JPH10261934A - Piezoelectric thin film resonator - Google Patents

Piezoelectric thin film resonator

Info

Publication number
JPH10261934A
JPH10261934A JP9064198A JP6419897A JPH10261934A JP H10261934 A JPH10261934 A JP H10261934A JP 9064198 A JP9064198 A JP 9064198A JP 6419897 A JP6419897 A JP 6419897A JP H10261934 A JPH10261934 A JP H10261934A
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric thin
piezoelectric
resonator
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9064198A
Other languages
Japanese (ja)
Inventor
Naoyuki Hanashima
直之 花嶋
Shuji Tsuzumi
修司 津々見
Masa Yonezawa
政 米澤
Kiyonari Hashimoto
研也 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9064198A priority Critical patent/JPH10261934A/en
Publication of JPH10261934A publication Critical patent/JPH10261934A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric thin film resonator with a wide band width and a wide oscillating frequency range when it is applied to a resonator, a filter or the like and having a large electromechanical coupling coefficient. SOLUTION: This resonator is provided with a single crystal substrate 3, a piezoelectric thin film 2 formed on the single crystal substrate 3 and two electrodes 1 made of a conductive film formed on the piezoelectric thin film 2. In this case, the piezoelectric thin film 2 is made of e.g. lead zirconate titanate (PZT) or lead titanate (PT) thin film whose the thickness is 0.1-10 μm formed by a sol-gel method, an electric field is applied between the two electrodes 1 to apply polarization processing and to make the piezoelectric thin film. As required, an interval between the two electrodes 1 is made to 0.5-10 μm and a part of a rear side of the single crystal substrate is removed by etching.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波域で動作す
る圧電体薄膜の横方向のバルク波を利用した共振器、フ
ィルタ−等に好適な圧電薄膜共振子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric thin-film resonator suitable for a resonator, a filter, and the like utilizing a bulk wave of a piezoelectric thin film operating in a high-frequency range in a lateral direction.

【0002】[0002]

【従来の技術】一般に、高周波帯域において使用される
圧電振動子では、薄板の厚み振動が利用されている。従
来、提供されている高周波用の圧電振動子としては、次
の〜の構成のものなどがある。
2. Description of the Related Art In general, a piezoelectric vibrator used in a high frequency band utilizes thickness vibration of a thin plate. Conventionally provided piezoelectric vibrators for high frequency include those having the following configurations (1) to (4).

【0003】 水晶、圧電セラミックス等の圧電板を
薄く研磨し、その基本振動を用いた圧電振動子。 水晶、圧電セラミックス等の高次振動を利用した高
次モード振動子。 圧電性蒸着膜を基板上に形成し、この圧電性蒸着膜
を励振して基板を高次振動させて用いる複合振動子。
[0003] A piezoelectric vibrator that uses a fundamental vibration of a piezoelectric plate made of quartz, piezoelectric ceramic, or the like, which is thinly polished. Higher-order mode vibrators utilizing higher-order vibrations such as quartz and piezoelectric ceramics. A composite vibrator in which a piezoelectric vapor-deposited film is formed on a substrate, and the piezoelectric vapor-deposited film is excited to vibrate the substrate to a higher order.

【0004】上記従来の圧電振動子のうち、の構成の
ものでは、水晶、圧電セラミックス等の圧電板を薄くす
れば、板厚に反比例して基本共振周波数が高くなるが、
板厚を薄くすればするほど、機械加工が困難となる。こ
のため、現在では、板厚30〜40μmで共振周波数5
0MHz程度が限界である。
[0004] Of the above-mentioned conventional piezoelectric vibrators, the basic resonance frequency increases in inverse proportion to the plate thickness when the thickness of a piezoelectric plate such as quartz or piezoelectric ceramics is reduced.
The thinner the plate, the more difficult it is to machine. For this reason, at present, at a plate thickness of 30 to 40 μm and a resonance frequency of 5
The limit is about 0 MHz.

【0005】の構成のものでは、高次振動を用いるた
め電気機械結合係数が小さくなり、周波数帯域幅が小さ
すぎて実用的ではなく、また、電気機械結合係数が大き
い低次振動ではスプリアスとなる欠点がある。また、
の構成のものでも同様の欠点がある。
In the case of the structure described above, since the higher-order vibration is used, the electromechanical coupling coefficient is reduced, and the frequency bandwidth is too small to be practical. In addition, low-order vibration having a large electromechanical coupling coefficient causes spurious. There are drawbacks. Also,
The same configuration has the same disadvantage.

【0006】ところで、圧電素子用の高周波用圧電材料
としては、例えば、常誘電体のAlN、CdS、ZnO
等が用いられている。これらの材料は、機械加工により
薄く加工したとしても、40μm程度の厚みが限界であ
り、この程度の厚みのものでは、基本波の共振周波数
は、いずれの材料でも数十MHzが限界である。これら
の材料を用いた高周波用圧電薄膜共振子においては、例
えば、500MHz以上の高い共振周波数の基本振動を
得るためには、板厚を10μm以下にする必要がある。
Incidentally, as a high frequency piezoelectric material for a piezoelectric element, for example, paraelectric AlN, CdS, ZnO
Etc. are used. Even if these materials are thinned by machining, the thickness is limited to about 40 μm, and the resonance frequency of the fundamental wave is limited to several tens of MHz for any material having such a thickness. In a high-frequency piezoelectric thin-film resonator using these materials, for example, in order to obtain a fundamental vibration having a high resonance frequency of 500 MHz or more, the plate thickness needs to be 10 μm or less.

【0007】一方、数百MHzの高周波帯域において、
電気機械結合係数の大きな圧電振動子を得る方法として
は、スパッタ法等の薄膜製造技術とエッチング技術を用
いる方法があり、例えば、特開昭60−31305号公
報には、スパッタ法で酸化亜鉛及びチタン酸鉛の薄膜を
形成した圧電素子が記載されている。この特開昭60−
31305号公報に記載される圧電素子は、基板の影響
をなくし、圧電体薄膜の振動特性を活かすために、基板
の一部をエッチングで除去している。
On the other hand, in a high frequency band of several hundred MHz,
As a method for obtaining a piezoelectric vibrator having a large electromechanical coupling coefficient, there is a method using a thin film manufacturing technique such as a sputtering method and an etching technique. For example, JP-A-60-31305 discloses a method using zinc oxide and A piezoelectric element formed with a thin film of lead titanate is described. This Japanese Unexamined Patent Publication No.
In the piezoelectric element described in Japanese Patent No. 31305, a part of the substrate is removed by etching in order to eliminate the influence of the substrate and utilize the vibration characteristics of the piezoelectric thin film.

【0008】なお、従来、厚み振動を用いた圧電薄膜共
振子では、特開平8−148968号公報に記載される
圧電薄膜共振子に代表されるように、圧電体膜の上下の
電極により厚み方向のバルク波を励起させていた。しか
し、従来のように厚み方向のバルク波を利用している圧
電薄膜振動子の場合、下部電極が不活性領域であるため
に、それが妨げになって共振子の重要な要素であるQ値
が小さくなってしまう。
Conventionally, in a piezoelectric thin-film resonator using thickness vibration, as represented by a piezoelectric thin-film resonator described in Japanese Patent Application Laid-Open No. 8-148968, the thickness of the piezoelectric film is controlled by the upper and lower electrodes of the piezoelectric film. Was excited. However, in the case of a piezoelectric thin-film vibrator utilizing a bulk wave in the thickness direction as in the past, since the lower electrode is an inactive region, the lower electrode is hindered and the Q factor, which is an important element of the resonator, is obstructed. Becomes smaller.

【0009】[0009]

【発明が解決しようとする課題】以上の様に、従来の圧
電材料は、いずれも電気機械結合係数が20〜30%程
度と小さいため、共振子、フィルタ等を構成した場合、
帯域幅及び発振周波数範囲が限定される。なお、特開昭
60−31305号公報では、この点を改善するため
に、基板の一部を除去しているが、このように基板を除
去した場合、素子強度が低下するという欠点がある。
As described above, all of the conventional piezoelectric materials have a small electromechanical coupling coefficient of about 20 to 30%.
The bandwidth and oscillation frequency range are limited. In Japanese Patent Application Laid-Open No. Sho 60-31305, a part of the substrate is removed in order to improve this point. However, when the substrate is removed in this way, there is a disadvantage that the element strength is reduced.

【0010】従来、PZTのような電気機械結合係数の
大きい圧電薄膜材料を構成するには、成膜プロセスに問
題があり、良質な膜質の圧電体薄膜を得ることは困難と
言う問題があった。また、PTのような誘電率が小さ
く、キュ−リ−点が約500度と高く、厚み方向の結合
係数と広がり方向の結合係数の値が大きく異なる等の特
徴を持つ圧電薄膜材料を構成するには成膜プロセスに問
題があり、良質な膜質の圧電体薄膜を得ることは困難と
言う問題があっつた。そして下部電極を端子電極として
露出させるために、圧電体膜をエッチングしたり、下部
電極の一部を残して圧電体膜を上に形成したりするな
ど、下部電極を露出させるために工程が複雑になること
がある。また、音響的に不活性領域であるためにそれが
妨げになっつて、Q値が小さくなってしまう。
Hitherto, there has been a problem in forming a piezoelectric thin film material having a large electromechanical coupling coefficient, such as PZT, in the film forming process, and it has been difficult to obtain a piezoelectric thin film of good quality. . In addition, a piezoelectric thin film material having features such as PT having a small dielectric constant, a high Curie point of about 500 degrees, and a large difference between the coupling coefficient in the thickness direction and the coupling coefficient in the spreading direction is provided. Has a problem in the film forming process, and it is difficult to obtain a piezoelectric thin film having good film quality. The process for exposing the lower electrode is complicated, such as etching the piezoelectric film to expose the lower electrode as a terminal electrode, or forming the piezoelectric film on the upper surface while leaving a part of the lower electrode. It may be. In addition, since the acoustically inactive region hinders the inactive region, the Q value becomes small.

【0011】本発明は上記従来の問題点を解決し、電気
機械結合係数が大きく、共振子、フィルタ等に適用した
場合の帯域幅及び発振周波数範囲が広い圧電薄膜共振子
であって、下部電極が必要なく、高いQ値が得られ、従
って製造が容易な所望の圧電薄膜共振子を提供すること
を目的とする。
The present invention solves the above-mentioned conventional problems and provides a piezoelectric thin-film resonator having a large electromechanical coupling coefficient and a wide bandwidth and oscillation frequency range when applied to a resonator, a filter, and the like. It is an object of the present invention to provide a desired piezoelectric thin-film resonator which can obtain a high Q value and is therefore easy to manufacture.

【0012】[0012]

【課題を解決するための手段】本発明の圧電薄膜共振子
は、単結晶基板と、該単結晶基板上の圧電体膜と、該圧
電体薄膜上に形成された導電膜よりなる2個の電極とを
備えた圧電薄膜共振子において、上記圧電体膜がゾルゲ
ル法により形成した厚み0.1〜10μmのチタン酸ジ
ルコン酸鉛(PZT)またはチタン酸鉛(PT)(以
下、単にPZTまたはPTと言う)薄膜を有し、上記薄
膜上に簡単な2つの上部電極を有し、該2つの上部電極
に電界を印加して分極処理することにより圧電体薄膜と
するものである。従って、下部電極が存在しないため分
極処理は横方向に分極されることになる。また、音響的
に不活性領域が存在しないために高いQ値が得られる。
According to the present invention, there is provided a piezoelectric thin film resonator comprising a single crystal substrate, a piezoelectric film on the single crystal substrate, and a conductive film formed on the piezoelectric thin film. In the piezoelectric thin film resonator including the electrodes, the piezoelectric film is formed by a sol-gel method and has a thickness of 0.1 to 10 μm, which is lead zirconate titanate (PZT) or lead titanate (PT) (hereinafter simply referred to as PZT or PTZ). A thin film is formed, and two simple upper electrodes are provided on the thin film, and an electric field is applied to the two upper electrodes to perform a polarization process, thereby forming a piezoelectric thin film. Therefore, since the lower electrode does not exist, the polarization process is performed in the horizontal direction. In addition, a high Q value is obtained because there is no acoustically inactive region.

【0013】本発明の圧電薄膜共振子は、圧電体膜が電
気機械結合係数の大きい圧電材料であるPZTまたはP
Tで形成されているため、高周波領域で広帯域なフィル
タや発振周波数範囲の広い共振器を実現できる。
In the piezoelectric thin film resonator of the present invention, the piezoelectric film is made of PZT or PZT which is a piezoelectric material having a large electromechanical coupling coefficient.
Since it is formed of T, a filter having a wide band in a high frequency region and a resonator having a wide oscillation frequency range can be realized.

【0014】しかも、上部電極が間隔をあけて2個形成
されているため、この上部電極間に電界を印加すること
により圧電体膜を、下部電極がないため、横方向に分極
できる。
Moreover, since two upper electrodes are formed at an interval, the piezoelectric film can be polarized in the lateral direction by applying an electric field between the upper electrodes and the piezoelectric film without the lower electrodes.

【0015】ところで、特にPZTまたはPTは、通常
良質な膜質の圧電体薄膜を得ることが困難である。例え
ば、スパッタ法では、振動の共振を十分確認できるほど
良好なPZTまたはPT薄膜を形成できない。
By the way, it is usually difficult to obtain a piezoelectric thin film of high quality, especially with PZT or PT. For example, in the sputtering method, a PZT or PT thin film which is sufficiently good to sufficiently confirm vibration resonance cannot be formed.

【0016】これに対して、ゾルゲル法によるPZTま
たはPT薄膜の成膜であれば、厚み振動に対して高い共
振を示し、圧電体薄膜として有効に機能する良好な膜質
のPZTまたはPT薄膜を形成することができる。この
PZTまたはPT薄膜の膜厚は0.1〜10μmである
ことが好ましい。
On the other hand, if a PZT or PT thin film is formed by the sol-gel method, a PZT or PT thin film having good film quality that exhibits high resonance with respect to thickness vibration and effectively functions as a piezoelectric thin film is formed. can do. The PZT or PT thin film preferably has a thickness of 0.1 to 10 μm.

【0017】また、分極処理効果の面から、上部電極同
士の間の間隔(以下、「上部電極間隔」と称す。)は、
0.1〜10μmであることが好ましく、更に好ましく
は0.5〜5μmである。
Further, from the viewpoint of the polarization treatment effect, the interval between the upper electrodes (hereinafter, referred to as “upper electrode interval”) is
It is preferably from 0.1 to 10 μm, more preferably from 0.5 to 5 μm.

【0018】本発明におては、単結晶基板の一部エッチ
ングで除去して凹部を形成しても良く、これにより、発
信周波数、挿入損失の特性を向上させることができる。
In the present invention, the single crystal substrate may be partially removed by etching to form a concave portion, whereby the characteristics of the transmission frequency and the insertion loss can be improved.

【0019】本発明によれば、PZTまたはPT薄膜の
膜厚は0.1〜10μmであり、上部電極間隔0.5〜
10μmで、共振周波数帯域200MHz〜10GHz
の高特性圧電薄膜共振子が提供される。
According to the present invention, the PZT or PT thin film has a thickness of 0.1 to 10 μm and an upper electrode interval of 0.5 to 10 μm.
10 μm, resonance frequency band 200 MHz to 10 GHz
, A high-performance piezoelectric thin-film resonator of the present invention is provided.

【0020】[0020]

【発明の実施の形態】以下に、図面を参照して本発明の
実施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は本発明の実施の形態を示す斜視図、
図2は本発明の他の実施の形態を示す正面図、図3は本
発明の別の実施の形態を示す斜視図、図4は本発明の異
なる実施の形態を示す図であって、図4(a)は正面
図、図4(b)は側面図である。
FIG. 1 is a perspective view showing an embodiment of the present invention.
FIG. 2 is a front view showing another embodiment of the present invention, FIG. 3 is a perspective view showing another embodiment of the present invention, and FIG. 4 is a view showing another embodiment of the present invention. 4 (a) is a front view, and FIG. 4 (b) is a side view.

【0022】図1〜4において、同一機能を奏する部材
には同一符号を付してある。
In FIGS. 1 to 4, members having the same functions are denoted by the same reference numerals.

【0023】本発明の圧電薄膜共振子で用いる基板は、
例えば、サファイア、MgO、SrTiO3などの単結晶
基板を用いることが出来る。単結晶基板1であれば、表
面が平滑であり、かつ機械的強度も十分であることによ
り、ゾルゲル法により、比較的簡単に、良好な膜質のP
ZTまたはPT薄膜を形成することができる。また、2
つの電極を構成する導電膜としては、Al、Pt、Au
等を主成分とする膜を用いることが出来る。
The substrate used in the piezoelectric thin-film resonator of the present invention comprises:
For example, a single crystal substrate of sapphire, MgO, SrTiO 3 or the like can be used. The single crystal substrate 1 has a smooth surface and a sufficient mechanical strength, so that the P film having a good film quality can be relatively easily formed by the sol-gel method.
A ZT or PT thin film can be formed. Also, 2
Al, Pt, Au
Can be used.

【0024】本発明の圧電薄膜共振子は、上記の様な単
結晶基板上に、PZTまたはPT薄膜および上部電極層
を順次成膜して得られる。圧電体薄膜としてのPZTま
たはPT薄膜は、例えば、ゾルゲル法により成膜した厚
さ0.1〜10μmの薄膜であり、2つの電極を構成す
る導電膜としては、上記金属または合金膜を、例えばス
パッタ法等で形成することが出来、その厚さは、通常の
場合1000〜2000Å程度であり、この2つの電極
に電界をかけて分極処理することにより圧電性を付与す
る。
The piezoelectric thin film resonator of the present invention is obtained by sequentially forming a PZT or PT thin film and an upper electrode layer on the above-mentioned single crystal substrate. The PZT or PT thin film as the piezoelectric thin film is, for example, a thin film having a thickness of 0.1 to 10 μm formed by a sol-gel method. As the conductive film forming the two electrodes, the above-mentioned metal or alloy film is used. It can be formed by a sputtering method or the like, and its thickness is usually about 1000 to 2000 °. Piezoelectricity is imparted by applying an electric field to these two electrodes and performing polarization processing.

【0025】本発明において、圧電体薄膜としてのPZ
TまたはPT薄膜3は、高周波対応とするために膜厚1
0μm以下であることが必要とされ、好ましくは0.1
〜10μm、より好ましくは0.2〜3μmの範囲で使
用目的に応じて適宜決定される。なお、PZTまたはP
T薄膜の膜厚が薄過ぎると圧電効果が十分得られず、逆
に、厚過ぎると良好な膜質が得られない。
In the present invention, PZ as a piezoelectric thin film is used.
The T or PT thin film 3 has a thickness of 1
0 μm or less, preferably 0.1 μm or less.
The range is from 10 to 10 μm, more preferably from 0.2 to 3 μm. In addition, PZT or P
If the thickness of the T thin film is too small, a sufficient piezoelectric effect cannot be obtained, while if it is too large, good film quality cannot be obtained.

【0026】PZTまたはPT薄膜3上の上部電極4
(4A,4B)としては、前述の導電性金属層をスパッ
タ法等によりパターニング形成することが出来る。
Upper electrode 4 on PZT or PT thin film 3
As (4A, 4B), the above-described conductive metal layer can be patterned by a sputtering method or the like.

【0027】本発明においては、図2に示す如く、単結
晶基板1の裏面をエッチング処理して凹部5を形成した
方が良い、このように凹部5を形成することにより、圧
電薄膜共振子の機械的強度は若干劣るものの低次モード
をより強く励振することが可能となり、発信周波数、挿
入損失の特性を向上させることができる。
In the present invention, as shown in FIG. 2, it is better to form the concave portion 5 by etching the back surface of the single crystal substrate 1. By forming the concave portion 5 in this way, the piezoelectric thin film resonator Although the mechanical strength is slightly inferior, it is possible to excite the lower order mode more strongly, and it is possible to improve the characteristics of the transmission frequency and the insertion loss.

【0028】この凹部5は、上部電極4A,4Bの形成
位置に対向する位置(上部電極を基板上に厚さ方向に透
影した位置)に単結晶基板1の厚さの50〜100%の
深さで形成するのが好ましい。この際基板を圧電体膜の
数倍程度にする。
The recess 5 has a thickness of 50 to 100% of the thickness of the single crystal substrate 1 at a position facing the position where the upper electrodes 4A and 4B are formed (a position where the upper electrode is transparently projected on the substrate in the thickness direction). Preferably, it is formed at a depth. At this time, the substrate is made several times as large as the piezoelectric film.

【0029】また、本発明においては、図3に示す如
く、PZTまたはPT薄膜3上に絶縁膜4を部分的に形
成し、上部電極4A,4Bを、この絶縁膜4とPZTま
たはPT膜3の表出面とにまたがるように形成すること
により、端子電極としての上部電極4A,4Bの形成位
置をずらして構造上の補強を図ることができる。この場
合、この絶縁膜4の厚さは0.05〜1μm程度である
ことが好ましい。
In the present invention, as shown in FIG. 3, an insulating film 4 is partially formed on the PZT or PT thin film 3, and the upper electrodes 4A and 4B are connected to the insulating film 4 and the PZT or PT film 3. , The upper electrodes 4A and 4B as terminal electrodes can be formed at different positions to reinforce the structure. In this case, the thickness of the insulating film 4 is preferably about 0.05 to 1 μm.

【0030】本発明の圧電体薄膜であるPZTまたはP
T薄膜は、例えば、次に様にして形成される。単結晶基
板上に、酢酸鉛等のカルボン酸鉛、ジイソプロポキシ鉛
などの鉛アルコキシド等の鉛化合物;テトラエトキシジ
ルコウム、テトライソプロポキシジルコニウム、テトラ
ブトキシジルコニウム、ジメトキシジイソプロポキシジ
ルコニウム等のジルコニウムアルコキシド等のジルコシ
チタン、ジメトキシジイソプロポキシチタン等のチタン
アルコキシド等のチタン化合物を、2−メトキシエタノ
−ル等の溶剤に、所定のモル比で、かつ、金属酸化物換
算の合計濃度が10〜20重量%程度となるように溶解
して得られたPZTまたはPT薄膜形成用組成物を、単
結晶基板上にスピンコ−タ等により塗布して400〜6
00℃で乾燥する。この塗布、乾燥を所望の膜厚のPZ
TまたはPT薄膜が得られるまで繰り返し、最後に60
0〜700℃で1分〜1時間焼成してPZTまたはPT
薄膜を得る。
The piezoelectric thin film PZT or P
The T thin film is formed, for example, as follows. Lead compounds such as lead carboxylate such as lead acetate and lead alkoxide such as diisopropoxy lead; zirconium alkoxide such as tetraethoxy zirconium, tetraisopropoxy zirconium, tetrabutoxy zirconium and dimethoxydiisopropoxy zirconium on a single crystal substrate. A titanium compound such as titanium alkoxide such as zirconium titanium or dimethoxydiisopropoxytitanium in a solvent such as 2-methoxyethanol at a predetermined molar ratio, and a total concentration in terms of metal oxide of 10 to 20% by weight. % Of the composition for forming a PZT or PT thin film obtained by dissolving the solution to about 400% on a single crystal substrate by a spin coater or the like.
Dry at 00 ° C. This coating and drying are performed using a PZ having a desired film thickness.
Repeat until a T or PT thin film is obtained and finally 60
PZT or PT fired at 0-700 ° C for 1 minute to 1 hour
Obtain a thin film.

【0031】PZTまたはPT薄膜の分極処理は、この
PZTまたはPT薄膜上に形成した2つの電極に20〜
50VのDC電圧を1〜60分間印加することにより行
うことができる。ここで、十分な分極処理をすることで
圧電体薄膜として機能するようになるが、上記のPZT
またはPT薄膜の膜質が不十分だと分極処理の電界を十
分にかけられず、圧電体薄膜として機能しないことにな
る。
The polarization treatment of the PZT or PT thin film is performed by applying 20 to 20 electrodes to the two electrodes formed on the PZT or PT thin film.
It can be performed by applying a DC voltage of 50 V for 1 to 60 minutes. Here, by performing a sufficient polarization treatment, the film functions as a piezoelectric thin film.
Alternatively, if the film quality of the PT thin film is insufficient, an electric field for polarization treatment cannot be sufficiently applied, and the PT thin film will not function as a piezoelectric thin film.

【0032】[0032]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0033】[実施例1]単結晶基板であるサファイア
基板上に、ゾルゲル法で0.8μmのPZT薄膜を形成
した。ゾルゲル法に用いるPZTは18%濃度溶液を用
いる。400℃の熱処理で塗布を繰り返し所望の膜厚を
得、最後に650℃の温度で焼成する。更に、PZT薄
膜の上にAl:1500Åを形成し、図1の様にAlを
70×70μm角のパタ−ンを3μm間隔で2つパタ−
ニングした。そして、図2の様に基板の裏面を70×3
μm角の開口部を逆スパッタ法によってドライエッチン
グした。そした、分極処理は、上部電極間に150℃
で、300kV/cmの直流電界を10分間印可した。
こうすることで、横方向に分極されたことになり、本発
明の圧電薄膜共振子1(以下、本発明共振子1と言う)
を得た。
Example 1 A 0.8 μm PZT thin film was formed on a sapphire substrate as a single crystal substrate by a sol-gel method. PZT used in the sol-gel method uses an 18% concentration solution. The coating is repeated by heat treatment at 400 ° C. to obtain a desired film thickness, and finally baked at a temperature of 650 ° C. Further, Al: 1500 ° is formed on the PZT thin film, and as shown in FIG. 1, two patterns of 70 × 70 μm square Al are formed at 3 μm intervals.
I did it. Then, as shown in FIG.
The opening of μm square was dry-etched by a reverse sputtering method. Then, the polarization process is performed at 150 ° C. between the upper electrodes.
A DC electric field of 300 kV / cm was applied for 10 minutes.
By doing so, it is polarized in the lateral direction, and the piezoelectric thin film resonator 1 of the present invention (hereinafter, referred to as the resonator 1 of the present invention)
I got

【0034】PZT薄膜の形成には、下記組成のPZT
薄膜形成用組成物を用い、これをスピンコータにより塗
布した。PZT薄膜形成用組成物 (金属酸化物換算の合計濃度:
20重量%) 酢酸鉛:23.985重量% テトラブトキシジルコニウム:11.455重量% テトライソプロポキシチタン:7.842重量% 2−メトキシエタノール:残部
For forming a PZT thin film, a PZT having the following composition is used.
The composition for forming a thin film was applied by a spin coater. PZT thin film forming composition (total concentration in terms of metal oxide:
20% by weight) Lead acetate: 23.985% by weight Tetrabutoxyzirconium: 11.455% by weight Titanium isopropoxy titanium: 7.842% by weight 2-methoxyethanol: balance

【0035】[実施例2]実施例1において、単結晶基
板にMgOを用い、裏面の開口部を化学ッチングによっ
て形成し、本発明の圧電薄膜共振子2(以下、本発明共
振子2と言う)を製作した。
Example 2 In Example 1, MgO was used for the single crystal substrate, and the opening on the back surface was formed by chemical etching, and the piezoelectric thin film resonator 2 of the present invention (hereinafter referred to as the resonator 2 of the present invention) was used. ).

【0036】[実施例3]実施例1において、単結晶基
板にSrTiO3を用い、裏面の開口部を逆スパッタ法
により形成し、本発明の圧電薄膜共振子3(以下、本発
明共振子3と言う)を製作した。
Example 3 In Example 1, SrTiO 3 was used for the single crystal substrate, and the opening on the back surface was formed by reverse sputtering, and the piezoelectric thin film resonator 3 of the present invention (hereinafter referred to as resonator 3 of the present invention) was used. ).

【0037】[実施例4]実施例1において、圧電体薄
膜が10%濃度溶液を用いたゾルゲル法で形成された
0.64μmのPT薄膜からなる本発明の圧電薄膜共振
子4(以下、本発明共振子4と言う)を製作した。
Example 4 In Example 1, the piezoelectric thin film resonator 4 of the present invention (hereinafter referred to as the piezoelectric thin film resonator) comprising a 0.64 μm PT thin film formed by a sol-gel method using a 10% concentration solution. Invented resonator 4) was manufactured.

【0038】[実施例5]実施例2において、圧電体薄
膜が10%濃度溶液を用いたゾルゲル法で形成された
0.64μmのPT薄膜からなる本発明の圧電薄膜共振
子5(以下、本発明共振子5と言う)を製作した。
Example 5 In Example 2, the piezoelectric thin film resonator 5 of the present invention (hereinafter referred to as the piezoelectric thin film resonator) was formed of a 0.64 μm PT thin film formed by a sol-gel method using a 10% concentration solution. Invented resonator 5) was manufactured.

【0039】[実施例6]実施例3において、圧電体薄
膜が10%濃度溶液を用いたゾルゲル法で形成された
0.64μmのPT薄膜からなる本発明の圧電薄膜共振
子6(以下、本発明共振子6と言うを製作した)。
Example 6 In Example 3, the piezoelectric thin film resonator 6 of the present invention (hereinafter referred to as the piezoelectric thin film resonator) comprising a 0.64 μm PT thin film formed by a sol-gel method using a 10% concentration solution. Invented resonator 6 was manufactured).

【0040】[実施例7]実施例1において、PZT薄
膜の成膜後、図3に示すごとく、振動領域以外に厚さ1
μmのSiO2膜をスパッタにより形成し、その後、この
SiO2膜とPZT薄膜とにまたがる様に、厚さ1500
ÅのAl上部電極を2つ形成したこと以外は同様にして
作製した本発明の圧電薄膜共振子7(以下、本発明共振
子7と言う)。この本発明共振子7について、上部電極
の面積の違いによるインピ−ダンスを調べ、本発明共振
子1と比較したところ、本発明共振子1と同じであるこ
とから、この様な構造にしても特性に変化はなく、上部
電極の端子位置を確保できることが確認できた。
Example 7 In Example 1, after the PZT thin film was formed, as shown in FIG.
A SiO 2 film having a thickness of 1500 μm is formed by sputtering, and then a thickness of 1500 is formed so as to extend over the SiO 2 film and the PZT thin film.
The piezoelectric thin-film resonator 7 of the present invention (hereinafter referred to as the resonator 7 of the present invention) produced in the same manner except that two Al upper electrodes were formed. With respect to the resonator 7 of the present invention, the impedance due to the difference in the area of the upper electrode was examined and compared with the resonator 1 of the present invention. There was no change in the characteristics, and it was confirmed that the terminal position of the upper electrode could be secured.

【0041】上述の様に、得られた本発明共振子1〜7
について、圧電薄膜共振子の厚み振動の基本共振周波数
を測定し、その結果を表1に示した。
As described above, the obtained resonators 1 to 7 of the present invention are obtained.
The basic resonance frequency of the thickness vibration of the piezoelectric thin-film resonator was measured, and the results are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】上記の様にゾルゲル法によって、電気機
械結合係数の大きいPZTを用いたり、誘電率が小さ
く、キユ−リ−点が約500度と高く、厚み方向の結合
係数と広がり方向の結合係数の値が大きく異なる等の特
徴を持つPTを用いるため、構造的に図1の様な簡単な
構造においても広帯域なフィルタや発振週波数の広い共
振器を実現する圧電薄膜共振子を得ることが出来る。ま
た、上部電極を所定の間隔をあけて2個設けたため、横
方向のバルク波を利用する事で、音響的に不活性領域の
下部電極が存在しないために大きなQ値を得ることが出
来、さらに、絶縁層の上に端子電極を構成することによ
り、端子電極を確保でき端子電極下の共振をも抑制する
ことが出来ると共に、圧電薄膜共振子を容易に製造する
ことが可能となった。
As described above, by the sol-gel method, PZT having a large electromechanical coupling coefficient can be used, the dielectric constant is small, the Curie point is as high as about 500 degrees, the coupling coefficient in the thickness direction and the expansion coefficient in the spreading direction are small. Since a PT having characteristics such as a large difference in the value of the coupling coefficient is used, a piezoelectric thin-film resonator that realizes a broadband filter and a resonator having a wide oscillation frequency can be obtained even with a simple structure as shown in FIG. I can do it. In addition, since two upper electrodes are provided at a predetermined interval, a large Q value can be obtained by utilizing a bulk acoustic wave in the lateral direction, since there is no lower electrode in an inactive region acoustically. Further, by forming the terminal electrode on the insulating layer, the terminal electrode can be secured, the resonance under the terminal electrode can be suppressed, and the piezoelectric thin film resonator can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】 本発明の他の実施の形態を示す正面図であ
る。
FIG. 2 is a front view showing another embodiment of the present invention.

【図3】 本発明の別の実施の形態を示す斜視図であ
る。
FIG. 3 is a perspective view showing another embodiment of the present invention.

【図4】 本発明の異なる実施の形態を示す図であっ
て、図4(A)は正面図、図4(B)は側面図である。
4A and 4B are diagrams showing different embodiments of the present invention, wherein FIG. 4A is a front view and FIG. 4B is a side view.

【符号の説明】[Explanation of symbols]

1 上部電極 2 圧電薄膜 3 単結晶基板 4 絶縁膜 5 凹部 Reference Signs List 1 upper electrode 2 piezoelectric thin film 3 single crystal substrate 4 insulating film 5 concave portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 研也 千葉県千葉市稲毛区弥生町1−33 千葉大 学工学部電子電気工学科内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenya Hashimoto 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba Chiba Univ.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】単結晶基板と、該単結晶基板上に形成され
た圧電体薄膜と、該圧電体薄膜上に形成された導電性膜
よりなる2つの電極を備えた圧電薄膜共振子において、 上記圧電体薄膜はゾルゲル法により形成されたチタン酸
ジルコン酸鉛(PZT)またはチタン酸鉛(PT)薄膜
よりなり、上記2つの電極間に電界をかけ、チタン酸ジ
ルコン酸鉛(PZT)またはチタン酸鉛(PT)薄膜を
分極処理することにより圧電体薄膜としたことを特徴と
する圧電薄膜共振子。
1. A piezoelectric thin film resonator comprising a single crystal substrate, a piezoelectric thin film formed on the single crystal substrate, and two electrodes formed of a conductive film formed on the piezoelectric thin film. The piezoelectric thin film is made of a lead zirconate titanate (PZT) or lead titanate (PT) thin film formed by a sol-gel method, and an electric field is applied between the two electrodes to lead zirconate titanate (PZT) or titanium. A piezoelectric thin film resonator characterized in that a lead oxide (PT) thin film is subjected to a polarization treatment to form a piezoelectric thin film.
【請求項2】上記チタン酸ジルコン酸鉛(PZT)また
はチタン酸鉛(PT)薄膜が、ゾルゲル法で形成された
厚さ0.1〜10μmの薄膜であることを特徴とする請
求項1記載の圧電薄膜共振子。
2. The lead zirconate titanate (PZT) or lead titanate (PT) thin film is a thin film having a thickness of 0.1 to 10 μm formed by a sol-gel method. Piezoelectric thin film resonator.
【請求項3】上記2つの電極の間隔が、0.5〜10μ
mの構造であることを特徴とする請求項1〜2のいずれ
かに記載の圧電薄膜共振子。
3. An interval between the two electrodes is 0.5 to 10 μm.
3. The piezoelectric thin-film resonator according to claim 1, wherein the piezoelectric thin-film resonator has a structure of m.
【請求項4】上記単結晶基板の裏面の一部をエッチング
により除去したことを特徴とする請求項1〜3のいずれ
かに記載の圧電薄膜共振子。
4. The piezoelectric thin film resonator according to claim 1, wherein a part of the back surface of the single crystal substrate is removed by etching.
JP9064198A 1997-03-18 1997-03-18 Piezoelectric thin film resonator Withdrawn JPH10261934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9064198A JPH10261934A (en) 1997-03-18 1997-03-18 Piezoelectric thin film resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9064198A JPH10261934A (en) 1997-03-18 1997-03-18 Piezoelectric thin film resonator

Publications (1)

Publication Number Publication Date
JPH10261934A true JPH10261934A (en) 1998-09-29

Family

ID=13251142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9064198A Withdrawn JPH10261934A (en) 1997-03-18 1997-03-18 Piezoelectric thin film resonator

Country Status (1)

Country Link
JP (1) JPH10261934A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048935A1 (en) * 1999-12-28 2001-07-05 Hitachi Metals, Ltd. High-frequency switch, high-frequency switch module, and wireless communication device
US7468608B2 (en) 2002-07-19 2008-12-23 Siemens Aktiengesellschaft Device and method for detecting a substance of a liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048935A1 (en) * 1999-12-28 2001-07-05 Hitachi Metals, Ltd. High-frequency switch, high-frequency switch module, and wireless communication device
US7468608B2 (en) 2002-07-19 2008-12-23 Siemens Aktiengesellschaft Device and method for detecting a substance of a liquid

Similar Documents

Publication Publication Date Title
JP4735840B2 (en) Piezoelectric laminate, surface acoustic wave device, thin film piezoelectric resonator, and piezoelectric actuator
JP4478910B2 (en) Piezoelectric thin film resonator
WO1999037023A1 (en) Thin film pietoelectric element
JP4395892B2 (en) Piezoelectric thin film device and manufacturing method thereof
US20050168105A1 (en) Electronic component, manufacturing method for the same, and filter, duplexer, and electronic communication apparatus using the same
JPH01157108A (en) Piezoelectric thin film resonator
JP2001044794A (en) Piezoelectric resonator
JPH10209794A (en) Piezoelectric thin-film resonator
JP2001168674A (en) Piezoelectric resonance element and electronic appliance
JP3715831B2 (en) Piezoelectric resonator
JPH10200369A (en) Piezoelectric thin film resonator
JP2005303573A (en) Thin film piezoelectric resonator and its manufacturing method
JP3723697B2 (en) Piezoelectric resonator
JPH10261934A (en) Piezoelectric thin film resonator
JP2002151754A (en) Piezoelectric thin film element and its manufacturing method
JP2001285015A (en) Piezoelectric resonator
JP2005236338A (en) Piezoelectric thin-film resonator
JPH10261933A (en) Piezoelectric thin film resonator
JPH0640611B2 (en) Piezoelectric thin film resonator
JPS6281807A (en) Piezoelectric thin film resonator
JPH10276060A (en) Surface acoustic wave device
JPS61218214A (en) Piezoelectric thin film resonator
JPH10209793A (en) Piezoelectric thin-film resonator
JPH10256871A (en) Surface acoustic wave device
JP2001250995A (en) Piezoelectric thin-film element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601