JPS61218214A - Piezoelectric thin film resonator - Google Patents

Piezoelectric thin film resonator

Info

Publication number
JPS61218214A
JPS61218214A JP5819385A JP5819385A JPS61218214A JP S61218214 A JPS61218214 A JP S61218214A JP 5819385 A JP5819385 A JP 5819385A JP 5819385 A JP5819385 A JP 5819385A JP S61218214 A JPS61218214 A JP S61218214A
Authority
JP
Japan
Prior art keywords
film
thin film
piezoelectric thin
substrate
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5819385A
Other languages
Japanese (ja)
Inventor
Hitoshi Suzuki
仁 鈴木
Hiroaki Sato
弘明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5819385A priority Critical patent/JPS61218214A/en
Publication of JPS61218214A publication Critical patent/JPS61218214A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain excellent piezoelectricity without giving damage to a thin film constituting air gap by using a metallic film provided to a substrate in a bridge shape as a lower electrode, providing a piezoelectric thin film onto the lower electrode in a bridge shape and providing the upper electrode onto the piezoelectric thin film so as to be opposed to the lower electrode. CONSTITUTION:The metallic film 2 constituting the lower electrode is formed onto the substrate 1 so as to form the air gap layer 5 and the piezoelectric thin film 3 and the upper electrode 4 are formed sequentially on the film 2. The bridge form of the metallic film 2 on the substrate 1 is used as a support of the air gap layer 5 so as to prevent damages to the edge of the air gap 5a (substrate 1 and a bridge shape coundary) of the air gap 5a produced to a dielectric film made of SiO2 in a conventional resonator due to micro crack. Since the piezoelectric thin film 3 is formed onto a comparatively uniform metallic film 2, that is, onto the lower electrode, deterioration in the orientation of the axis C is not given and the piezoelectric thin film with a large electromechanical coupling coefficient is obtained and a resonator characteristic with a large response is obtained. Further, the change in the opposed area due to the shift of position of the upper/lower electrodes is minimized, then the variance in the characteristic is made less to improve the productivity.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、VHF帯およびぬf帯用として好適な圧電
薄膜を用いた圧電薄膜共振子に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a piezoelectric thin film resonator using a piezoelectric thin film suitable for VHF band and F band.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、材料技術や加工技術の進歩にともない半導体素子
の高密度集積化が推し進められている。
In recent years, with advances in material technology and processing technology, higher density integration of semiconductor elements has been promoted.

しかしながら、高周波帯の受動部品特に共振子やフィル
タ等の共振回路部品は半導体素子に比べて小型化の開発
が立ち遅れているのが実情である。
However, the reality is that the development of miniaturization of high frequency band passive components, particularly resonant circuit components such as resonators and filters, is lagging behind that of semiconductor devices.

で半導体素子との集積化が可能な小型受動部品の開発が
強く望まれている。
There is a strong desire to develop small passive components that can be integrated with semiconductor devices.

従来、数MHz〜土数MHzの比較的低い周波数帯では
共振子やフィルタとして水晶やチタン酸鉛系セラミック
ス等の圧電基板を用い、その厚み振動を利用した振動子
が実用化され数多く使用されている。この振動子は長さ
、幅または厚み等の幾何学的形状により共振周波数が決
まる。ところが、このような圧電基板は機械的強度およ
び加工上の制約を受けるため、単なる機械的研磨法では
基板の厚みが数十μm程度にとどます、シたがってその
基板の配本共振周波数は高々数十MHz程度が限界とな
っていた。
Conventionally, in relatively low frequency bands from several MHz to several MHz, piezoelectric substrates such as crystal or lead titanate ceramics have been used as resonators and filters, and vibrators that utilize their thickness vibration have been put into practical use and widely used. There is. The resonant frequency of this vibrator is determined by its geometric shape such as length, width, or thickness. However, since such piezoelectric substrates are subject to mechanical strength and processing constraints, the thickness of the substrate is limited to a few tens of micrometers using a simple mechanical polishing method, and therefore the distribution resonance frequency of the substrate is at most The limit was about several tens of MHz.

そこで、これ以上の周波数を必要とする場合に〃 は高次厚1d根動を利用することになるが、この場1合
の電気機械結合係数は次数の二乗に反比例するため、極
端に小さくなるので容量比が増大し、またスプリアス共
振が所1の共振点に近い位置にくるため、広帯域共振子
フィルタや電圧制御発振器用広帯域発振子の実現が鍼し
く実用的ではなかった。
Therefore, if a higher frequency is required, higher-order thickness 1d root motion will be used, but in this case, the electromechanical coupling coefficient in case 1 is inversely proportional to the square of the order, so it becomes extremely small. Therefore, the capacitance ratio increases and the spurious resonance comes to a position close to the first resonance point, making it difficult and impractical to realize a broadband resonator filter or a broadband oscillator for a voltage-controlled oscillator.

これに対し、最近厚み振動の基本モードおるいは比較的
低次のオーバートーンで動作する超小型のVHF 、U
HFHF共用共振子現を目指して圧電薄膜を用いた共振
子が研究されている。
In contrast, recently ultra-compact VHF, U
Resonators using piezoelectric thin films are being researched with the aim of creating HFHF dual resonators.

このような圧電薄膜共振子としては例えば@Progr
ess in the Development of
 MinitureThin Film SAW Re
5onator and Filter Techno
logyProceedings of the 36
th Annunl Symposium onFre
quency Contr l 1982年6月号第5
37頁〜第548頁等において開示されているものがあ
る。
An example of such a piezoelectric thin film resonator is @Progr.
Ess in the Development of
Miniature Thin Film SAW Re
5onator and Filter Techno
logicProceedings of the 36
th Annunl Symposium on Free
Quency Control June 1982 Issue No. 5
Some are disclosed on pages 37 to 548, etc.

これはシリコン等の半導体結晶基板に異方性エツチング
技術を用いて基板の裏面に空穴を形成して半導体薄膜を
振動部の一部として所定の厚ざだけ残し、その上に振動
用下部電極、圧電薄膜、振動用上部電極を形成すること
により共振子とするものであり1次のような特長をもっ
ている。
This uses anisotropic etching technology on a semiconductor crystal substrate such as silicon to form a hole on the back surface of the substrate, leaving a predetermined thickness of the semiconductor thin film as part of the vibrating part, and then forming a lower vibration electrode on top of the semiconductor thin film. A resonator is formed by forming a piezoelectric thin film and an upper electrode for vibration, and has the following first-order characteristics.

1)振動部を極めて薄く形成することができるため、1
00MHz〜数GHzの周波数帯において基本モードあ
るいは低次モードで動作させることができる。
1) Since the vibrating part can be formed extremely thin, 1
It can be operated in a fundamental mode or a low-order mode in a frequency band of 00 MHz to several GHz.

2)電気機械結合係数を大きくすることができるため、
低容量比の共振子が実現可能となり、広帯域な共振回路
として利用できる。
2) Since the electromechanical coupling coefficient can be increased,
A resonator with a low capacitance ratio can now be realized and can be used as a broadband resonant circuit.

3)振動部が複合振動膜で構成されているため。3) Because the vibrating part is composed of a composite vibrating membrane.

圧電膜と逆符号の周波数温度係数を有する誘電膜とを組
合せることができる。これにより、圧電材料自体の温度
特性より優れた共振子ができ、構成条件によ〜ては、温
度係数を零にすることができる。
A piezoelectric film and a dielectric film having frequency temperature coefficients of opposite sign can be combined. As a result, a resonator with better temperature characteristics than the piezoelectric material itself can be created, and depending on the configuration conditions, the temperature coefficient can be reduced to zero.

4)一般的な集積回路と同様の技術を用いて形成するこ
とができるため、超小型の共振子を容易に形成すること
ができるとともに、集積回路の一部として組み込むこと
ができる。
4) Since it can be formed using the same technology as a general integrated circuit, an ultra-small resonator can be easily formed and can be incorporated as a part of an integrated circuit.

ところが、この共振子には次のような重大な欠点がある
However, this resonator has the following serious drawbacks.

(1’)通常シリコン基板に空穴部を形成するために使
われるPmエツチング液(ピロカテコールC6H4(O
H) 2 、エチレンジアミンNH2(CH2) 2N
H2、水H20の混合液)のエツチング速度が最大50
1tm/Hrと小さいため1通常用いられる3インチ径
シリコン基板の厚さが400#lなので、これをエツチ
ングするのに約8時間を要し、極めて生産性が悪く量産
が困難である。
(1') Pm etching solution (pyrocatechol C6H4 (O
H) 2, ethylenediamine NH2(CH2) 2N
Etching speed of up to 50% (mixture of H2 and water H20)
Since the thickness is as small as 1 tm/Hr, the thickness of a commonly used 3-inch diameter silicon substrate is 400 #l, and it takes about 8 hours to etch this, making productivity extremely low and mass production difficult.

(剥基板自体に空穴部が形成されるため、機械的強度が
弱く製作工程上の取り扱いが難しくなる。
(Since holes are formed in the peeled substrate itself, its mechanical strength is weak and it becomes difficult to handle during the manufacturing process.

(4空穴部を形成した後に圧電薄膜を真空中で形成する
ため、基板面の温度分布が不均一になる。
(Since the piezoelectric thin film is formed in a vacuum after forming the four-hole portions, the temperature distribution on the substrate surface becomes uneven.

したがって、圧電薄膜自体の結晶の配向性が乱れ膜質お
よび圧電性が劣化するため、電気機械結合係数が小さく
なり、振動損失が増大して共振子の容量比が大きくなり
、Qが低下する。
Therefore, the crystal orientation of the piezoelectric thin film itself is disturbed and the film quality and piezoelectricity are deteriorated, so that the electromechanical coupling coefficient becomes smaller, the vibration loss increases, the capacitance ratio of the resonator increases, and the Q decreases.

(4)集積回路の一部に共振子を組谷入れる際、保護膜
を使用していても空穴形成工程で他の集積回路に損傷を
与えることが多く、歩留りが悪かった。
(4) When assembling a resonator into a part of an integrated circuit, even if a protective film is used, other integrated circuits are often damaged during the hole formation process, resulting in poor yield.

そこで、これらの欠点を除去するものとして本願の出願
人によって第3図および第4図に示すような空隙型の共
振子が先に提案されている。
In order to eliminate these drawbacks, the applicant of the present application has previously proposed a cavity type resonator as shown in FIGS. 3 and 4.

この空隙型共振子は、図に示すように、基板21上に5
i02等の誘電体膜22が基板21との間に空隙層23
が形成されるように一部突出して設けられているのが特
徴である。第3図および第4図において、24は誘電体
@22上に形成された四辺形状の圧電薄膜、25.26
はこの圧電膜24を挾んで形成された下部電極および上
部電極であり、誘電体膜22は振動膜および支持体の一
部をなすものである。
As shown in the figure, this air gap type resonator has five
A gap layer 23 is formed between the dielectric film 22 such as i02 and the substrate 21.
It is characterized by the fact that it is partially protruded so as to form a . In FIGS. 3 and 4, 24 is a quadrilateral piezoelectric thin film formed on the dielectric material @22, 25.26
are a lower electrode and an upper electrode formed sandwiching this piezoelectric film 24, and the dielectric film 22 forms part of the vibrating film and the support body.

この共振子は、量産性が良く機械的強度が改善され、膜
形成時の温度分布を均一にでき、かつ集積時の損傷が少
ない等多くの長所を備えている。
This resonator has many advantages, such as good mass production, improved mechanical strength, uniform temperature distribution during film formation, and less damage during integration.

しかしながら、図示の共振子について本発明者が詳細に
実験を行ったところ、新たに次のような問題が生じるこ
とがわかった。支持部の一部をなす誘電体膜22として
5iOz膜を用いた場合、空隙口27の橋形部分の一部
が破損することがあったこの原因としては、5i02膜
の内部応力が空隙口27の橋形部分に集中し、硬い材料
である5iOz膜にマイクロクラックが生じるものと考
えられる。
However, when the present inventor conducted detailed experiments on the illustrated resonator, it was found that the following new problem occurred. When a 5iOz film is used as the dielectric film 22 forming a part of the support part, a part of the bridge-shaped part of the gap opening 27 may be damaged.The reason for this is that the internal stress of the 5i02 film It is thought that microcracks are concentrated in the bridge-shaped portion of the 5iOz film, which is a hard material.

破損しないじうにするには、空隙口27を小さくする、
5i02膜22を充分厚く形成する方法があるが、空隙
口27の大きさは下部電極25および下部電極26の寸
法によって決定されてしまい、下部電極25の面積を小
さくすると、圧電薄膜24のC軸配向性が劣化し良好な
圧電性が得られない欠点がある。また、5i02膜を厚
くすることは高周波帯での利用範囲がせまくなる欠点が
ある。
To prevent damage, make the gap opening 27 smaller.
There is a method of forming the 5i02 film 22 sufficiently thick, but the size of the void opening 27 is determined by the dimensions of the lower electrode 25 and the lower electrode 26, and if the area of the lower electrode 25 is reduced, the C axis of the piezoelectric thin film 24 There is a drawback that the orientation deteriorates and good piezoelectricity cannot be obtained. Furthermore, increasing the thickness of the 5i02 film has the disadvantage that the usable range in the high frequency band becomes narrower.

さらに、図示の共振子は下部型′t25と上部電極26
を直線的に配置したものであるから、電極25.26の
対向部分の面積が電極パターンの位置誤差により大きく
影響を受けるため共振子特性のバラツキが生じやすく1
歩留りが悪くなり生産性が著しく低下する欠点がある。
Furthermore, the illustrated resonator has a lower mold 't25 and an upper electrode 26.
Since the electrodes 25 and 26 are arranged linearly, the area of the opposing portions of the electrodes 25 and 26 is greatly affected by the positional error of the electrode pattern, which tends to cause variations in the resonator characteristics.
There is a drawback that the yield is poor and the productivity is significantly reduced.

また下部′電極まだは上部1電極を櫛歯状に複数Vこ分
割し、それぞれ対向させて複数の共振子を弾性的に結合
するフィルムに構成することが困難になる。
In addition, it is difficult to divide the lower electrode or the upper electrode into a plurality of comb-like V-sections and make them face each other to form a film that elastically couples a plurality of resonators.

〔発明の目的〕[Purpose of the invention]

この発明は上記の欠点を解消するためになされたもので
、空隙を構成する薄嘆部の損傷がなく、良好な圧電性を
有する圧電薄膜が得られ、しかも電極パターン形成時の
位置ずれによる影響を軽減し、弾性的結合フィルタを容
易VC!g成することができる圧電薄膜共振子を提供す
ることを目的とする。
This invention was made in order to eliminate the above-mentioned drawbacks, and it is possible to obtain a piezoelectric thin film having good piezoelectricity without damage to the thin parts constituting the voids, and which is not affected by positional deviation during electrode pattern formation. Easily reduce VC with an elastic coupling filter! The object of the present invention is to provide a piezoelectric thin film resonator that can be formed into a piezoelectric thin film resonator.

〔発明の概要〕[Summary of the invention]

この発明の圧電薄膜共振子は、基板上に空隙層が形成さ
れるように金属膜を橋形に設け、この金属膜を下部電極
とし、この下部電極上に圧電薄膜を橋形に設け、さらに
圧電薄膜上に下部電極と少なくとも一部対向するように
上部電極を設けたことを特徴とするものである。
In the piezoelectric thin film resonator of the present invention, a metal film is provided in a bridge shape on a substrate so that a void layer is formed, this metal film is used as a lower electrode, a piezoelectric thin film is provided in a bridge shape on this lower electrode, and further It is characterized in that an upper electrode is provided on the piezoelectric thin film so as to be at least partially opposed to the lower electrode.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、空隙層の支持部の一部として金属膜
を橋形に形成することで、マイクロクラックによる破損
がなくなり、製品の信頼性を高めることができるととも
に歩留りを向上させることができる。また、圧電薄膜は
下部電極すなわち金属膜上に一様に形成されるためC軸
配向性の劣化化がなく圧電性が良好でレスポンスの大き
い共振子特性が得られる。しかも上下電極の位置ずれに
よる対向面積の変化を最小限に抑えることができるため
、共振子およびフィルタの特性バラツキを少すくシ、生
産性を高めることができる。さらに複数個の共振子を空
隙層に対応した領域に設けることができるため、音響結
合を利用したフィルタを同−振動部に形成することがで
きる。
According to this invention, by forming the metal film in a bridge shape as part of the supporting portion of the void layer, damage due to microcracks is eliminated, and product reliability and yield can be improved. . Further, since the piezoelectric thin film is uniformly formed on the lower electrode, that is, the metal film, there is no deterioration of C-axis orientation, and resonator characteristics with good piezoelectricity and large response can be obtained. Moreover, since the change in the facing area due to the positional deviation of the upper and lower electrodes can be minimized, variations in the characteristics of the resonator and filter can be reduced and productivity can be increased. Furthermore, since a plurality of resonators can be provided in a region corresponding to the gap layer, a filter using acoustic coupling can be formed in the same vibrating section.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照してこの発明の詳細な説明す形成され
るように下部電極を構成する金唄膜2が形成され、その
上に圧電薄膜3および上部電極4が順次形成されている
。このような圧電薄膜共振子は以下のようにして製作さ
れる。まず、基板l上に予じめスパッタリング法やホト
エツチング法等の手段を用いて化学的に溶解しゃすいZ
nO等の空隙形成用物質膜を長方形状に形成しておく、
その上に空隙形成用物質膜の少なくとも一部がはみだす
ようにAu −T i等の金属膜2下部電極を帯状に真
空蒸着法やホットエツチング法等の手段を用いて形成す
る。このとき、金属膜2は一部が突出した橋形構造に形
成される。この金属1[2上にRFでマグネトロンスパ
ッタ法等の手段を用いてZnO等の圧電薄膜を形成し、
)すトリソグラフィ技術を用いて金属膜2のバット部2
aを除く所望の位置にレジストパターンを形成し、これ
をマスクとしてエツチング液を用いて所定の大きざの圧
電薄膜3を形成する。さらに、この圧電薄膜3の上に金
属膜2の一部に対向して上部電極4を真空蒸着法等の手
段を用いて形成する。最後に、圧電薄膜3および成極4
をホトレジスト等の保護膜で被覆しだのち、これを空隙
形成用物質を溶解するエツチング液(ZnOの場合には
HCl等の希酸液)に浸し\て空隙形成用物質膜を溶解
する。このとき、金属膜2および上記保護膜は全く溶解
せず、空隙形成用物質膜だけが2ケ所に設けられた空隙
口5の付近から溶解し、最終的に空隙形成用物質は全て
溶解して基板1と金属膜2との間に空隙層5が形成され
て圧電薄膜共振子が完成される。ここで。
The present invention will now be described in detail with reference to the drawings.A metal film 2 constituting a lower electrode is formed, and a piezoelectric thin film 3 and an upper electrode 4 are sequentially formed thereon. Such a piezoelectric thin film resonator is manufactured as follows. First, Z is chemically dissolved onto the substrate l using a method such as a sputtering method or a photoetching method in advance.
Forming a void-forming substance film such as nO in a rectangular shape,
A lower electrode of a metal film 2 made of Au--Ti or the like is formed in a band shape using means such as vacuum evaporation or hot etching so that at least a part of the gap-forming material film protrudes thereon. At this time, the metal film 2 is formed into a bridge-like structure with a part protruding. A piezoelectric thin film such as ZnO is formed on this metal 1 [2 by using means such as RF magnetron sputtering method,
) The butt part 2 of the metal film 2 using the lithography technique
A resist pattern is formed at a desired position except for a, and using this as a mask, an etching solution is used to form a piezoelectric thin film 3 of a predetermined size. Furthermore, an upper electrode 4 is formed on this piezoelectric thin film 3 so as to be opposed to a part of the metal film 2 using means such as a vacuum evaporation method. Finally, piezoelectric thin film 3 and polarization 4
After covering it with a protective film such as photoresist, it is immersed in an etching solution that dissolves the void-forming material (in the case of ZnO, a dilute acid solution such as HCl) to dissolve the void-forming material film. At this time, the metal film 2 and the above-mentioned protective film do not dissolve at all, and only the gap-forming substance film dissolves from the vicinity of the gap openings 5 provided at two locations, and finally, all the gap-forming substance dissolves. A gap layer 5 is formed between the substrate 1 and the metal film 2, and a piezoelectric thin film resonator is completed. here.

空1!iS層5の厚ざは共振子の動作周波数における撮
動変位の数倍以上であれば充分であるが1作成の容易さ
から数百A〜数μm位が望ましい。
Sky 1! It is sufficient that the thickness of the iS layer 5 is several times or more the imaging displacement at the operating frequency of the resonator, but from the viewpoint of ease of fabrication, it is preferably from several hundred amps to several μm.

この圧電薄膜共振子は金属膜2と下部電極4との間に電
気信号を印加することにより、電極対向部を中心に空隙
層5に対応する領域に形成された圧電薄膜4が振動する
ことにより振動子として動作する。
This piezoelectric thin film resonator causes the piezoelectric thin film 4 formed in the region corresponding to the void layer 5 to vibrate around the electrode facing part by applying an electric signal between the metal film 2 and the lower electrode 4. Operates as a vibrator.

第1図(b)は、上記第1図(a)と同様の方法で形成
されたフィル1、の構成を示すもので、上部電極4と隣
接してもう一部の上部電極4aを設けたものであり、共
振周波数近傍で電極負荷効果によるエネルギートラップ
状態が生じているとき、振動エネルギーの一部が他方の
上部電極4a側に音響的に伝わり、誘起された振動エネ
ルギーを上部電極4aから取り出すことによりフィルタ
として動作するものである。
FIG. 1(b) shows the structure of a fill 1 formed by the same method as in FIG. 1(a) above, in which another upper electrode 4a is provided adjacent to the upper electrode 4. When an energy trap state occurs near the resonance frequency due to the electrode load effect, a part of the vibrational energy is acoustically transmitted to the other upper electrode 4a side, and the induced vibrational energy is taken out from the upper electrode 4a. This allows it to function as a filter.

したがって、このような構成によれば、基板l上に金属
膜2の橋形で空隙層5の支持部とすることにより、従来
のようにS i02等の誘電体膜で生じていた空隙口5
a端部(基板lと橋形界面部)のマイクロクラックによ
る破損が防止され製品の信頼性を高めることができると
ともに、歩留りを向上させて生産性を高めることができ
る。さらに、重要なことは、従来のように下部電極が部
分的に存在している場合には、圧電膜の形成過程で圧電
膜のC軸配向性が劣化してしまうが、本発明の構成では
圧電薄膜3は比較的一様な金属膜上2、すなわち下部電
極上に形成されるためC軸配向性の劣化がなく電気機械
結合系数の大きい圧電薄膜が得られ、レスポンスの大き
い共振子特性が得られる。また上下電極の位置ずれによ
る対向面積の変化を最小限に抑えることができるため共
振子およびフィルタの特性バラツキを少なくシ、生産性
を高めることができる。また、最終工程で空隙形成用物
質膜を除去することにより、中間工程で空隙形成用物質
膜上に金属膜2(下部電極)圧電薄膜3および上部電極
4を堆積させることができるため、膜形成時に温度分布
が均一になり、膜を良好に形成することができる。これ
により、振動損失が少なく容量比の小さな共振子を容易
に得ることができる。
Therefore, according to such a configuration, by using the bridge-shaped metal film 2 on the substrate l as a supporting part of the void layer 5, the void opening 5, which was created in the conventional dielectric film such as Si02, is eliminated.
Damage due to microcracks at the a-end (substrate l and bridge-shaped interface) can be prevented, and the reliability of the product can be improved, as well as the yield and productivity can be increased. Furthermore, it is important to note that when the lower electrode is partially present as in the conventional case, the C-axis orientation of the piezoelectric film deteriorates during the formation process of the piezoelectric film. Since the piezoelectric thin film 3 is formed on a relatively uniform metal film 2, that is, on the lower electrode, a piezoelectric thin film with a large electromechanical coupling coefficient without deterioration of C-axis orientation can be obtained, and resonator characteristics with a large response can be obtained. can get. Further, since changes in the facing area due to positional deviation between the upper and lower electrodes can be minimized, variations in characteristics of the resonator and filter can be reduced and productivity can be increased. In addition, by removing the void-forming material film in the final step, the metal film 2 (lower electrode), piezoelectric thin film 3, and upper electrode 4 can be deposited on the void-forming material film in the intermediate step. At times, the temperature distribution becomes uniform and a film can be formed well. Thereby, a resonator with low vibration loss and a small capacitance ratio can be easily obtained.

次に、この発明の他の実施例として第2図に示すように
第1図(a)の共振子および(b)のフィルタの上にS
 i02 、 S i 3N4等の化学的に安定な保護
用の誘電体膜11を設けた構造のものがある。ここでは
、第1図(a) 、 (b)と同一部分に同一符号を記
して説明を省略する。このように、圧電膜3および上部
電極4を誘電体膜11で被覆することにより、温度等の
外気の影響を防ぎ信頼性を高めることができる。、マた
。誘電体膜11として圧電薄膜3と逆符号の周波数温度
係数を有する物質を用いることにより、温度特性の優れ
た共振子を得ることができる。さらに、誘電体膜11を
空隙形成時の保護膜として兼用することにより、ホトレ
ジスト等の保護膜の除去工程を省略することができるた
め、その分生産性を高めることができる。なお、この発
明は上記実施例に限定されるものではなく、要旨を変更
しない範囲において種々変形して実施することができる
。この発明によれば、保護用誘電体膜の物質は5to2
に限られるものではな(,5i02にリンをドーグした
PSG(Phospho 5ilicate Glas
s) 、8102にボロンとリンをドープしだBPSG
(Bor。
Next, as another embodiment of the present invention, as shown in FIG. 2, an S
Some have a structure in which a chemically stable protective dielectric film 11 such as i02 or S i 3N4 is provided. Here, the same parts as in FIGS. 1(a) and 1(b) are denoted by the same reference numerals, and the description thereof will be omitted. In this way, by covering the piezoelectric film 3 and the upper electrode 4 with the dielectric film 11, it is possible to prevent the influence of outside air such as temperature and improve reliability. , Mata. By using a material having a frequency temperature coefficient of opposite sign to that of the piezoelectric thin film 3 as the dielectric film 11, a resonator with excellent temperature characteristics can be obtained. Furthermore, by using the dielectric film 11 also as a protective film during void formation, the step of removing a protective film such as photoresist can be omitted, and productivity can be increased accordingly. Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without changing the gist. According to this invention, the material of the protective dielectric film is 5to2
(,5i02 PSG (Phospho 5ilicate Glass)
s), 8102 doped with boron and phosphorus BPSG
(Bor.

Phospho 5ilicate Glass)等の
ガラス類でもよく、また圧電薄膜の周波数温度係数と逆
であれば複数種類の誘電体膜を重ねた複合膜であっても
よい。
It may be made of glass such as Phospho 5 Ilicate Glass), or it may be a composite film made by laminating multiple types of dielectric films as long as the frequency temperature coefficient is opposite to that of the piezoelectric thin film.

この発明によれば、圧電薄膜の物質はZnOに限らレル
モLD テn ’l < 、 A□、Nb2O5、Ta
205 、PbTiO3等の物質を圧電薄膜として使用
することができる。
According to this invention, the material of the piezoelectric thin film is limited to ZnO.
Materials such as 205 and PbTiO3 can be used as piezoelectric thin films.

この発明によれば、空隙形成用物質膜の物質はZnOに
限られるものではなく、空隙形成用エツチング液にて容
易に溶解できるものであれば金属、酸化物、半導体、誘
電体、高分子材料等の物質を空隙形成用物質膜として使
用することができる。
According to this invention, the material of the material film for forming voids is not limited to ZnO, but may be any metal, oxide, semiconductor, dielectric, or polymeric material as long as it can be easily dissolved in the etching solution for forming voids. Such materials can be used as the void-forming material film.

この発明によれば、基板の物質は圧電薄膜共振子を集積
回路内に組み込む場合には、St、GaAs等の半導体
を基板として使用し、また個別部分としてハイブリッド
回路等に組み込む場合には、セラミックス、ガラス等を
基板として使用することができる。
According to this invention, when the piezoelectric thin film resonator is incorporated into an integrated circuit, a semiconductor such as St or GaAs is used as the substrate material, and when the piezoelectric thin film resonator is incorporated into a hybrid circuit or the like as an individual part, ceramic material is used as the substrate material. , glass, etc. can be used as the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す図、第2図はこの発
明の他の実施例を示す断面図、第3図および第4図は従
来の圧電薄膜共振子を示す図である。 l・・・基板、2・・・金属膜(下部電極)、2a・・
・バット部、3・・・圧電薄膜、4.4a・・・上部電
極。 5・・・空隙層、5a・・・空隙口、11・・・誘電体
膜。 21・・・基板、22・・・誘電体膜、23・・・空隙
層、24・・・圧電薄膜、25・・・下部電極、26・
・・上部電極、27・・・空隙口。 図面の浄書(内容に変更なし) (Q) (b) 第  1 図 第  2 図 第  3 図 第  1 図 手 続 補 正 書(方式) 昭和eff7.ヤ2 日
FIG. 1 is a diagram showing one embodiment of the present invention, FIG. 2 is a sectional view showing another embodiment of the invention, and FIGS. 3 and 4 are diagrams showing a conventional piezoelectric thin film resonator. l...Substrate, 2...Metal film (lower electrode), 2a...
- Butt part, 3... Piezoelectric thin film, 4.4a... Upper electrode. 5... Gap layer, 5a... Gap opening, 11... Dielectric film. 21...Substrate, 22...Dielectric film, 23...Void layer, 24...Piezoelectric thin film, 25...Lower electrode, 26...
...Top electrode, 27...Gap opening. Engraving of drawings (no change in content) (Q) (b) Figure 1 Figure 2 Figure 3 Figure 1 Procedures Amendment (Method) Showa eff7. 2nd day

Claims (3)

【特許請求の範囲】[Claims] (1)基板と、この基板との間に空隙層が形成されるよ
うに設けられた金属膜と、この金属膜の上側に前記空隙
層に対応した領域を含んで形成された圧電膜と、この圧
電膜をはさみ金属膜と少なくとも一部対向するように設
けられた電極とを具備したことを特徴とする圧電薄膜共
振子。
(1) a substrate, a metal film provided so that a void layer is formed between the substrate, and a piezoelectric film formed on the upper side of the metal film including a region corresponding to the void layer; A piezoelectric thin film resonator comprising electrodes that sandwich the piezoelectric film and are provided to face at least a portion of the metal film.
(2)電極は空隙層に対応した領域内で少なくとも一個
以上有することを特徴とする特許請求の範囲第1項記載
の圧電薄膜共振子。
(2) The piezoelectric thin film resonator according to claim 1, wherein at least one electrode is provided in a region corresponding to the void layer.
(3)圧電膜はその上側に誘電体膜を形成したことを特
徴とする特許請求の範囲第1項記載の圧電薄膜共振子。
(3) The piezoelectric thin film resonator according to claim 1, wherein the piezoelectric film has a dielectric film formed on its upper side.
JP5819385A 1985-03-25 1985-03-25 Piezoelectric thin film resonator Pending JPS61218214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5819385A JPS61218214A (en) 1985-03-25 1985-03-25 Piezoelectric thin film resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5819385A JPS61218214A (en) 1985-03-25 1985-03-25 Piezoelectric thin film resonator

Publications (1)

Publication Number Publication Date
JPS61218214A true JPS61218214A (en) 1986-09-27

Family

ID=13077183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5819385A Pending JPS61218214A (en) 1985-03-25 1985-03-25 Piezoelectric thin film resonator

Country Status (1)

Country Link
JP (1) JPS61218214A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000076295A (en) * 1998-01-16 2000-12-26 다니구찌 이찌로오, 기타오카 다카시 Thin film piezoelectric element
US7301260B2 (en) 2002-12-27 2007-11-27 Kabushiki Kaisha Toshiba Bulk acoustic wave device and method of manufacturing the same
US7327209B2 (en) 2004-09-10 2008-02-05 Murata Manufacturing Co., Ltd. Piezoelectric thin film resonator
US7642695B2 (en) 2005-02-21 2010-01-05 Murata Manufacturing Co., Ltd. Piezoelectric thin-film resonator
JPWO2008072408A1 (en) * 2006-12-12 2010-03-25 株式会社村田製作所 Piezoelectric thin film resonator
US8776334B2 (en) * 2004-12-24 2014-07-15 Murata Manufacturing Co., Ltd. Piezoelectric thin film resonator and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000076295A (en) * 1998-01-16 2000-12-26 다니구찌 이찌로오, 기타오카 다카시 Thin film piezoelectric element
US7301260B2 (en) 2002-12-27 2007-11-27 Kabushiki Kaisha Toshiba Bulk acoustic wave device and method of manufacturing the same
US7327209B2 (en) 2004-09-10 2008-02-05 Murata Manufacturing Co., Ltd. Piezoelectric thin film resonator
US8776334B2 (en) * 2004-12-24 2014-07-15 Murata Manufacturing Co., Ltd. Piezoelectric thin film resonator and manufacturing method thereof
US7642695B2 (en) 2005-02-21 2010-01-05 Murata Manufacturing Co., Ltd. Piezoelectric thin-film resonator
JPWO2008072408A1 (en) * 2006-12-12 2010-03-25 株式会社村田製作所 Piezoelectric thin film resonator

Similar Documents

Publication Publication Date Title
US4642508A (en) Piezoelectric resonating device
US4456850A (en) Piezoelectric composite thin film resonator
JP4455817B2 (en) Piezoelectric thin-layer resonator device with detuning layer arrangement
US6441539B1 (en) Piezoelectric resonator
US7915974B2 (en) Contour-mode piezoelectric micromechanical resonators
JP4039322B2 (en) Piezoelectric filter, duplexer, composite piezoelectric resonator and communication device, and frequency adjustment method of piezoelectric filter
US6355498B1 (en) Thin film resonators fabricated on membranes created by front side releasing
TWI385918B (en) Adjusted frequency temperature coefficient resonator
EP1746722A2 (en) Film bulk acoustic wave resonator and manufacturing method thereof
KR20040101214A (en) Piezoelectric vibrator, filter using same and method for adjusting piezoelectric vibrator
JP3514224B2 (en) Piezoelectric resonator, filter and electronic device
KR20050021309A (en) Film bulk acoustic resonator and method of producing the same
US7320164B2 (en) Method of manufacturing an electronic component
JPH01157108A (en) Piezoelectric thin film resonator
JP2006109402A (en) Method for manufacturing piezoelectric resonator
JP2004328739A (en) Thin film bulk acoustic resonator with air gap floating from substrate and its manufacturing method
JPS61218214A (en) Piezoelectric thin film resonator
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JP3068140B2 (en) Piezoelectric thin film resonator
JPS6281807A (en) Piezoelectric thin film resonator
JPS61218215A (en) Piezoelectric thin film resonator
JPS62266906A (en) Piezoelectric thin film resonator
JPH10200369A (en) Piezoelectric thin film resonator
JPH05315881A (en) Manufacture of crystal vibrator
JPS61127216A (en) Piezoelectric thin film resonator