JPH10259435A - Iridium base alloy - Google Patents
Iridium base alloyInfo
- Publication number
- JPH10259435A JPH10259435A JP11713297A JP11713297A JPH10259435A JP H10259435 A JPH10259435 A JP H10259435A JP 11713297 A JP11713297 A JP 11713297A JP 11713297 A JP11713297 A JP 11713297A JP H10259435 A JPH10259435 A JP H10259435A
- Authority
- JP
- Japan
- Prior art keywords
- iridium
- solid solution
- range
- added
- rhodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、エネルギー開発機
器、宇宙産業用部材、高融点材料溶解用坩堝等の高温機
器に用いる耐熱材料に関し、その具体的な用途としては
発電用ガスタービン、ガスタービンブレード、ジェット
エンジン、温度センサー並びに保護具材、そして半導体
材料、窯業用材料、単結晶等の高融点材料溶解用坩堝、
ガラスレンズの型材、ガラス溶解装置、或いは化学繊維
ノズル等の高温における強度、耐酸化性等が要求される
耐熱材料、更に、燃焼機器構造材等に用いられる耐熱材
料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant material used for high-temperature equipment such as energy development equipment, space industry members, and high melting point material melting crucibles. Blades, jet engines, temperature sensors and protective materials, crucibles for melting high melting point materials such as semiconductor materials, ceramic materials, single crystals,
The present invention relates to a heat-resistant material, such as a glass lens mold, a glass melting device, or a chemical fiber nozzle, which is required to have high-temperature strength and oxidation resistance, and a heat-resistant material used as a structural material for combustion equipment.
【0002】[0002]
【従来の技術】従来、ガスタービンブレード等に用いら
れているこの種の耐熱材料としては主にニッケル基合金
であることが知られている。2. Description of the Related Art Heretofore, it has been known that a nickel-based alloy is mainly used as a heat-resistant material of this kind used for a gas turbine blade or the like.
【0003】[0003]
【発明が解決しようとする課題】ところで、ニッケル基
合金はその融点が略1300℃であるところから、その強度
を発揮し得る温度は実質的に1100℃程度であり、1100℃
が使用限界温度、つまり耐用温度とされている。従っ
て、このニッケル基合金は1100℃以上の高温領域での使
用は不可能となる。However, since the melting point of a nickel-based alloy is approximately 1300 ° C., the temperature at which its strength can be exhibited is substantially about 1100 ° C., and 1100 ° C.
Is the service limit temperature, that is, the service temperature. Therefore, this nickel-based alloy cannot be used in a high temperature region of 1100 ° C. or more.
【0004】又、タンタル、ニオブ、モリブデン、タン
グステン、白金、純イリジウム等は高融点材料として知
られているが、これら一種の元素からなる高融点材料は
真空若しくは不活性ガス雰囲気中で使用する限りでは融
点直下までの高温域で強度を発揮し得るが、大気中や燃
焼ガス等の雰囲気中では急速に酸化消耗してしまうた
め、前述した各種用途には使用できないものである。と
ころで、純イリジウムに注目して見ると、その融点は24
54℃と高い高融点材料ではあるが、脆いために展延性に
乏しく、例えば 0.5mm程度の薄板に加工することが極め
て困難なことから、その用途範囲も限れていた。更に、
大気中での酸化消耗が激しく、例えば大気中において
は、800 〜1050℃の温度範囲では激しく酸化し、酸化物
(Ir O2 及びIr O3 )として昇華する事から消耗し
てしまう。しかし、1500℃以上になるとその酸化物は成
分に分解される事から、酸化の進行は抑えれることにな
る。従って、純イリジウムからなる高融点材料は大気中
や燃焼ガス雰囲気中における800 〜1050℃の温度範囲で
急速に酸化消耗してしまうことから、実用性に欠ける高
融点材料であった。[0004] Tantalum, niobium, molybdenum, tungsten, platinum, pure iridium and the like are known as high melting point materials. However, high melting point materials composed of these kinds of elements can be used in vacuum or in an inert gas atmosphere. Can exhibit strength in a high temperature range just below the melting point, but is rapidly oxidized and consumed in the atmosphere or in an atmosphere such as a combustion gas, so that it cannot be used for the above-mentioned various applications. By the way, focusing on pure iridium, its melting point is 24
Although it is a high melting point material with a high melting point of 54 ° C., it is brittle and has poor ductility. For example, it is extremely difficult to process into a thin plate of about 0.5 mm, so its application range has been limited. Furthermore,
Oxidation is intensively consumed in the atmosphere. For example, in the air, it is oxidized violently in the temperature range of 800 to 1050 ° C., and is consumed by sublimation as oxides (IrO 2 and IrO 3 ). However, when the temperature exceeds 1500 ° C., the oxide is decomposed into components, so that the progress of oxidation is suppressed. Therefore, the high melting point material made of pure iridium is rapidly oxidized and consumed in a temperature range of 800 to 1050 ° C. in the atmosphere or in a combustion gas atmosphere.
【0005】本発明はこの様な従来事情に鑑みてなされ
たもので、その目的とする処は、1100℃以上の高温域で
の耐熱材料として要求される高温強度(耐力)に優れ、
しかも、大気中における800 〜1050℃の温度範囲での耐
酸化性に優れ、更に、材料の薄肉化を可能とする加工性
を向上させる上で要求される展延性が改善されたイリジ
ウム基合金を提供することにある。[0005] The present invention has been made in view of such conventional circumstances, and its object is to provide a high-temperature strength (proof stress) required as a heat-resistant material in a high-temperature region of 1100 ° C or higher.
In addition, an iridium-based alloy that has excellent oxidation resistance in the temperature range of 800 to 1050 ° C. in the atmosphere and has improved ductility required for improving workability to enable thinning of the material is used. To provide.
【0006】[0006]
【課題を達成するための手段】課題を達成するために本
発明は、ベースとなる純イリジウムに、白金、パラジウ
ム、ロジウム、ニオブ、タンタル、ハフニウム、チタ
ン、ジルコニウム、イットリウム、ランタン、モリブデ
ンこれらいずれか一種からなる第二元素を固溶範囲内
(単相)で添加、又は前記第二元素数種を固溶範囲内
(単相)で複合添加してなることを要旨とする。又、上
記白金、パラジウム、ロジウム、ニオブ、タンタル、ハ
フニウム、チタン、ジルコニウム、イットリウム、ラン
タン、モリブデンこれらいずれか一種からなる第二元素
の添加量が 0.1〜50wt%の固溶範囲内(単相)で、ベー
スとなる純イリジウムに添加、又は前記第二元素数種を
添加総量が 0.1〜50wt%の固溶範囲内(単相)で、ベー
スとなる純イリジウムに複合添加してなることを要旨と
する。斯る技術的手段によって、固溶体硬化によりイリ
ジウムの強化が図られる。又、1500℃以上の高温におけ
る酸化に対する安定被膜がイリジウムの表面に生成され
ることによりイリジウムの耐酸化性が図られる。In order to achieve the above object, the present invention provides a method for preparing a base pure iridium by adding platinum, palladium, rhodium, niobium, tantalum, hafnium, titanium, zirconium, yttrium, lanthanum, molybdenum. The gist is that a second element composed of one kind is added within a solid solution range (single phase) or a complex addition of several kinds of the second element is made within a solid solution range (single phase). Further, the addition amount of the second element composed of any one of the above platinum, palladium, rhodium, niobium, tantalum, hafnium, titanium, zirconium, yttrium, lanthanum, molybdenum is within a solid solution range of 0.1 to 50 wt% (single phase). The gist is that the second element is added to the base pure iridium, or a complex addition of the second element to the base pure iridium within a solid solution range of 0.1 to 50 wt% (single phase). And By such technical means, iridium is strengthened by solid solution hardening. Further, the oxidation resistance of iridium is achieved by forming a stable film against oxidation at a high temperature of 1500 ° C. or higher on the surface of iridium.
【0007】更に、ベースとなる純イリジウムに、第二
元素としてロジウムを添加し、更に第三元素として白
金、ルテニウム、レニウム、クロム、バナジウム、モリ
ブデンこれらいずれか一種を固溶範囲内(単相)で添加
し、この第三元素及び前記第二元素の純イリジウムに対
する添加総量が固溶範囲内(単相)であることを要旨と
する。合金構成は、上記第二元素のロジウムを 0.1〜30
wt%の範囲内で添加し、更に第三元素の白金、ルテニウ
ム、レニウム、クロム、バナジウム、モリブデンこれら
いずれか一種を 0.1〜20wt%の範囲内で添加し、この第
三元素と前記第二元素との添加総量を 0.2〜50wt%の固
溶範囲内(単相)に抑えたことを要旨とする。斯る技術
的手段によれば、ロジウムからなる第二元素及び白金、
ルテニウム、レニウム、クロム、バナジウム、モリブデ
ンこれらいずれか一種からなる第三元素の固溶範囲内で
の添加によりイリジウムの表面に耐酸化性に優れた安定
被膜が生成される。それにより、大気中や燃焼ガス雰囲
気中において酸化消耗が最も激しい 800〜1050℃におけ
る酸化消耗を極端に抑えることができると共に、固溶体
硬化がもたらされてイリジウムの強化が図られる。更に
は粘性も改善されて優れた展延性が得られる。Further, rhodium is added as a second element to pure iridium as a base, and any one of platinum, ruthenium, rhenium, chromium, vanadium and molybdenum is added as a third element within a solid solution range (single phase). The gist is that the total amount of the third element and the second element added to pure iridium is within the solid solution range (single phase). The alloy composition is such that the rhodium of the second element is 0.1 to 30.
wt%, and one of the third elements, platinum, ruthenium, rhenium, chromium, vanadium, and molybdenum, in an amount of 0.1 to 20 wt%, and the third element and the second element are added. The main point is that the total amount of the additions is suppressed within the solid solution range of 0.2 to 50 wt% (single phase). According to such technical means, the second element consisting of rhodium and platinum,
Addition of a third element made of any one of ruthenium, rhenium, chromium, vanadium, and molybdenum within a solid solution range produces a stable film having excellent oxidation resistance on the surface of iridium. This makes it possible to extremely suppress the oxidative consumption at 800 to 1,050 ° C., where the oxidative consumption is most severe in the atmosphere or in a combustion gas atmosphere, and hardens the iridium by hardening the solid solution. Furthermore, the viscosity is also improved and excellent spreadability is obtained.
【0008】[0008]
【発明の実施の形態】本発明の実施の具体例を図面に基
づいて説明する。図1は請求項1乃至2に係る本発明イ
リジウム基合金の一例で、イリジウムの硬さに及ぼす第
二元素の影響を示したグラフ、図2は1500℃の暴露試験
における経時に伴う重量変化を示したグラフであり、斯
る本発明において、ベースとなる純イリジウム(Ir)
に対する白金(Pt)、パラジウム(Pd)、ロジウム
(Rh)、ニオブ(Nb)、タンタル(Ta)、ハフニ
ウム(Hf)、チタン(Ti)、ジルコニウム(Z
r)、イットリウム(Y)、ランタン(La)、モリブ
デン(Mo)これらいずれか一種からなる第二元素の添
加量を 0.1〜50wt%の固溶範囲内(単相)に、又は前記
第二元素数種の添加総量を 0.1〜50wt%の固溶範囲内
(単相)に抑える事が必要がある。その理由は、第二元
素の添加量又は第二元素数種の添加総量が 0.1wt%以下
では、耐酸化特性、固溶体硬化能、粘性が改善されず、
耐酸化特性並びに展延性(圧延加工性)が純イリジウム
のそれと変わらない、つまり、イリジウムの特性が改善
されないからである。一方、純イリジウムに対する添加
元素が固溶範囲を越えてしまうと、第2相(金属間化合
物)が析出し、析出硬化して塑性加工が困難になるばか
りか、耐酸加性も劣る結果を招くことからである。Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a graph showing the effect of the second element on the hardness of iridium in an example of the iridium-based alloy according to the present invention according to claims 1 and 2, and FIG. 2 shows the change in weight with time in an exposure test at 1500 ° C. 4 is a graph showing pure iridium (Ir) as a base in the present invention.
(Pt), palladium (Pd), rhodium (Rh), niobium (Nb), tantalum (Ta), hafnium (Hf), titanium (Ti), zirconium (Z
r), yttrium (Y), lanthanum (La), molybdenum (Mo), the addition amount of a second element composed of any one of them is within a solid solution range of 0.1 to 50 wt% (single phase), or the second element It is necessary to keep the total amount of several additions within the solid solution range of 0.1 to 50 wt% (single phase). The reason is that if the addition amount of the second element or the total addition amount of several second elements is 0.1 wt% or less, the oxidation resistance, solid solution hardening ability, and viscosity are not improved,
This is because the oxidation resistance and spreadability (rolling workability) are not different from those of pure iridium, that is, the characteristics of iridium are not improved. On the other hand, when the added element to pure iridium exceeds the solid solution range, the second phase (intermetallic compound) is precipitated and hardened by precipitation, which causes not only plastic working but also poor acid resistance. That's because.
【0009】従って、本発明では純イリジウムに対する
白金、パラジウム、ロジウム、ニオブ、タンタル、ハフ
ニウム、チタン、ジルコニウム、イットリウム、ランタ
ン、モリブデンこれらいずれか一種からなる第二元素の
添加量を 0.1〜50wt%の固溶範囲内(単相)、又はこれ
ら第二元素数種の添加総量を 0.1〜50wt%の固溶範囲内
(単相)とする事が好ましい。特に、上述した各種の第
二元素の内、白金(Pt)、パラジウム(Pd)、ロジ
ウム(Rh)を除く、ニオブ(Nb)、タンタル(T
a)、ハフニウム(Hf)、チタン(Ti)、ジルコニ
ウム(Zr)、イットリウム(Y)、ランタン(L
a)、モリブデン(Mo)これらいずれか一種からなる
第二元素にあってはその添加量を10wt%以下に、又はこ
れら第二元素数種の添加総量を10wt%以下に抑える事が
好ましい。Therefore, in the present invention, the addition amount of the second element consisting of platinum, palladium, rhodium, niobium, tantalum, hafnium, titanium, zirconium, yttrium, lanthanum, molybdenum to pure iridium is 0.1 to 50 wt%. It is preferable that the solid solution range (single phase) or the total addition amount of these two kinds of second elements be within the solid solution range of 0.1 to 50 wt% (single phase). In particular, niobium (Nb), tantalum (T), excluding platinum (Pt), palladium (Pd), and rhodium (Rh) among the various second elements described above.
a), hafnium (Hf), titanium (Ti), zirconium (Zr), yttrium (Y), lanthanum (L
a), molybdenum (Mo) It is preferable that the addition amount of the second element composed of any one of these is suppressed to 10 wt% or less, or the total addition amount of several second elements is suppressed to 10 wt% or less.
【0010】実施例1 純イリジウムに対し、ここでは添加量が10wt%以下の固
溶範囲内(単相)で単独添加されるようにしたニオブ、
ハフニウム、イットリウム、タンタル、モリブデンの各
第二元素を所定量秤取し、アーク溶解法により溶製し
た。これにより得られたIr−Nb、Ir−Hf、Ir
−Y、Ir−Ta、Ir−Moこれらの各合金のボタン
状の鋳塊をワイヤーカット法により、φ5mm、高さ5mm
の円柱状の試験片にカットし、ダイヤモンドヤスリによ
り表面研硝を施した後に、強さ(耐力)等の機械的性質
を調べた。これら合金の機械的性質として、ビッカース
硬さを調べ、その結果は図1に例示する。更に、第二元
素の添加に伴う高温における変形抵抗を鍛造性試験によ
り調べ、その結果は第二元素の添加に伴う変形抵抗値と
して表1に例示する。Example 1 Niobium was added to pure iridium in a solid solution range (single phase) of an addition amount of 10% by weight or less,
A predetermined amount of each of the second elements of hafnium, yttrium, tantalum, and molybdenum was weighed and melted by an arc melting method. Ir-Nb, Ir-Hf, Ir thus obtained
-Y, Ir-Ta, Ir-Mo A button-shaped ingot of each of these alloys was subjected to a wire cutting method to have a diameter of 5 mm and a height of 5 mm.
Was cut into a cylindrical test piece, subjected to surface polishing with a diamond file, and then examined for mechanical properties such as strength (proof strength). Vickers hardness was examined as the mechanical properties of these alloys, and the results are illustrated in FIG. Further, the deformation resistance at a high temperature accompanying the addition of the second element was examined by a forging test, and the results are shown in Table 1 as the deformation resistance value accompanying the addition of the second element.
【0011】図1から明らかなように、いずれの合金系
も第二元素の添加量(固溶濃度)が増すとともに硬さは
高くなる固溶体硬化を示しているが、特に硬化能の大き
いものはニオブ、ハフニウムの添加によって得られた合
金系であることが分かる。そして、表1から明らかなよ
うに、第二元素の添加量が増す(固溶濃度が高い)ほど
高い変形抵抗値を示していることが分かる。つまり、固
溶体硬化により純イリジウムが強化されること、又、高
温においても各元素の添加量が増すほど強度が高くなる
ことを示している。従って、本実施例で得られたイリジ
ウム基合金は低温、更には高温においても強さ(耐力)
等の機械的性質に優れていることが明らかになった。As is clear from FIG. 1, all alloys show solid solution hardening, in which the hardness increases as the addition amount (solid solution concentration) of the second element increases. It can be seen that the alloy was obtained by adding niobium and hafnium. As is clear from Table 1, it can be seen that the higher the amount of addition of the second element (the higher the solid solution concentration), the higher the deformation resistance. In other words, it indicates that pure iridium is strengthened by solid solution hardening, and that the strength increases as the added amount of each element increases even at high temperatures. Therefore, the iridium-based alloy obtained in this example has a strength (proof stress) even at a low temperature and further at a high temperature.
It was revealed that the mechanical properties such as
【0012】実施例2 純イリジウムに対する添加量が1wt%以下の固溶範囲内
で添加されるようにしたニオブ、ハフニウム、タンタ
ル、モリブデンの各第二元素を所定量秤取し、アーク溶
解法により溶製した。これにより得られたIr−Nb、
Ir−Hf、Ir−Ta、Ir−Moこれらの各合金の
ボタン状の鋳塊をワイヤーカット法により、前述した円
柱状の試験片にカットし、ダイヤモンドヤスリにより表
面研硝を施した後に、耐酸化性を調べた。この耐酸化性
は1500℃に加熱した炉中に試験片を所定時間暴露した後
の試験片の表面状態と重量変化、並びにその硬さ変化を
調べた。その結果は図2に例示する。Example 2 A predetermined amount of each of niobium, hafnium, tantalum, and molybdenum is added to pure iridium in a solid solution range of 1% by weight or less, and a predetermined amount is weighed and measured by an arc melting method. It was melted. Ir-Nb thus obtained,
Ir-Hf, Ir-Ta, Ir-Mo A button-shaped ingot of each of these alloys is cut into the above-mentioned columnar test piece by a wire cutting method, and after being subjected to surface polishing with a diamond file, is subjected to acid resistance. Was examined. The oxidation resistance was evaluated by examining the surface condition, weight change, and hardness change of the test piece after exposing the test piece to a furnace heated to 1500 ° C. for a predetermined time. The result is illustrated in FIG.
【0013】図2から明らかなように、純イリジウムと
比べて耐酸化性が優れたIr−Nb、Ir−Hf、Ir
−Ta、Ir−Moこれらの合金系は短時間で重量増を
示し、その後減少するが、その変化は耐酸化性が優れて
いる合金ほど小さいことが分かる。つまり、酸化に対す
る安定被膜が表面に生成され、純イリジウムの耐酸化性
が改善される。従って、本実施例で得られたイリジウム
基合金は高温において優れた耐酸化性を有することが明
らかになった。尚、図には示されていないが、純イリジ
ウムに対するモリブデン添加の場合は添加量が略5wt%
程度で耐酸化性が大きく改善されるものである。As is apparent from FIG. 2, Ir-Nb, Ir-Hf, and Ir have better oxidation resistance than pure iridium.
-Ta, Ir-Mo These alloy systems show an increase in weight in a short time and then decrease, but it can be seen that the change is smaller for alloys with better oxidation resistance. That is, a stable film against oxidation is formed on the surface, and the oxidation resistance of pure iridium is improved. Therefore, it was revealed that the iridium-based alloy obtained in this example has excellent oxidation resistance at high temperatures. Although not shown in the figure, in the case of adding molybdenum to pure iridium, the addition amount is approximately 5 wt%.
Oxidation resistance is greatly improved by the degree.
【0014】実施例3 純イリジウムに対する添加量が 0.1〜5wt%の固溶範囲
内で添加されるようにしたパラジウム、タンタル、ラン
タン、チタンこれらの各第二元素を所定量秤取し、アー
ク溶解法により溶製した。これにより得られたIr−P
d、Ir−Ta、Ir−La、Ir−Tiこれらの合金
(鋳塊)をワイヤーカット法により、前述した円柱状の
試験片にカットし、ダイヤモンドヤスリにより表面研硝
を施した後に、展延性を調べた。この展延性は第二元素
の添加量と温度の変化に伴う変形抵抗により調べた。そ
の結果は表1並びに温度の変化に伴う変形抵抗値として
表2に例示する。Example 3 A predetermined amount of each of palladium, tantalum, lanthanum and titanium is added to pure iridium in a solid solution range of 0.1 to 5 wt%. It was melted by the method. Ir-P obtained by this
d, Ir-Ta, Ir-La, Ir-Ti These alloys (ingots) are cut into the above-mentioned columnar test pieces by a wire cutting method, and after surface polishing with a diamond file, the spreadability is increased. Was examined. This ductility was examined by the deformation resistance with the change of the addition amount of the second element and the temperature. The results are shown in Table 1 and Table 2 as deformation resistance values accompanying a change in temperature.
【0015】表1から明らかなように、第二元素の添加
量が少ない(固溶濃度が低い)ほど低い変形抵抗値を示
していることが分かる。そして、表2から明らかなよう
に、第二元素の添加量が増しても、温度が高くなるほど
低い変形抵抗値を示すことが分かる。つまり、第二元素
の添加量を抑え、2次再結晶(結晶粒の粗大化)を起こ
さない温度(略1250℃)内で塑性加工を行えば優れた展
延性を示す。従って、本実施例で得られたイリジウム基
二元系合金は加工性を向上させる上で要求される展延性
においても優れていることが明らかになった。As is clear from Table 1, the smaller the amount of the second element added (the lower the solid solution concentration), the lower the deformation resistance. As is clear from Table 2, even when the amount of the second element added increases, the higher the temperature, the lower the deformation resistance. That is, if the amount of the second element is suppressed and plastic working is performed at a temperature (about 1250 ° C.) at which secondary recrystallization (coarse grain growth) does not occur, excellent ductility is exhibited. Therefore, it was clarified that the iridium-based binary alloy obtained in this example was excellent in the ductility required for improving the workability.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【表2】 [Table 2]
【0018】上記したように、請求項1乃至2に係る本
発明のイリジウム基合金によれば、添加する第二元素に
よって固溶体硬化を示すことでは共通しているが、硬化
能、高温強度(耐力)、耐酸化性、展延性に関しては添
加する第二元素の種類と、その添加量(wt%)又は添加
総量(wt%)によって与える影響が異なることが分か
る。As described above, according to the iridium-based alloy according to the first and second aspects of the present invention, although the solid solution hardening is exhibited by the added second element, the hardening ability and the high-temperature strength (proof strength) are common. ), Oxidation resistance and spreadability have different effects depending on the type of the second element to be added and the amount (wt%) or the total amount (wt%) of the added second element.
【0019】図3は請求項3乃至4に係る本発明イリジ
ウム基三元系合金の一例で、1200℃に加熱した状態で熱
間圧延を施した場合における肉眼的に圧延材の側面に割
れが認められるまでの加工度(%)と純イリジウム(I
r)に対する添加総量(wt%)との関係を示したグラ
フ、図4は純イリジウムの酸化消耗が最も激しくなる10
50℃における酸化消耗量と暴露時間との関係を示したグ
ラフであり、斯る本発明においては、ベースとなる純イ
リジウム(Ir)に、第二元素としてロジウム(Rh)
を添加し、更に第三元素として白金(Pt)、ルテニウ
ム(Ru)、レニウム(Re)、クロム(Cr)、バナ
ジウム(V)、モリブデン(Mo)これらいずれか一種
を固溶範囲内(単相)で添加し、前記第二元素の一部を
第三元素で置換させることで、例えば1050℃の高温にお
ける耐酸化性に優れ、しかも加工性を向上させる上で要
求される展延性が改善された三元系合金を溶製する。FIG. 3 shows an example of the iridium-based ternary alloy according to the third and fourth aspects of the present invention. When hot rolling is performed at 1200 ° C., cracks are visually observed on the side surfaces of the rolled material. Degree of processing (%) and pure iridium (I
FIG. 4 is a graph showing the relationship between r) and the total amount of addition (wt%), and FIG. 4 shows that the oxidative consumption of pure iridium is most severe.
5 is a graph showing the relationship between the amount of oxidative consumption at 50 ° C. and the exposure time. In the present invention, pure iridium (Ir) as a base and rhodium (Rh) as a second element are used.
And platinum (Pt), ruthenium (Ru), rhenium (Re), chromium (Cr), vanadium (V), and molybdenum (Mo) as a third element. ) And substituting a part of the second element with a third element, thereby improving the oxidation resistance at a high temperature of, for example, 1050 ° C., and improving the spreadability required for improving the processability. Ternary alloy.
【0020】そして、本発明においてはベースとなる純
イリジウムに対するロジウムからなる第二元素の添加量
を 0.1〜30wt%の範囲内に、更に白金、ルテニウム、レ
ニウム、クロム、バナジウム、モリブデンこれらいずれ
か一種からなる第三元素の添加量を 0.1〜20wt%の固溶
範囲内(単相)に、そして第三元素と第二元素との総添
加量を 0.2〜50wt%の固溶範囲内(単相)に夫々抑える
ことが必要である。この理由は、第二元素の添加量が
0.1wt%以下では、耐酸化性、固溶体硬化能、粘性が改
善されず、耐熱性、展延性が純イリジウムと変わらな
い、つまり、イリジウムの特性が改善されないからであ
る。一方、30wt%以上になると、展延性が悪くなるから
である。又、第三元素の添加量が 0.1wt%以下では、上
述したように、耐酸化特性、固溶体硬化能、粘性の夫々
の改善効果が小さいからである。一方、20wt%以上にな
ると、第2相(金属間化合物)が析出し易くなり、耐酸
化性並びに展延性が悪くなるからである。そして、第三
元素と第二元素との純イリジウムに対する総添加量が
0.2wt%以下では、固溶体硬化能が小さく、耐酸化特
性、展延性も純イリジウムのそれとさほど変わらないか
らである。一方、50wt%以上になると、第2相(金属間
化合物)が析出し、耐酸化特性並びに展延性も悪くなる
からである。In the present invention, the addition amount of the second element consisting of rhodium to the base pure iridium is within the range of 0.1 to 30% by weight, and platinum, ruthenium, rhenium, chromium, vanadium and molybdenum are further added. Within the solid solution range of 0.1 to 20 wt% (single phase), and the total amount of the third element and the second element within the solid solution range of 0.2 to 50 wt% (single phase). ) Must be suppressed. The reason for this is that the amount of the second element added is
If the content is 0.1 wt% or less, oxidation resistance, solid solution hardening ability, and viscosity are not improved, and heat resistance and ductility are not different from pure iridium, that is, the properties of iridium are not improved. On the other hand, when the content is 30 wt% or more, the spreadability is deteriorated. Also, when the addition amount of the third element is 0.1 wt% or less, as described above, the effects of improving the oxidation resistance, the solid solution hardening ability, and the viscosity are small. On the other hand, when the content is 20% by weight or more, the second phase (intermetallic compound) is easily precipitated, and the oxidation resistance and the spreadability deteriorate. And the total addition amount of the third element and the second element to pure iridium is
If the content is 0.2 wt% or less, the solid solution hardening ability is small, and the oxidation resistance and spreadability are not so different from those of pure iridium. On the other hand, when the content is 50 wt% or more, the second phase (intermetallic compound) precipitates, and the oxidation resistance and spreadability deteriorate.
【0021】従って、本発明ではベースとなる純イリジ
ウムに対する第二元素のロジウムの添加量を 0.1〜30wt
%の範囲内に、第三元素の白金、ルテニウム、レニウ
ム、クロム、バナジウム、モリブデンこれらいずれか一
種の添加量を 0.1〜20wt%の固溶範囲内(単相)に、そ
して第三元素と前記第二元素との添加総量を 0.2〜50wt
%の固溶範囲内(単相)に抑える事が好ましい。Therefore, in the present invention, the addition amount of the second element rhodium to the base pure iridium is 0.1 to 30 wt.
% Of the third element, platinum, ruthenium, rhenium, chromium, vanadium, molybdenum, in the range of 0.1-20 wt% solid solution (single phase), and the third element 0.2 to 50 wt.
% Within a solid solution range (single phase).
【0022】ベースとなる純イリジウムに、第二元素と
して15wt%のロジウムを、更に第三元素として15wt%の
白金を含み、この第三元素と前記第二元素との添加総量
が純イリジウムに対し30wt%になるように秤取したIr
−15Rh−15Pt系合金、又、ベースとなる純イリジウ
ムに、第二元素としてロジウム2wt%、第三元素として
ルテニウム3wt%を夫々添加し、その両元素の添加総量
が5wt%になるように秤取したIr−2Rh−3Ru系
合金、又、ベースとなる純イリジウムに、第二元素とし
てロジウム2wt%、第三元素としてレニウム3wt%を夫
々添加し、その両元素の添加総量が5wt%になるように
秤取したIr−2Rh−3Ru系合金これらの三元系合
金を準備し、アルゴンアーク溶解法によりボタン状に溶
製した鋳塊を大気中において熱間又は温間加工、例えば
1200乃至1300℃に加熱した状態で1パス 0.1%の圧延率
で熱間圧延を施し、圧延に伴う圧延材側面に肉眼的に認
められる割れ発生が生じるまでの加工度(%)を求めて
展延性を評価し、その後、板厚が 0.5〜 0.01mm 程度の
薄板から箔に至るまで圧延加工を施しながら、その圧延
加工性を調べた。その結果を図3に例示する。又、この
熱間加工により得られた例えば板厚が 0.5mmの薄板を用
いて酸化消耗が最も激しくなる大気中における1050℃を
選び、20時間までの酸化消耗量を調べ、その結果を図4
に例示する。The base pure iridium contains 15 wt% of rhodium as a second element and 15 wt% of platinum as a third element, and the total amount of addition of the third element and the second element is based on pure iridium. Ir weighed to 30 wt%
Rhodium (2 wt%) as a second element and ruthenium (3 wt%) as a third element are added to a -15Rh-15Pt-based alloy and pure iridium as a base, respectively, and weighed so that the total addition amount of both elements is 5 wt%. To the obtained Ir-2Rh-3Ru-based alloy and pure iridium as a base, 2 wt% of rhodium as a second element and 3 wt% of rhenium as a third element are added, respectively, and the total added amount of both elements becomes 5 wt%. Ir-2Rh-3Ru-based alloys weighed as described above, these ternary alloys are prepared, and a button-shaped ingot produced by an argon arc melting method is hot or warm worked in the air, for example.
Hot rolling is performed at a rolling rate of 0.1% per pass in a state of heating to 1200 to 1300 ° C, and the workability (%) until the occurrence of cracks visually recognized on the side of the rolled material due to rolling is determined. The ductility was evaluated, and then the rolling processability was examined while rolling from a thin plate having a thickness of about 0.5 to 0.01 mm to a foil. The result is illustrated in FIG. Also, using a thin plate with a thickness of 0.5 mm, for example, obtained by this hot working, 1050 ° C in the atmosphere where the oxidative consumption is the most severe was selected, and the amount of oxidative consumption up to 20 hours was examined.
An example is shown below.
【0023】又、ベースとなる純イリジウムに、第二元
素としてロジウム10wt%、第三元素としてモリブデン1
wt%を夫々添加し、その両元素の添加総量が純イリジウ
ムに対し11wt%になるように秤取したIr−10Rh−1
Mo系合金、又、ベースとなる純イリジウムに、第二元
素としてロジウム2wt%、第三元素としてクロム3wt%
を夫々添加し、その両元素の添加総量が5wt%になるよ
うに秤取したIr−2Rh−3Cr系合金、又、ベース
となる純イリジウムに、第二元素としてロジウム2wt
%、第三元素としてバナジウム3wt%を夫々添加しその
両元素の添加総量が5wt%になるように秤取したIr−
2Rh−3V系合金これらの三元系合金を準備し、アル
ゴンアーク溶解法によりボタン状に溶製した鋳塊を前述
した大気中において1200乃至1300℃に加熱した状態での
熱間圧延による展延性と、大気中において酸化が最も激
しくなる1050℃における酸化消耗量においても夫々調べ
た。Also, pure iridium serving as a base contains 10 wt% of rhodium as a second element and molybdenum 1 as a third element.
wt-10%, respectively, and Ir-10Rh-1 was weighed so that the total amount of addition of both elements was 11 wt% with respect to pure iridium.
Mo-based alloy, pure iridium as a base, 2 wt% rhodium as a second element, 3 wt% chromium as a third element
Was added, and Ir-2Rh-3Cr-based alloy weighed so that the total amount of both elements was 5 wt%, or pure iridium as a base, and 2 wt% of rhodium as a second element.
%, And 3% by weight of vanadium as a third element, respectively, and Ir- weighed so that the total addition amount of both elements was 5% by weight.
2Rh-3V alloys These ternary alloys were prepared and spreadable by hot rolling in a state in which the ingot melted in a button shape by the argon arc melting method was heated to 1200 to 1300 ° C. in the above-mentioned atmosphere. And the amount of oxidation depletion at 1050 ° C., where oxidation is most severe in the atmosphere, was also examined.
【0024】図3から明らかなように、三元系の各合金
の割れ発生までの加工度(%)は純イリジウムよりも改
善され、薄板から箔に至るまでの圧延加工が可能である
事が分かる。つまり、本実施例で得られた各イリジウム
基三元系合金は粘性が改善され、加工性を向上させる上
で要求される展延性に優れている事が明らかになった。
又、図4から明らかなように、純イリジウムは酸化消耗
が激しいが、得られた総ての三元系合金は酸化消耗が抑
えられている事が分かる。つまり、酸化に対する安定被
膜が表面に生成され、純イリジウムの耐酸化性が改善さ
れる。従って、本実施例で得られたイリジウム基三元系
合金は大気中において特に酸化消耗が最も激しい1050℃
の温度範囲での酸化の進行が抑えられた優れた耐酸化性
を有することが明らかになった。As is clear from FIG. 3, the working ratio (%) of each of the ternary alloys until cracking is improved as compared with pure iridium, and it is possible to perform rolling from a thin plate to a foil. I understand. In other words, it was found that each iridium-based ternary alloy obtained in this example has improved viscosity and excellent ductility required for improving workability.
Further, as is clear from FIG. 4, pure iridium is severely oxidized and consumed, but all the obtained ternary alloys are suppressed in oxidized consumption. That is, a stable film against oxidation is formed on the surface, and the oxidation resistance of pure iridium is improved. Therefore, the iridium-based ternary alloy obtained in this example is the most severely oxidized in air at 1050 ° C.
It has been found that the composition has excellent oxidation resistance in which the progress of oxidation in the temperature range is suppressed.
【0025】従って、請求項3乃至4に係る本発明で得
られたIr−15Rh−15Pt系合金、Ir−10Rh−1
Mo系合金、Ir−2Rh−3Ru系合金、Ir−2R
h−3Ru系合金、Ir−2Rh−3Cr系合金、Ir
−2Rh−3V系合金、これら総てのイリジウム基三元
系合金は、大気中において1200乃至1300℃に加熱した状
態での加工性を向上させる上で要求される展延性に優
れ、しかも大気中において純イリジウムの酸化消耗が最
も激しくなる1050℃における耐酸化性に優れていること
が明らかになった。Accordingly, the Ir-15Rh-15Pt-based alloy and Ir-10Rh-1 obtained by the present invention according to claims 3 and 4 are provided.
Mo-based alloy, Ir-2Rh-3Ru-based alloy, Ir-2R
h-3Ru alloy, Ir-2Rh-3Cr alloy, Ir
-2Rh-3V-based alloys, and all of these iridium-based ternary alloys, have excellent spreadability required for improving workability in a state of being heated to 1200 to 1300 ° C. in the air, and have an excellent It was found that the iridium was excellent in oxidation resistance at 1050 ° C, where oxidation erosion of pure iridium was most severe.
【0026】[0026]
【発明の効果】本発明のイリジウム基合金は叙上の如く
構成してなるから、下記の作用効果を奏する。 .従来から知られている例えばニッケル基合金と比較
しても1100℃以上の高温域での耐熱材料として要求され
る高温における強度(耐力)、耐酸化性に優れているこ
とから、エネルギー効率の向上、材料の強化による薄肉
化、小型化が期待できる。従って、請求項1乃至2に係
る本発明のイリジウム基二元系合金によれば、エネルギ
ー効率の向上、そして材料の強化による薄肉化、機器の
小型化、寿命の延長が図られる。しかも、展延性が優れ
ていることから、塑性加工が容易となり、展伸材として
の用途範囲の拡張が期待でき、有益且つ実用上の効果を
大きく期待することができる。更に、従来の耐熱材料で
は使用できなかった1100℃以上の温度を越えた用途が開
けることから、用途範囲の拡張による経済的効果も大き
い等の数々の効果を期待することができる。Since the iridium-based alloy of the present invention is constituted as described above, the following effects can be obtained. . Improved energy efficiency due to superior strength (proof stress) and oxidation resistance at high temperatures required as a heat-resistant material at high temperatures of 1100 ° C or higher even compared to conventionally known nickel-based alloys, for example In addition, thinning and miniaturization can be expected by strengthening the material. Therefore, according to the iridium-based binary alloy of the present invention according to claims 1 and 2, improvement in energy efficiency, reduction in thickness by strengthening materials, downsizing of equipment, and extension of life are achieved. Moreover, since the extensibility is excellent, plastic working is facilitated, the range of application as an extensible material can be expected, and useful and practical effects can be greatly expected. Further, since applications exceeding the temperature of 1100 ° C. or more, which cannot be used with conventional heat-resistant materials, are opened, various effects such as a large economic effect by expanding the application range can be expected.
【0027】.大気中若しくは燃焼ガス雰囲気中のお
いて酸化消耗が最も激しくなる 800〜1050℃における純
イリジウムの特性が、第二元素のロジウムの添加、そし
て第三元素の白金、ルテニウム、レニウム、クロム、バ
ナジウム、モリブデンこれらいずれか一種の固溶範囲内
(単相)での添加によって大きく改善され、1100℃以上
の高温域での耐熱材料として要求される高温における耐
酸化性にも優れ、そして展延性に優れた固溶体硬化型の
イリジウム基三元系合金が得られる。従って、請求項3
乃至4に係る本発明のイリジウム基三元系合金よれば、
800〜1050℃の高温における耐酸化性に優れていること
から、耐熱材料としての用途範囲の拡張が期待できる。
しかも、耐熱材料としての耐酸化性に加えて、塑性加工
を図る上で要求される展延性においても優れている事か
ら、材料の薄肉化が期待できる。例えば板厚が 0.5〜
0.01mm 程度の薄板から箔までの加工が可能となる。よ
って、展伸材としての用途範囲の拡張も期待できること
から、その用途範囲の拡張による経済的効果の期待が大
きい等の数々の効果も期待することができる。[0027] The characteristics of pure iridium at 800 to 1050 ° C, at which oxidation depletion is most severe in the atmosphere or in a combustion gas atmosphere, are the addition of rhodium as the second element, and platinum, ruthenium, rhenium, rhenium, chromium, vanadium, and the third element. Molybdenum Molybdenum is greatly improved by the addition of any one of these in the solid solution range (single phase), and has excellent oxidation resistance at high temperatures required as a heat-resistant material at high temperatures above 1100 ° C, and excellent spreadability. Thus, a solid solution hardening type iridium-based ternary alloy can be obtained. Therefore, claim 3
According to the iridium-based ternary alloy of the present invention according to
Since it has excellent oxidation resistance at a high temperature of 800 to 1,050 ° C., it can be expected to expand the range of applications as a heat-resistant material.
Moreover, in addition to the oxidation resistance as a heat-resistant material, the extensibility required for plastic working is excellent, so that the material can be expected to be thinner. For example, when the thickness is 0.5 ~
Processing from thin sheets of about 0.01mm to foil becomes possible. Therefore, since the range of application as the wrought material can be expected to be expanded, a number of effects such as a large expectation of the economic effect by expanding the range of application can be expected.
【図1】 請求項1乃至2に係る本発明イリジウム基合
金の一例で、イリジウムの硬さに及ぼす第二元素の影響
を示したグラフFIG. 1 is a graph showing the effect of a second element on the hardness of iridium in one example of the iridium-based alloy according to the present invention according to claim 1 or 2;
【図2】 請求項1乃至2に係る本発明イリジウム基合
金の一例で、1500℃の暴露試験における経時に伴う重量
変化を示したグラフFIG. 2 is a graph showing a change in weight with time in an exposure test at 1500 ° C. for an example of the iridium-based alloy of the present invention according to claim 1 or 2;
【図3】 請求項3乃至4に係る本発明イリジウム基三
元系合金の一例で、1200℃に加熱した状態で熱間圧延を
した場合における肉眼的に圧延材の側面に割れが認めら
れるまでの加工度(%)と添加総量(wt%)との関係を
示したグラフFIG. 3 is an example of the iridium-based ternary alloy according to the present invention according to claims 3 and 4, wherein hot rolling is performed at 1200 ° C. until cracks are visually recognized on the side surface of the rolled material. Graph showing the relationship between the degree of processing (%) and the total amount of addition (wt%)
【図4】 請求項3乃至4に係る本発明イリジウム基三
元系合金の一例で、酸化消耗が最も激しくなる1050℃に
おける酸化消耗量と暴露時間との関係を示したグラフFIG. 4 is a graph showing the relationship between the amount of oxidation depletion at 1050 ° C. and the exposure time at which oxidation depletion is most severe, in one example of the iridium-based ternary alloy of the present invention according to claims 3 and 4;
Claims (4)
ジウム、ロジウム、ニオブ、タンタル、ハフニウム、チ
タン、ジルコニウム、イットリウム、ランタン、モリブ
デンこれらいずれか一種からなる第二元素を固溶範囲内
で添加、又は前記第二元素数種を固溶範囲内で複合添加
してなることを特徴とするイリジウム基合金。A second element composed of any one of platinum, palladium, rhodium, niobium, tantalum, hafnium, titanium, zirconium, yttrium, lanthanum, and molybdenum is added to iridium as a base within a solid solution range, or An iridium-based alloy obtained by adding several kinds of the second elements in a solid solution range.
て、 白金、パラジウム、ロジウム、ニオブ、タンタル、ハフ
ニウム、チタン、ジルコニウム、イットリウム、ランタ
ン、モリブデンこれらいずれか一種からなる第二元素の
添加量を、又は前記第二元素数種の添加総量を夫々 0.1
〜50wt%の固溶範囲内に抑えたことを特徴とするイリジ
ウム基合金。2. The iridium-based alloy according to claim 1, wherein the amount of addition of the second element comprising one of platinum, palladium, rhodium, niobium, tantalum, hafnium, titanium, zirconium, yttrium, lanthanum, and molybdenum is: Alternatively, the total amount of addition of the several kinds of the second element is 0.1
An iridium-based alloy characterized in that the solid solution is controlled within a solid solution range of 50 wt%.
してロジウムを添加し、更に第三元素として白金、ルテ
ニウム、レニウム、クロム、バナジウム、モリブデンこ
れらいずれか一種を固溶範囲内で添加し、この第三元素
及び前記第二元素の添加総量が固溶範囲内であることを
特徴とするイリジウム基合金。3. Rhodium as a second element is added to iridium as a base, and one of platinum, ruthenium, rhenium, chromium, vanadium, and molybdenum is added as a third element within a solid solution range. An iridium-based alloy, wherein the total addition amount of the third element and the second element is within a solid solution range.
て、 第二元素のロジウムを 0.1〜30wt%の範囲内で添加し、
更に第三元素の白金、ルテニウム、レニウム、クロム、
バナジウム、モリブデンこれらいずれか一種を0.1〜20w
t%の固溶範囲内で添加し、この第三元素と前記第二元
素との添加総量が 0.2〜50wt%の固溶範囲内であること
を特徴とするイリジウム基合金。4. The iridium-based alloy according to claim 3, wherein rhodium as a second element is added within a range of 0.1 to 30 wt%.
Furthermore, the third elements platinum, ruthenium, rhenium, chromium,
Vanadium, molybdenum 0.1 to 20w
An iridium-based alloy, which is added within a solid solution range of t%, and a total addition amount of the third element and the second element is within a solid solution range of 0.2 to 50 wt%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09117132A JP3135224B2 (en) | 1996-05-10 | 1997-05-07 | Iridium-based alloy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-116152 | 1996-05-10 | ||
JP11615296 | 1996-05-10 | ||
JP09117132A JP3135224B2 (en) | 1996-05-10 | 1997-05-07 | Iridium-based alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10259435A true JPH10259435A (en) | 1998-09-29 |
JP3135224B2 JP3135224B2 (en) | 2001-02-13 |
Family
ID=26454528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09117132A Expired - Lifetime JP3135224B2 (en) | 1996-05-10 | 1997-05-07 | Iridium-based alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3135224B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0992614A1 (en) * | 1998-10-02 | 2000-04-12 | Asea Brown Boveri AG | Coatings for turbine components |
JP2002327266A (en) * | 2001-04-27 | 2002-11-15 | Furuya Kinzoku:Kk | Iridium alloy target material for forming thin film |
CN1294286C (en) * | 2005-04-20 | 2007-01-10 | 北京航空航天大学 | Iridium hafnium niobium high temperature alloy materials and method for preparing same |
WO2007006513A1 (en) * | 2005-07-11 | 2007-01-18 | W.C. Heraeus Gmbh | Doped iridium with improved high-temperature properties |
WO2007091576A1 (en) * | 2006-02-09 | 2007-08-16 | Japan Science And Technology Agency | Iridium-based alloy with high heat resistance and high strength and process for producing the same |
JP2008150705A (en) * | 2006-11-22 | 2008-07-03 | National Institute For Materials Science | PtTi BASED HIGH TEMPERATURE SHAPE MEMORY ALLOY |
US7481971B2 (en) * | 2002-07-13 | 2009-01-27 | Johnson Matthey Public Limited Company | Iridium alloy |
EP2184264A1 (en) | 2006-01-24 | 2010-05-12 | Schott AG | Method and device for bubble-free transportation, homogenisation and conditioning of molten glass |
JP4927955B2 (en) * | 2007-01-31 | 2012-05-09 | ユラ・テック・カンパニー・リミテッド | Spark plug |
DE102006003521B4 (en) * | 2006-01-24 | 2012-11-29 | Schott Ag | Apparatus and method for the continuous refining of glasses with high purity requirements |
US8613788B2 (en) | 2009-06-29 | 2013-12-24 | Heraeus Materials Technology Gmbh & Co. Kg | Increasing the strength of iridium, rhodium, and alloys thereof |
WO2018021028A1 (en) * | 2016-07-25 | 2018-02-01 | 田中貴金属工業株式会社 | Spark plug electrode material |
CN107916339A (en) * | 2017-10-23 | 2018-04-17 | 昆明贵金属研究所 | New platinoiridita yittrium alloy contact material and preparation method thereof |
CN110983095A (en) * | 2019-12-25 | 2020-04-10 | 无锡英特派金属制品有限公司 | Method for compounding dispersion-strengthened platinum rhodium and common platinum rhodium |
CN112626539A (en) * | 2020-11-27 | 2021-04-09 | 中氢能源科技(广东)有限公司 | Alloy electrocatalyst for ultra-stable PEM oxygen evolution reaction and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12027826B2 (en) | 2022-10-24 | 2024-07-02 | Federal-Mogul Ignition Llc | Spark plug |
-
1997
- 1997-05-07 JP JP09117132A patent/JP3135224B2/en not_active Expired - Lifetime
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0992614A1 (en) * | 1998-10-02 | 2000-04-12 | Asea Brown Boveri AG | Coatings for turbine components |
JP2002327266A (en) * | 2001-04-27 | 2002-11-15 | Furuya Kinzoku:Kk | Iridium alloy target material for forming thin film |
US7481971B2 (en) * | 2002-07-13 | 2009-01-27 | Johnson Matthey Public Limited Company | Iridium alloy |
CN1294286C (en) * | 2005-04-20 | 2007-01-10 | 北京航空航天大学 | Iridium hafnium niobium high temperature alloy materials and method for preparing same |
WO2007006513A1 (en) * | 2005-07-11 | 2007-01-18 | W.C. Heraeus Gmbh | Doped iridium with improved high-temperature properties |
US7815849B2 (en) | 2005-07-11 | 2010-10-19 | W.C. Heraeus Gmbh | Doped iridium with improved high-temperature properties |
JP2009520109A (en) * | 2005-07-11 | 2009-05-21 | ヴェー ツェー ヘレーウス ゲゼルシャフト ミット ベシュレンクテル ハフツング | Doped iridium with improved high temperature properties |
EP2184264A1 (en) | 2006-01-24 | 2010-05-12 | Schott AG | Method and device for bubble-free transportation, homogenisation and conditioning of molten glass |
DE102006003521B4 (en) * | 2006-01-24 | 2012-11-29 | Schott Ag | Apparatus and method for the continuous refining of glasses with high purity requirements |
US7666352B2 (en) | 2006-02-09 | 2010-02-23 | Japan Science And Technology Agency | Iridium-based alloy with high heat resistance and high strength and process for producing the same |
JP4833227B2 (en) * | 2006-02-09 | 2011-12-07 | 独立行政法人科学技術振興機構 | High heat resistance, high strength Ir-based alloy and manufacturing method thereof |
WO2007091576A1 (en) * | 2006-02-09 | 2007-08-16 | Japan Science And Technology Agency | Iridium-based alloy with high heat resistance and high strength and process for producing the same |
JP2008150705A (en) * | 2006-11-22 | 2008-07-03 | National Institute For Materials Science | PtTi BASED HIGH TEMPERATURE SHAPE MEMORY ALLOY |
JP4927955B2 (en) * | 2007-01-31 | 2012-05-09 | ユラ・テック・カンパニー・リミテッド | Spark plug |
US8613788B2 (en) | 2009-06-29 | 2013-12-24 | Heraeus Materials Technology Gmbh & Co. Kg | Increasing the strength of iridium, rhodium, and alloys thereof |
WO2018021028A1 (en) * | 2016-07-25 | 2018-02-01 | 田中貴金属工業株式会社 | Spark plug electrode material |
CN107916339A (en) * | 2017-10-23 | 2018-04-17 | 昆明贵金属研究所 | New platinoiridita yittrium alloy contact material and preparation method thereof |
CN110983095A (en) * | 2019-12-25 | 2020-04-10 | 无锡英特派金属制品有限公司 | Method for compounding dispersion-strengthened platinum rhodium and common platinum rhodium |
CN112626539A (en) * | 2020-11-27 | 2021-04-09 | 中氢能源科技(广东)有限公司 | Alloy electrocatalyst for ultra-stable PEM oxygen evolution reaction and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3135224B2 (en) | 2001-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1184473B1 (en) | Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof | |
US7169241B2 (en) | Ni-based superalloy having high oxidation resistance and gas turbine part | |
EP0848071B1 (en) | Superalloy compositions | |
EP0208645B1 (en) | Advanced high strength single crystal superalloy compositions | |
JPH10259435A (en) | Iridium base alloy | |
RU2433197C2 (en) | Heat-resistant nickel-based alloy, part manufacturing method, and turbomachine part | |
JP4036091B2 (en) | Nickel-base heat-resistant alloy and gas turbine blade | |
EP2503013A1 (en) | Heat-resistant superalloy | |
EP2062990A1 (en) | Ni-BASE SINGLE CRYSTAL SUPERALLOY | |
EP1983067A1 (en) | Iridium-based alloy with high heat resistance and high strength and process for producing the same | |
JP3097748B2 (en) | Improved titanium-aluminum alloy | |
EP0732416A1 (en) | Refractory superalloys | |
JP5024797B2 (en) | Cobalt-free Ni-base superalloy | |
JP2005298973A (en) | Nickel based superalloy, composition, article and gas turbine engine blade | |
US5932033A (en) | Silicide composite with niobium-based metallic phase and silicon-modified laves-type phase | |
JP3820430B2 (en) | Ni-based single crystal superalloy, manufacturing method thereof, and gas turbine component | |
US5167732A (en) | Nickel aluminide base single crystal alloys | |
US6582534B2 (en) | High-temperature alloy and articles made therefrom | |
JP4222540B2 (en) | Nickel-based single crystal superalloy, manufacturing method thereof, and gas turbine high-temperature component | |
JP2952924B2 (en) | TiAl-based heat-resistant alloy and method for producing the same | |
JPH0312134B2 (en) | ||
EP1026269A1 (en) | High-melting superalloy and method of producing the same | |
JPH1121645A (en) | Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance | |
JPH10317080A (en) | Ni(nickel)-base superalloy, production of ni-base superalloy, and ni-base superalloy parts | |
JP3393378B2 (en) | High melting point superalloy and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081201 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091201 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101201 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111201 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121201 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131201 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |