明】 1 基台 3 移動台 7 支持ピン 9 測定基準部材 15 サーボモータ 17 軸駆動・制御装置 19 非接触式静電容量型微少変位計 21 測定子 25 変位量演算手段 27 直径算出手段 31 基台 33 Z軸移動台 35 主軸台 37 主軸 39 主軸モータ 41 測定基準部材 43 真空チャック面板 45 被加工物吸着面 47、49 快削材層 51 可動シャッタ 59 Z軸サーボモータ 61 軸駆動・制御装置 63 X軸移動台 65 刃物台 67 バイト工具 69 外周基準心出し受け台 79 Y軸サーボモータ 81 軸駆動・制御装置 85 非接触式静電容量型微少変位計 85 測定子 89 変位量演算手段 91 直径算出手段[Description of Signs] 1 Base 3 Moving stand 7 Support pin 9 Measurement reference member 15 Servo motor 17 Axis drive / control device 19 Non-contact capacitance type minute displacement meter 21 Measuring element 25 Displacement amount calculating means 27 Diameter calculating means Reference Signs List 31 base 33 Z-axis moving table 35 headstock 37 main shaft 39 main shaft motor 41 measurement reference member 43 vacuum chuck face plate 45 workpiece suction surface 47, 49 free-cutting material layer 51 movable shutter 59 Z-axis servomotor 61 axis drive / control Apparatus 63 X-axis moving table 65 Tool post 67 Tool holder 69 Outer reference centering pedestal 79 Y-axis servo motor 81 Axis drive / control device 85 Non-contact type capacitive minute displacement meter 85 Measuring element 89 Displacement amount calculating means 91 Diameter calculation means

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 円盤状の測定基準部材と被測定物とを外
周基準受け部材によって外周面を基準として2点支持
し、前記外周基準受け部材と対向する側に設置された計
測基準位置から前記測定基準部材の外周面までの径方向
の計測基準変位量および前記被測定物の外周面までの径
方向の被測定物変位量を各々変位計によって計測し、前
記計測基準変位量に対する被測定物変位量の偏差より前
記被測定物の直径を算出することを特徴とする直径測定
方法。
1. A disk-shaped measurement reference member and an object to be measured are supported by an outer peripheral reference receiving member at two points with respect to an outer peripheral surface, and the measurement reference position is set from a measurement reference position provided on a side facing the outer peripheral reference receiving member. The displacement of the measured reference displacement in the radial direction up to the outer peripheral surface of the measurement reference member and the displacement of the measured object in the radial direction up to the outer peripheral surface of the measured object are measured by a displacement meter, and the measured object with respect to the measured reference displacement is measured. A diameter measuring method, wherein a diameter of the object is calculated from a deviation of a displacement amount.
【請求項2】 前記測定基準部材として前記被測定物の
熱膨張特性と同一の熱膨張特性を有する材質のものを使
用することを特徴とする請求項1に記載の直径測定方
法。
2. The method according to claim 1, wherein the measurement reference member is made of a material having the same thermal expansion characteristic as that of the object to be measured.
【請求項3】 円盤状の測定基準部材と被測定物とを、
外周面を基準として2点支持する外周基準受け部材と、 前記外周基準受け部材と対向する側に設置された計測基
準位置から前記測定基準部材の外周面までの径方向の計
測基準変位量および前記被測定物の外周面までの径方向
の被測定物変位量を各々計測する変位計とを有し、 前記計測基準変位量に対する被測定物変位量の偏差より
前記被測定物の直径を算出することを特徴とする直径測
定装置。
3. A disc-shaped measurement reference member and an object to be measured,
An outer peripheral reference receiving member that supports two points with respect to the outer peripheral surface, and a radial measurement reference displacement amount from a measurement reference position installed on a side facing the outer peripheral reference receiving member to an outer peripheral surface of the measurement reference member, and A displacement meter for measuring the amount of displacement of the measured object in the radial direction up to the outer peripheral surface of the measured object, and calculating a diameter of the measured object from a deviation of the measured object displacement from the measured reference displacement amount. A diameter measuring device characterized by the above-mentioned.
【請求項4】 前記外周基準受け部材は、互いに所定間
隔をおいて固定配置された円形横断面の二つの支持ピン
により構成されていることを特徴とする請求項3に記載
の直径測定装置。
4. The diameter measuring apparatus according to claim 3, wherein the outer peripheral reference receiving member is constituted by two support pins having a circular cross section fixedly arranged at a predetermined interval from each other.
【請求項5】 前記変位計は前記外周基準受け部材に対
して前記測定基準部材の径方向に所定量離れた位置に固
定配置され、前記外周基準受け部材は前記測定基準部材
の径方向に直線移動可能な移動台に設けられ、当該移動
台による前記外周基準受け部材の直線移動により前記変
位計が前記測定基準部材の外周面あるいは前記被測定物
の外周面と選択的に対向することを特徴とする請求項3
または4に記載の直径測定装置。
5. The displacement meter is fixedly arranged at a position radially away from the outer peripheral reference receiving member by a predetermined distance from the outer peripheral reference receiving member, and the outer peripheral reference receiving member is linearly arranged in a radial direction of the outer peripheral reference receiving member. The displacement gauge is provided on a movable movable table, and the displacement meter selectively faces the outer peripheral surface of the measurement reference member or the outer peripheral surface of the object to be measured by the linear movement of the outer peripheral reference receiving member by the movable table. Claim 3
Or the diameter measuring device according to 4.
【請求項6】 前記変位計は非接触式静電容量型微少変
位計であることを特徴とする請求項3〜5の何れかに記
載の直径測定装置。
6. The diameter measuring device according to claim 3, wherein the displacement meter is a non-contact type capacitance type minute displacement meter.
【請求項7】 前記外周基準受け部材は前記被測定物と
同一材料により構成されていることを特徴とする請求項
3〜6の何れかに記載の直径測定装置。
7. The diameter measuring device according to claim 3, wherein the outer peripheral reference receiving member is made of the same material as the object to be measured.
【請求項8】 主軸に円盤状の測定基準部材と真空チャ
ック面板とを取り付け、主軸を回転させて機上で前記測
定基準部材の外周面と前記真空チャック面板の被加工物
吸着面とを切削して前記測定基準部材の主軸に対する同
心度出しと前記被加工物吸着面の主軸に対する垂直度出
しとを行い、前記被加工物吸着面に被加工物を取り付
け、主軸を回転させて前記被加工物の外周切削を行い、
所定の計測基準位置から前記測定基準部材の外周面まで
の径方向の計測基準変位量および前記被加工物の外周面
までの径方向の被加工物変位量を各々変位計によって計
測し、前記計測基準変位量に対する被加工物変位量の偏
差より前記被加工物の直径を算出することを特徴とする
直径加工・測定方法。
8. A disk-shaped measurement reference member and a vacuum chuck face plate are mounted on a spindle, and the spindle is rotated to cut an outer peripheral surface of the measurement reference member and a workpiece suction surface of the vacuum chuck face plate on a machine. Then, the concentricity of the measurement reference member with respect to the main axis and the perpendicularity of the workpiece suction surface with respect to the main axis are obtained, the workpiece is attached to the workpiece suction surface, and the main shaft is rotated to perform the processing. Cutting the outer periphery of the object,
Measuring a radial measurement reference displacement amount from a predetermined measurement reference position to an outer peripheral surface of the measurement reference member and a radial workpiece displacement amount from the predetermined reference position to the outer peripheral surface of the workpiece using a displacement meter; A diameter machining / measuring method, wherein a diameter of the workpiece is calculated from a deviation of the workpiece displacement from a reference displacement.
【請求項9】 前記測定基準部材と前記真空チャック面
板とをインバー等の低熱膨張材により構成し、前記測定
基準部材の外周面と前記真空チャック面板の被加工物吸
着面とに銅、アルミニウム等による快削材層を設け、当
該快削材層を機上で切削することを特徴とする請求項8
に記載の直径加工・測定方法。
9. The measurement reference member and the vacuum chuck face plate are made of a low thermal expansion material such as invar, and the outer peripheral surface of the measurement reference member and the workpiece suction surface of the vacuum chuck face plate are made of copper, aluminum or the like. 9. A free-cutting material layer is provided by cutting the free-cutting material layer on a machine.
Diameter processing and measuring method described in.
【請求項10】 主軸に取り付けられた円盤状の測定基
準部材と真空チャック面板とを有し、前記測定基準部材
の外周面と前記真空チャック面板の被加工物吸着面とを
主軸を回転させて機上で切削して前記測定基準部材の主
軸に対する同心度出しと前記被加工物吸着面の主軸に対
する垂直度出しとを行い、主軸を回転させて前記被加工
物吸着面に取り付けられた被加工物の外周切削を行い、
所定の計測基準位置から前記測定基準部材の外周面まで
の径方向の計測基準変位量および前記被加工物の外周面
までの径方向の被加工物変位量を各々変位計によって計
測し、前記計測基準変位量に対する被加工物変位量の偏
差より前記被加工物の直径を算出する直径加工・測定装
置において、 前記測定基準部材と前記真空チャック面板とがインバー
等の低熱膨張材により構成され、前記測定基準部材の外
周面と前記真空チャック面板の被加工物吸着面とに銅、
アルミニウム等による快削材層が設けられ、当該快削材
層が機上で切削されることを特徴とする直径加工・測定
装置。
10. A disk-shaped measurement reference member attached to a main shaft and a vacuum chuck face plate, wherein the main shaft is rotated by rotating an outer peripheral surface of the measurement reference member and a workpiece suction surface of the vacuum chuck face plate. Cutting on the machine, the concentricity of the measurement reference member with respect to the main axis and the perpendicularity of the workpiece suction surface with respect to the main axis are performed, and the main shaft is rotated to process the workpiece attached to the workpiece suction surface. Cutting the outer periphery of the object,
Measuring a radial measurement reference displacement amount from a predetermined measurement reference position to an outer peripheral surface of the measurement reference member and a radial workpiece displacement amount from the predetermined reference position to the outer peripheral surface of the workpiece using a displacement meter; In a diameter machining / measuring device that calculates a diameter of the workpiece from a deviation of the workpiece displacement amount with respect to a reference displacement amount, the measurement reference member and the vacuum chuck face plate are formed of a low thermal expansion material such as Invar, Copper on the outer peripheral surface of the measurement reference member and the workpiece suction surface of the vacuum chuck face plate,
A diameter machining / measuring device, wherein a free-cutting material layer made of aluminum or the like is provided, and the free-cutting material layer is cut on a machine.
【請求項11】 前記測定基準部材の外周面を選択的に
遮蔽する円筒状の可動シャッタが設けられていることを
特徴とする請求項10に記載の直径加工・測定装置。
11. The diameter machining / measuring device according to claim 10, further comprising a cylindrical movable shutter for selectively shielding an outer peripheral surface of the measurement reference member.
【請求項12】 真空チャック面板の被加工物吸着面と
吸着されている被加工物の心出しを行う心出し装置にお
いて、 被加工物の径方向に移動可能に設けられ、被加工物の外
周面を2点支持する外周基準心出し受け部材と、 前記外周基準心出し受け部材を前記被加工物の径方向に
位置決め駆動するサーボ式軸駆動装置と、 を有していることを特徴とする被加工物の心出し装置。
12. A centering device for centering a workpiece suction surface of a vacuum chuck face plate and a workpiece being sucked, wherein the centering device is provided so as to be movable in a radial direction of the workpiece and an outer periphery of the workpiece. An outer peripheral reference centering receiving member that supports two points of a surface; and a servo-type shaft driving device that drives the outer peripheral reference centering receiving member in a radial direction of the workpiece. Workpiece centering device.
JP18082696A 1996-07-10 1996-07-10 Diameter measuring method, diameter working and measuring method and instrument, and work centering device Pending JPH1026523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18082696A JPH1026523A (en) 1996-07-10 1996-07-10 Diameter measuring method, diameter working and measuring method and instrument, and work centering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18082696A JPH1026523A (en) 1996-07-10 1996-07-10 Diameter measuring method, diameter working and measuring method and instrument, and work centering device

Publications (1)

Publication Number Publication Date
JPH1026523A true JPH1026523A (en) 1998-01-27

Family

ID=16090040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18082696A Pending JPH1026523A (en) 1996-07-10 1996-07-10 Diameter measuring method, diameter working and measuring method and instrument, and work centering device

Country Status (1)

Country Link
JP (1) JPH1026523A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775520A (en) * 1985-09-25 1988-10-04 Merck Patent Gesellschaft Mit Beschrankter Haftung Spherical SiO2 particles
JP2021171835A (en) * 2020-04-21 2021-11-01 芝浦機械株式会社 Machine tool and method for adjusting machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775520A (en) * 1985-09-25 1988-10-04 Merck Patent Gesellschaft Mit Beschrankter Haftung Spherical SiO2 particles
JP2021171835A (en) * 2020-04-21 2021-11-01 芝浦機械株式会社 Machine tool and method for adjusting machine tool

Similar Documents

Publication Publication Date Title
JP4276270B2 (en) Machine tool with workpiece reference position setting function by contact detection
US5046262A (en) Spherical edge locator for machining
JPH05257514A (en) Method for compensating linear displacement and inclined offset of working article to rotary shaft of numerical computer control machine and system for compensating linear displacement and inclined offset of working article to rotary shaft of table of numerical computer control machine
CN111673292A (en) RTCP error calibration compensation method for five-axis laser processing equipment
JP2001269841A (en) Method and device for automatically correcting measurement error
CN112427969B (en) Method for processing axial positioning surface of turntable frame
US20180243839A1 (en) A chuck for a high precision machine tool and method for making a multi-cavity die or mould
CN110732918A (en) Complex multistage cone blade rotor and stator blade tip measuring method and grinding processing method
JPH0560503A (en) Inspection method for edge accuracy of cutting tool
Ueda et al. Machining high-precision mirrors using newly developed CNC machine
JPH1026523A (en) Diameter measuring method, diameter working and measuring method and instrument, and work centering device
JPS63289410A (en) Three-dimensional measuring instrument
JPS59192457A (en) Positioner
JPH05337787A (en) Boring diameter correcting device of machine tool
JP2004025379A (en) Device for measuring angle of grinding wheel of groove cutting machine for compressor cylinder
JP2001255138A (en) Measurement jig
JPH0545921Y2 (en)
CN112025409B (en) Method for detecting contour precision in numerical control machining of stamping die
JPS6250252B2 (en)
JPH0699336A (en) Surface roughness measuring apparatus
JPH07121498B2 (en) Machine motion accuracy measuring device
JP2009202257A (en) Evaluation method for simultaneous multi-spindle control
JP2006071563A (en) Apparatus for measuring shape of circular cone
JP2011011320A (en) Workpiece automatic centering device
JP2002219634A (en) Device and method for inversion working