JPH10261770A - Manufacture of semiconductor memory element - Google Patents

Manufacture of semiconductor memory element

Info

Publication number
JPH10261770A
JPH10261770A JP9067581A JP6758197A JPH10261770A JP H10261770 A JPH10261770 A JP H10261770A JP 9067581 A JP9067581 A JP 9067581A JP 6758197 A JP6758197 A JP 6758197A JP H10261770 A JPH10261770 A JP H10261770A
Authority
JP
Japan
Prior art keywords
film
lower electrode
semiconductor memory
electrode
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9067581A
Other languages
Japanese (ja)
Inventor
Satoru Yamagata
知 山形
Yasushi Ogimoto
泰史 荻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9067581A priority Critical patent/JPH10261770A/en
Priority to KR1019980008919A priority patent/KR100288688B1/en
Publication of JPH10261770A publication Critical patent/JPH10261770A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3632Guidance using simplified or iconic instructions, e.g. using arrows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor memory element whose leakage current density is low wherein the surface of a lower electrode is made smooth and material quality of a high dielectric film or a ferroelectric film is stabilized. SOLUTION: After a selection transistor is formed in a silicon substrate 1, an interlayer insulating film is formed, and then a contact hole is formed. After polysilicon is buried, the surface is flattened by a CMP method, and a polysilicon plug 6 is formed. A titanium film and a titanium nitride film 7 are formed on the polysilicon plug 6. A lower electrode 8 of platinum is formed. By annealing the electrode 8, its surface is made smooth. As the result, the surface of the dielectric thin film on the platinum lower electrode 8 becomes smooth, and a leakage current of the dielectric thin film can be restrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体メモリ素子
の製造方法、特に、強誘電体膜材料又は高誘電体膜材料
からなる誘電体膜を有する半導体メモリ素子の製造方法
に関するものである。
The present invention relates to a method of manufacturing a semiconductor memory device, and more particularly to a method of manufacturing a semiconductor memory device having a dielectric film made of a ferroelectric film material or a high dielectric film material.

【0002】[0002]

【従来の技術】近年、シリコン酸化膜に比べて大きな誘
電率を有する高誘電体薄膜を利用した半導体メモリ素子
や、自発分極をもつ強誘電体薄膜を利用した半導体メモ
リ素子が盛んに研究されている。高誘電体材料として
は、STO(SrTiO3、チタン酸ストロンチウ
ム)、BSTO((Ba,Sr)TiO3、チタン酸バ
リウム・ストロンチウム)など、強誘電体材料として
は、PZT(Pb(Zr,Ti)O3、チタン酸ジルコ
ン酸鉛)、PbTiO3(チタン酸鉛)、BaTiO
3(チタン酸バリウム)、PLZT((Pb、La)
(Zr、Ti)O3、チタン酸ジルコン酸ランタン
鉛)、Bi系層状酸化物(SrBi2(TaXNb1-X2
9)、BTO(Bi4Ti312)などの酸化物が主で
あり、中でも現在、最も有望な不揮発性メモリ用材料と
してPZTやBi系層状酸化物が精力的に研究されてい
る。
2. Description of the Related Art In recent years, a semiconductor memory device using a high dielectric thin film having a larger dielectric constant than a silicon oxide film and a semiconductor memory device using a ferroelectric thin film having spontaneous polarization have been actively studied. I have. STO (SrTiO 3 , strontium titanate), BSTO ((Ba, Sr) TiO 3 , barium strontium titanate) and the like as a high dielectric material, and PZT (Pb (Zr, Ti) as a ferroelectric material O 3 , lead zirconate titanate), PbTiO 3 (lead titanate), BaTiO
3 (Barium titanate), PLZT ((Pb, La)
(Zr, Ti) O 3 , lead lanthanum zirconate titanate), Bi-based layered oxide (SrBi 2 (Ta X Nb 1 -x) 2
Oxides such as O 9 ) and BTO (Bi 4 Ti 3 O 12 ) are mainly used, and among them, PZT and Bi-based layered oxides have been energetically studied as the most promising materials for nonvolatile memories.

【0003】従来の高誘電体膜材料或いは強誘電体材料
をキャパシタの誘電体膜に用いた半導体メモリでは、例
えば、図4(e)に示すように、下部電極28、誘電体
膜29及び上部電極31からなる誘電体キャパシタをゲ
ート電極23及びソース/ドレイン領域24からなる選
択トランジスタの上に形成したスタック型構造が採用さ
れ、メモリセル領域を縮小し、高集積化を可能としてい
る。このようなスタック型構造を実現するためには、選
択トランジスタと誘電体キャパシタを接続する配線26
をプラグ構造とする必要がある。尚、図4(e)におい
て、21は半導体基板(例えば、n型シリコン基板)、
22は素子分離のためのロコス酸化膜、25、30、3
2は層間絶縁膜、27は下部電極28とプラグ構造の配
線とが反応することを防止するためのバリアメタル、3
3、34は電極を示す。
In a conventional semiconductor memory using a high dielectric film material or a ferroelectric material for a dielectric film of a capacitor, for example, as shown in FIG. 4 (e), a lower electrode 28, a dielectric film 29 and an upper A stack type structure in which a dielectric capacitor composed of the electrode 31 is formed on the selection transistor composed of the gate electrode 23 and the source / drain region 24 is adopted, and the memory cell region can be reduced and high integration can be achieved. In order to realize such a stack type structure, wiring 26 connecting the selection transistor and the dielectric capacitor is required.
Need to have a plug structure. In FIG. 4E, reference numeral 21 denotes a semiconductor substrate (for example, an n-type silicon substrate);
22 is a LOCOS oxide film for element isolation, 25, 30, 3
Reference numeral 2 denotes an interlayer insulating film; 27, a barrier metal for preventing the lower electrode 28 from reacting with a wiring having a plug structure;
Reference numerals 3 and 34 denote electrodes.

【0004】従来、PZTを用いたキャパシタを形成す
る際、下部電極形成直後に、PZTを形成していた。そ
の場合、PZTのグレインサイズが大きくなることによ
って、モフォロジーが悪くなるため、図5に示すよう
に、キャパシタの駆動電圧5Vでリーク電流が1.0×
10-4A/cm2程度となってしまい(リーク電流密度
は1.0×10-7A/cm2以下であることが必要)、
キャパシタとして用いることができない。
Conventionally, when forming a capacitor using PZT, PZT is formed immediately after the lower electrode is formed. In this case, since the morphology deteriorates due to the increase in the grain size of PZT, as shown in FIG.
It becomes about 10 −4 A / cm 2 (the leak current density needs to be 1.0 × 10 −7 A / cm 2 or less),
Cannot be used as a capacitor.

【0005】次に、図4に用いて、従来の半導体メモリ
素子の製造工程を説明する。
Next, a manufacturing process of a conventional semiconductor memory device will be described with reference to FIG.

【0006】まず、シリコン基板21の表面に膜厚が約
5000Åのロコス酸化膜22を形成して、素子分離領
域を形成する。次に、ゲート電極23、ソース/ドレイ
ン領域24等からなる選択トランジスタを形成した後、
層間絶縁膜として、CVD方で第1のシリコン酸化膜2
5を、5000Å程度成膜し、続いて、直径0.5μm
のコンタクトホールを形成する。
First, a LOCOS oxide film 22 having a thickness of about 5000 ° is formed on the surface of a silicon substrate 21 to form an element isolation region. Next, after forming a selection transistor including the gate electrode 23, the source / drain region 24, and the like,
A first silicon oxide film 2 by an CVD method as an interlayer insulating film;
5 was formed into a film of about 5000 °
Is formed.

【0007】次に、CVD法でポリシリコンを埋め込ん
だ後、CMP法で表面を平坦化し、ポリシリコンプラグ
26を形成する。
Next, after polysilicon is buried by the CVD method, the surface is flattened by the CMP method to form a polysilicon plug 26.

【0008】次に、このポリシリコンプラグ26上に、
DCマグネトロンスパッタ法で膜厚300Åのチタン膜
を成膜し、更に、マグネトロン反応性スパッタ法で膜厚
2000Åの窒化チタン膜27を成膜する。続いて、D
Cマグネトロンスパッタ法で膜厚1000Åの白金下部
電極28を成膜する。
Next, on the polysilicon plug 26,
A titanium film having a thickness of 300 .ANG. Is formed by DC magnetron sputtering, and a titanium nitride film 27 having a thickness of 2000 .ANG. Is formed by magnetron reactive sputtering. Then, D
A platinum lower electrode 28 having a thickness of 1000 ° is formed by a C magnetron sputtering method.

【0009】次に、ゾルゲル法を用いて、膜厚が200
0ÅのPZT膜29を成膜する。上記PZT膜29の形
成方法は、まず、2−メトキシエタノールを溶媒として
酢酸鉛、チタン(IV)イソプロポキシド、ジルコニウ
ムイソプロポキシドをそれぞれPb:Ti:Zr=10
0:52:48となるように溶解してゾルゲル原料溶液
とし、この原料溶液をスピンナーを用いて、回転数を3
000rpmとして塗布し、大気中で、150℃、10
分間の乾燥を行った後、大気中で、400℃で30分間
の仮焼結を行う。この後、600〜650℃で30分
間、窒素と酸素との混合雰囲気中で結晶化を行う。この
際の窒素と酸素との流量比は、窒素流量/酸素流量=4
/1とする。
Next, a film thickness of 200
A 0 ° PZT film 29 is formed. The method of forming the PZT film 29 is as follows. First, lead acetate, titanium (IV) isopropoxide and zirconium isopropoxide are respectively dissolved in Pb: Ti: Zr = 10 using 2-methoxyethanol as a solvent.
The sol-gel raw material solution was dissolved at a ratio of 0:52:48 to obtain a sol-gel raw material solution.
000 rpm, 150 ° C, 10
After the drying for minutes, the pre-sintering is performed at 400 ° C. for 30 minutes in the air. Thereafter, crystallization is performed at 600 to 650 ° C. for 30 minutes in a mixed atmosphere of nitrogen and oxygen. At this time, the flow rate ratio between nitrogen and oxygen is as follows: nitrogen flow rate / oxygen flow rate = 4
/ 1.

【0010】次に、PZT膜29と白金下部電極28と
窒化チタン膜27をドライエッチング法で、例えば、
2.6μm角の大きさに加工した。その後、層間絶縁膜
として、CVD法を用いて第2のシリコン酸化膜30を
成膜した後、コンタクトホールを形成し、強誘電体膜キ
ャパシタの白金上部電極31をDCマグネトロンスパッ
タリング法により、1000Å形成する。
Next, the PZT film 29, the platinum lower electrode 28, and the titanium nitride film 27 are dry-etched by, for example,
It was processed to a size of 2.6 μm square. After that, a second silicon oxide film 30 is formed as an interlayer insulating film by using the CVD method, a contact hole is formed, and a platinum upper electrode 31 of the ferroelectric film capacitor is formed by DC magnetron sputtering at 1000 °. I do.

【0011】次に、白金上部電極31を塩素ガスを用い
たドライエッチング法で加工し、CVD法を用いて、第
3のシリコン酸化膜32を成膜した後、コンタクトホー
ルを形成し、強誘電体キャパシタの白金上部電極31か
らのアルミニウム引き出し電極33をDCマグネトロン
スパッタリング法にて形成した。
Next, the platinum upper electrode 31 is processed by a dry etching method using chlorine gas, a third silicon oxide film 32 is formed by a CVD method, and a contact hole is formed. An aluminum lead electrode 33 from the platinum upper electrode 31 of the body capacitor was formed by DC magnetron sputtering.

【0012】[0012]

【発明が解決しようとする課題】誘電体キャパシタに用
いられる高誘電体膜或いは強誘電体膜の形成プロセスに
おいては、これらを結晶化させて高誘電率或いは強誘電
性を得るために500℃〜700℃の高温酸化性雰囲気
での処理が不可欠である。これらの高誘電体膜或いは強
誘電体膜の多くは、ペロブスカイト構造などの結晶構造
をもつため、その物性の制御が難しい。
In the process of forming a high-dielectric film or a ferroelectric film used for a dielectric capacitor, a temperature of 500.degree. C. is required to crystallize these to obtain a high dielectric constant or ferroelectricity. Processing in a high-temperature oxidizing atmosphere at 700 ° C. is indispensable. Since many of these high dielectric films or ferroelectric films have a crystal structure such as a perovskite structure, it is difficult to control their physical properties.

【0013】従来技術で示した、キャパシタの製造方法
の場合、PZT等の強誘電体膜に巨大グレインが発生
し、それに伴いPZT膜の表面が粗くなる(モフォロジ
ーが粗くなる)。このため、リーク電流密度が高い。原
因として、下部電極の表面粗さ、及び下部電極表面に初
期核層が無いことが考えられる。
In the case of the method of manufacturing a capacitor shown in the prior art, giant grains are generated in a ferroelectric film such as PZT, and the surface of the PZT film becomes rough (morphology becomes rough). Therefore, the leakage current density is high. Possible causes are that the surface roughness of the lower electrode and the absence of an initial nuclear layer on the surface of the lower electrode.

【0014】本発明は、下部電極の表面を滑らかにし、
高誘電体膜或いは、強誘電体膜の物性を安定化させ、リ
ーク電流密度の低い半導体メモリ素子の製造方法を提供
することにある。
According to the present invention, the surface of the lower electrode is smoothed,
It is an object of the present invention to provide a method for manufacturing a semiconductor memory device having a low leakage current density by stabilizing the physical properties of a high dielectric film or a ferroelectric film.

【0015】[0015]

【課題を解決するための手段】請求項1記載の本発明の
半導体メモリ素子の製造方法は、上部電極と下部電極と
の間に強誘電体膜又は高誘電体膜を有するキャパシタ
と、上記下部電極と導電性プラグを通じて接続されたト
ランジスタとを備えた半導体メモリ素子の製造方法にお
いて、上記導電性プラグ上に導電性拡散バリア層を形成
した後、上記下部電極を形成し、その後、熱処理して上
記強誘電体膜又は高誘電体膜を形成することを特徴とす
るものである。
According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor memory device, comprising: a capacitor having a ferroelectric film or a high dielectric film between an upper electrode and a lower electrode; In a method for manufacturing a semiconductor memory device including an electrode and a transistor connected through a conductive plug, a conductive diffusion barrier layer is formed on the conductive plug, the lower electrode is formed, and then heat treatment is performed. The ferroelectric film or the high dielectric film is formed.

【0016】また、請求項2記載の本発明の半導体メモ
リ素子の製造方法は、上記拡散バリア層が窒化チタンで
あることを特徴とする、請求項1記載の半導体メモリ素
子の製造方法である。
According to a second aspect of the present invention, there is provided a method of manufacturing a semiconductor memory device according to the first aspect, wherein the diffusion barrier layer is made of titanium nitride.

【0017】上記構成のように、下部電極の熱処理を行
うことにより、下部電極の表面を滑らかにし、高誘電体
膜或いは、強誘電体膜の物性を安定化させ、リーク電流
密度の低くすることができる。
By performing the heat treatment of the lower electrode as described above, the surface of the lower electrode is smoothed, the physical properties of the high dielectric film or the ferroelectric film are stabilized, and the leak current density is reduced. Can be.

【0018】更に、請求項2記載の構成にすることによ
り、下部電極の表面に拡散バリア層から拡散してきたチ
タンが酸化され、酸化チタンなどの結晶の初期核層が形
成され、初期核層を中心として高誘電体膜或いは強誘電
体膜が成長するため、高密度の高誘電体膜等が形成さ
れ、更にリーク電流密度を低くすることができる。
Further, according to the second aspect of the present invention, titanium diffused from the diffusion barrier layer is oxidized on the surface of the lower electrode to form an initial nucleus layer of a crystal such as titanium oxide. Since a high-dielectric film or a ferroelectric film grows at the center, a high-density high-dielectric film or the like is formed, and the leak current density can be further reduced.

【0019】[0019]

【実施の形態】以下、実施の形態に基づいて本発明につ
いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments.

【0020】図1は本発明の一の実施の形態の半導体メ
モリ素子の製造工程図、図2は駆動電圧と電気変位との
関係を示す図、図3は駆動電圧と電流密度との関係を示
す図である。尚、図1において、1はn型シリコン基
板、2はn型シリコン基板の表面に形成された素子分離
のためのロコス酸化膜、3はゲート電極、4はソース/
ドレイン領域、5はシリコン基板1上に層間絶縁膜とし
て形成された第1のシリコン酸化膜、6はシリコン基板
1と白金下部電極とのコンタクトを取るために形成され
たポリシリコンプラグ、7はポリシリコンプラグ6上に
拡散バリア層として形成されたチタン膜と窒化チタン
膜、8は窒化チタン膜上に形成された白金下部電極、9
は白金下部電極8上に形成された強誘電体薄膜であるP
ZT膜、10は層間絶縁膜として形成された第2のシリ
コン酸化膜、11はPZT膜9上に形成された白金上部
電極、12は第3のシリコン酸化膜、13は白金上部電
極11とのコンタクトを取るために形成された第1のア
ルミニウム引き出し電極、14はn型シリコン基板1と
のコンタクトを取るために形成された第2のアルミニウ
ム引き出し電極である。尚、本実施の形態において、n
型シリコン基板について、述べるが、P型シリコン基板
を用いた場合でも同様である。
FIG. 1 is a view showing a manufacturing process of a semiconductor memory device according to one embodiment of the present invention, FIG. 2 is a diagram showing a relationship between a driving voltage and an electric displacement, and FIG. FIG. In FIG. 1, 1 is an n-type silicon substrate, 2 is a LOCOS oxide film formed on the surface of the n-type silicon substrate for element isolation, 3 is a gate electrode, and 4 is a source / source electrode.
A drain region, 5 is a first silicon oxide film formed as an interlayer insulating film on the silicon substrate 1, 6 is a polysilicon plug formed to make contact between the silicon substrate 1 and the platinum lower electrode, and 7 is a polysilicon plug. A titanium film and a titanium nitride film formed as diffusion barrier layers on the silicon plug 6; 8 a platinum lower electrode formed on the titanium nitride film;
Is a ferroelectric thin film formed on the platinum lower electrode 8.
The ZT film, 10 is a second silicon oxide film formed as an interlayer insulating film, 11 is a platinum upper electrode formed on the PZT film 9, 12 is a third silicon oxide film, and 13 is a platinum upper electrode 11. A first aluminum lead electrode 14 formed for taking contact is a second aluminum lead electrode formed for taking contact with the n-type silicon substrate 1. In the present embodiment, n
The following describes the type silicon substrate, but the same applies to the case where a P type silicon substrate is used.

【0021】以下に、図1を用いて、本発明の一実施の
形態の半導体メモリ素子の製造工程を説明する。
Hereinafter, a manufacturing process of a semiconductor memory device according to an embodiment of the present invention will be described with reference to FIG.

【0022】まず、シリコン基板1の表面に膜厚が約5
000Åのロコス酸化膜2を形成して、素子分離領域を
形成する。次に、ゲート電極3、ソース/ドレイン領域
4等からなる選択トランジスタを形成した後、層間絶縁
膜として、CVD方で第1のシリコン酸化膜5を、50
00Å程度成膜し、続いて、直径0.5μmのコンタク
トホールを形成する。
First, a film having a thickness of about 5
An LOCOS oxide film 2 of 2,000 ° is formed to form an element isolation region. Next, after forming a selection transistor including the gate electrode 3 and the source / drain regions 4 and the like, a first silicon oxide film 5 is formed as an interlayer insulating film by CVD.
Then, a contact hole having a diameter of 0.5 μm is formed.

【0023】次に、CVD法でポリシリコンを埋め込ん
だ後、CMP法で表面を平坦化し、ポリシリコンプラグ
6を形成する。
Next, after polysilicon is buried by the CVD method, the surface is flattened by the CMP method to form a polysilicon plug 6.

【0024】次に、このポリシリコンプラグ6上に、D
Cマグネトロンスパッタ法で膜厚300Åのチタン膜を
成膜し、更に、マグネトロン反応性スパッタ法で膜厚2
000Åの窒化チタン膜7を成膜する。続いて、DCマ
グネトロンスパッタ法で膜厚1000Åの白金下部電極
8を成膜する。
Next, on this polysilicon plug 6, D
A titanium film having a thickness of 300 mm is formed by a C magnetron sputtering method, and a titanium film having a thickness of 2 mm is further formed by a magnetron reactive sputtering method.
A titanium nitride film 7 having a thickness of Å is formed. Subsequently, a platinum lower electrode 8 having a film thickness of 1000 ° is formed by DC magnetron sputtering.

【0025】本発明は、白金電極形成後に以下の工程を
行う。すなわち、500℃〜700℃の温度で30分間
不活性ガス雰囲気にて白金下部電極8のアニールを行
う。この際、酸素を用いて熱処理を行うと拡散バリア層
等が酸化されてしまうため、不活性ガスを使用する。時
間、温度、雰囲気を変えることにより、誘電体薄膜の特
性は様々に変化する。例えば、550℃で30分間窒素
雰囲気中でアニールすることにより、白金下部電極8の
表面を平滑化し、結果として、白金下部電極8上の誘電
体薄膜の表面が平滑になり、誘電体薄膜のリーク電流を
抑えることができる。
In the present invention, the following steps are performed after the formation of the platinum electrode. That is, annealing of the platinum lower electrode 8 is performed at a temperature of 500 ° C. to 700 ° C. for 30 minutes in an inert gas atmosphere. At this time, when heat treatment is performed using oxygen, an inert gas is used because the diffusion barrier layer and the like are oxidized. By changing the time, temperature, and atmosphere, the characteristics of the dielectric thin film are variously changed. For example, by annealing at 550 ° C. for 30 minutes in a nitrogen atmosphere, the surface of the platinum lower electrode 8 is smoothed. As a result, the surface of the dielectric thin film on the platinum lower electrode 8 becomes smooth, and the dielectric thin film leaks. The current can be suppressed.

【0026】尚、熱処理温度が500℃より低い場合又
は700℃より高い場合はモフォロジーが悪くなる。白
金下部電極8の熱処理を行わない場合、PZT膜のグレ
インサイズは1〜2μmとなり、そのリーク電流密度は
10-4A/cm2となるが、上記熱処理を行うことによ
り、PZT膜のグレインサイズは100Å程度の微結晶
粒となり、そのリーク電流密度は10-7A/cm2以下
となる。
When the heat treatment temperature is lower than 500 ° C. or higher than 700 ° C., the morphology becomes poor. When the heat treatment of the platinum lower electrode 8 is not performed, the grain size of the PZT film becomes 1 to 2 μm and the leak current density becomes 10 −4 A / cm 2. Becomes fine crystal grains of about 100 °, and the leak current density thereof is 10 −7 A / cm 2 or less.

【0027】次に、ゾルゲル法を用いて、膜厚が200
0ÅのPZT膜9を成膜する。上記PZT膜9の形成方
法は、まず、2−メトキシエタノールを溶媒として酢酸
鉛、チタン(IV)イソプロポキシド、ジルコニウムイ
ソプロポキシドをそれぞれPb:Ti:Zr=100:
52:48となるように溶解してゾルゲル原料溶液と
し、この原料溶液をスピンナーを用いて、回転数を30
00rpmとして塗布し、大気中で、150℃、10分
間の乾燥を行った後、大気中で、400℃で30分間の
仮焼結を行う。この後、600〜650℃で30分間、
窒素と酸素との混合雰囲気中で結晶化を行う。この際の
窒素と酸素との流量比は、窒素流量/酸素流量=4/1
とする。
Next, using a sol-gel method, a film thickness of 200
A 0 ° PZT film 9 is formed. The method of forming the PZT film 9 is as follows. First, using 2-methoxyethanol as a solvent, lead acetate, titanium (IV) isopropoxide, and zirconium isopropoxide are respectively Pb: Ti: Zr = 100:
The sol-gel raw material solution was dissolved at a ratio of 52:48, and this raw material solution was rotated at 30 rpm using a spinner.
After applying at 00 rpm and drying at 150 ° C. for 10 minutes in the air, temporary sintering is performed at 400 ° C. for 30 minutes in the air. Thereafter, at 600 to 650 ° C. for 30 minutes,
Crystallization is performed in a mixed atmosphere of nitrogen and oxygen. At this time, the flow rate ratio between nitrogen and oxygen is as follows: nitrogen flow rate / oxygen flow rate = 4/1.
And

【0028】次に、PZT膜9と白金下部電極8と窒化
チタン膜7をドライエッチング法で、例えば、2.6μ
m角の大きさに加工した。その後、層間絶縁膜として、
CVD法を用いて第2のシリコン酸化膜10を成膜した
後、コンタクトホールを形成し、強誘電体膜キャパシタ
の白金上部電極11をDCマグネトロンスパッタリング
法により、1000Å形成する。
Next, the PZT film 9, the platinum lower electrode 8, and the titanium nitride film 7 are dry-etched to, for example, 2.6 μm.
It was processed to the size of m square. Then, as an interlayer insulating film,
After the second silicon oxide film 10 is formed by using the CVD method, a contact hole is formed, and the platinum upper electrode 11 of the ferroelectric film capacitor is formed by DC magnetron sputtering at 1000 °.

【0029】次に、白金上部電極11を塩素ガスを用い
たドライエッチング法で加工し、CVD法を用いて、第
3のシリコン酸化膜12を成膜した後、コンタクトホー
ルを形成し、強誘電体キャパシタの白金上部電極11か
らのアルミニウム引き出し電極13をDCマグネトロン
スパッタリング法にて形成した。
Next, the platinum upper electrode 11 is processed by a dry etching method using chlorine gas, a third silicon oxide film 12 is formed by a CVD method, and a contact hole is formed. An aluminum lead electrode 13 from the platinum upper electrode 11 of the body capacitor was formed by DC magnetron sputtering.

【0030】上述の工程により作成された強誘電体膜を
有するキャパシタの白金上部電極11からのアルミニウ
ム引き出し電極13とシリコン基板1からのアルミニウ
ム引き出し電極14との間に三角波を印加することによ
り、図2に示すヒステリシスループが得られた。尚、こ
の印加した三角波は、5Vで周波数は75Hzとした。
図2に示すように、強誘電体キャパシタとして用いるの
に十分な大きさの強誘電性が得られる。また、キャパシ
タのリーク電流密度は図3に示すように5Vで9.1×
10-8A/cm2であり、キャパシタとして用いるのに
十分小さい。
By applying a triangular wave between the aluminum extraction electrode 13 from the platinum upper electrode 11 and the aluminum extraction electrode 14 from the silicon substrate 1 of the capacitor having the ferroelectric film formed by the above-described process, The hysteresis loop shown in FIG. 2 was obtained. The applied triangular wave was 5 V and the frequency was 75 Hz.
As shown in FIG. 2, a ferroelectric property large enough to be used as a ferroelectric capacitor is obtained. The leakage current density of the capacitor is 9.1 × at 5 V as shown in FIG.
10 −8 A / cm 2, which is small enough to be used as a capacitor.

【0031】上記実施の形態において、誘電体膜の成膜
方法として、ゾルゲル法を用いているが、真空蒸着法、
反応性マグネトロンスパッタ法、MOCVD法等の方法
を用いてもよい。また、本実施の形態にオいて、強誘電
体薄膜としてPZT膜を用いているが、PbTiO3
(PbXLa1-X)TiO3、(PbXLa1-X)(ZrY
1-Y)O3、Bi4Ti312、BaTiO3、BaMg
4、LiNbO3、LiTaO3、SrBi2Ti29
YMnO3、Sr2Nb27、SrBi2(TaX
1-X29、Bi4Ti312等においても、また、高
誘電体薄膜として、(BaXSr1-X)TiO3、SrB
4Ti415等においても、同様に十分な強誘電体膜、
若しくは高誘電体膜の制御若しくは効果が得られる。
In the above embodiment, the sol-gel method is used as the method of forming the dielectric film.
A method such as a reactive magnetron sputtering method or a MOCVD method may be used. In the present embodiment, a PZT film is used as the ferroelectric thin film, but PbTiO 3 ,
(Pb X La 1-X) TiO 3, (Pb X La 1-X) (Zr Y T
i 1-Y ) O 3 , Bi 4 Ti 3 O 12 , BaTiO 3 , BaMg
F 4 , LiNbO 3 , LiTaO 3 , SrBi 2 Ti 2 O 9 ,
YMnO 3 , Sr 2 Nb 2 O 7 , SrBi 2 (Ta X N
b 1-X ) 2 O 9 , Bi 4 Ti 3 O 12, etc., and (Ba X Sr 1 -x) TiO 3 , SrB
In the case of i 4 Ti 4 O 15 and the like, similarly, a sufficient ferroelectric film,
Alternatively, the control or effect of the high dielectric film can be obtained.

【0032】更に、本実施の形態において、下部電極の
材料として白金を用いているが、この他の金属や窒化物
や、RuO2、IrO2等の導電性酸化物を用いた場合で
も同様な効果が得られる。
Further, in the present embodiment, platinum is used as the material of the lower electrode. However, the same applies when other metals, nitrides, or conductive oxides such as RuO 2 and IrO 2 are used. The effect is obtained.

【0033】[0033]

【発明の効果】以上、詳細に説明したように、本発明を
用いることにより、強誘電体膜或いは高誘電体膜のモフ
ォロジーを滑らかにすることができ、更に、拡散バリア
膜として窒化チタン膜を使用すれば初期核層が形成され
るので、その結果、リーク電流密度の小さい強誘電体膜
或いは高誘電体膜を有する半導体メモリ素子を製造する
ことができる。
As described above in detail, by using the present invention, the morphology of a ferroelectric film or a high dielectric film can be smoothed, and a titanium nitride film can be used as a diffusion barrier film. If used, an initial nucleus layer is formed. As a result, a semiconductor memory device having a ferroelectric film or a high-dielectric film having a low leakage current density can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の半導体メモリ素子の製
造工程図である。
FIG. 1 is a manufacturing process diagram of a semiconductor memory device according to an embodiment of the present invention.

【図2】駆動電圧と電気変位との関係を示す図である。FIG. 2 is a diagram illustrating a relationship between a driving voltage and an electric displacement.

【図3】本発明を用いた場合の、駆動電圧とリーク電流
密度との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a driving voltage and a leakage current density when the present invention is used.

【図4】従来の半導体メモリ素子の製造工程図である。FIG. 4 is a manufacturing process diagram of a conventional semiconductor memory device.

【図5】従来技術を用いた場合の、駆動電圧とリーク電
流密度との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a driving voltage and a leakage current density when a conventional technique is used.

【符号の説明】[Explanation of symbols]

1 n型シリコン基板 2 ロコス酸化膜 3 ゲート電極 4 ソース/ドレイン領域 5 第1のシリコン酸化膜 6 ポリシリコンプラグ 7 チタン膜と窒化チタン膜 8 白金下部電極 9 PZT膜 10 第2のシリコン酸化膜 11 白金上部電極 12 第3のシリコン酸化膜 13 第1のアルミニウム引き出し電極 14 第2のアルミニウム引き出し電極 REFERENCE SIGNS LIST 1 n-type silicon substrate 2 locos oxide film 3 gate electrode 4 source / drain region 5 first silicon oxide film 6 polysilicon plug 7 titanium film and titanium nitride film 8 platinum lower electrode 9 PZT film 10 second silicon oxide film 11 Platinum upper electrode 12 Third silicon oxide film 13 First aluminum extraction electrode 14 Second aluminum extraction electrode

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 29/792 Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 29/792

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上部電極と下部電極との間に強誘電体膜
又は高誘電体膜を有するキャパシタと、上記下部電極と
導電性プラグを通じて接続されたトランジスタとを備え
た半導体メモリ素子の製造方法において、 上記導電性プラグ上に導電性拡散バリア層を形成した
後、上記下部電極を形成する工程と、 熱処理により、上記下部電極表面を平坦化した後、上記
強誘電体膜又は高誘電体膜を形成することを特徴とす
る、半導体メモリ素子の製造方法。
1. A method of manufacturing a semiconductor memory device comprising: a capacitor having a ferroelectric film or a high dielectric film between an upper electrode and a lower electrode; and a transistor connected to the lower electrode through a conductive plug. Forming a conductive diffusion barrier layer on the conductive plug, forming the lower electrode, flattening the lower electrode surface by heat treatment, and then forming the ferroelectric film or the high dielectric film. Forming a semiconductor memory device.
【請求項2】 上記拡散バリア層が窒化チタンであるこ
とを特徴とする、請求項1記載の半導体メモリ素子の製
造方法。
2. The method according to claim 1, wherein said diffusion barrier layer is titanium nitride.
JP9067581A 1997-03-21 1997-03-21 Manufacture of semiconductor memory element Pending JPH10261770A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9067581A JPH10261770A (en) 1997-03-21 1997-03-21 Manufacture of semiconductor memory element
KR1019980008919A KR100288688B1 (en) 1997-03-21 1998-03-17 Manufacturing Method of Semiconductor Memory Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9067581A JPH10261770A (en) 1997-03-21 1997-03-21 Manufacture of semiconductor memory element

Publications (1)

Publication Number Publication Date
JPH10261770A true JPH10261770A (en) 1998-09-29

Family

ID=13349044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9067581A Pending JPH10261770A (en) 1997-03-21 1997-03-21 Manufacture of semiconductor memory element

Country Status (2)

Country Link
JP (1) JPH10261770A (en)
KR (1) KR100288688B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395766B1 (en) * 2001-02-12 2003-08-25 삼성전자주식회사 Ferroelectric memory device and method of forming the same
CN100442478C (en) * 2004-06-17 2008-12-10 尔必达存储器股份有限公司 Method for manufacturing a semiconductor device having polysilicon plugs

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471364A (en) * 1993-03-31 1995-11-28 Texas Instruments Incorporated Electrode interface for high-dielectric-constant materials
US5489548A (en) * 1994-08-01 1996-02-06 Texas Instruments Incorporated Method of forming high-dielectric-constant material electrodes comprising sidewall spacers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395766B1 (en) * 2001-02-12 2003-08-25 삼성전자주식회사 Ferroelectric memory device and method of forming the same
CN100442478C (en) * 2004-06-17 2008-12-10 尔必达存储器股份有限公司 Method for manufacturing a semiconductor device having polysilicon plugs

Also Published As

Publication number Publication date
KR19980080322A (en) 1998-11-25
KR100288688B1 (en) 2001-06-01

Similar Documents

Publication Publication Date Title
KR100244933B1 (en) Method of manufacturing electrode
US7443649B2 (en) Ferroelectric capacitor
JP3319994B2 (en) Semiconductor storage element
JP3452763B2 (en) Semiconductor storage device and method of manufacturing semiconductor storage device
JP3484324B2 (en) Semiconductor memory device
US5965942A (en) Semiconductor memory device with amorphous diffusion barrier between capacitor and plug
US6495412B1 (en) Semiconductor device having a ferroelectric capacitor and a fabrication process thereof
JPH11307736A (en) Manufacture of semiconductor memory element
JP2001237402A (en) Structured metal oxide containing layer, and method of manufacturing semiconductor structure element
JP3981142B2 (en) Ferroelectric capacitor and manufacturing method thereof
JP2002289810A (en) Semiconductor device and its manufacturing method
JPH10261770A (en) Manufacture of semiconductor memory element
JP3363091B2 (en) Manufacturing method of dielectric memory
JPH11233734A (en) Semiconductor memory element and its manufacture
JP3127086B2 (en) Semiconductor memory device
JP4315676B2 (en) Semiconductor memory device and manufacturing method thereof
JP2003197772A (en) Capacitor, semiconductor storage device and its manufacturing method
JP2003243628A (en) Ferroelectric thin film, ferroelectric capacitor, and method of manufacturing ferroelectric memory device
JPH10341003A (en) Dielectric element and its manufacture
JPH10229169A (en) Ferroelectric memory element, manufacture thereof and integrated circuit
JP2001332704A (en) Electrode for dielectric thin film element, manufacturing method thereof and dielectric thin film element using the same
JPH05343697A (en) Dielectric element
JP2000311989A (en) Ferroelectric capacitor element and nonvolatile semiconductor memory element
KR19980079121A (en) Capacitor Manufacturing Method of Semiconductor Device
JP2000252434A (en) Manufacture of semiconductor device