JPH10256002A - Manufacture of ceramic resistor - Google Patents

Manufacture of ceramic resistor

Info

Publication number
JPH10256002A
JPH10256002A JP9054619A JP5461997A JPH10256002A JP H10256002 A JPH10256002 A JP H10256002A JP 9054619 A JP9054619 A JP 9054619A JP 5461997 A JP5461997 A JP 5461997A JP H10256002 A JPH10256002 A JP H10256002A
Authority
JP
Japan
Prior art keywords
mol
oxide
magnesium
slurry
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9054619A
Other languages
Japanese (ja)
Other versions
JP3541113B2 (en
Inventor
Moritaka Shoji
守孝 庄司
Hiroshi Kitami
央 北見
Shingo Shirakawa
晋吾 白川
Shigeru Tanaka
田中  滋
Ken Takahashi
高橋  研
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP05461997A priority Critical patent/JP3541113B2/en
Publication of JPH10256002A publication Critical patent/JPH10256002A/en
Application granted granted Critical
Publication of JP3541113B2 publication Critical patent/JP3541113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve workability by reducing the solidification of slurry, and to provide a manufacturing method of a zinc oxide ceramic resistor having improved electric characteristics. SOLUTION: In the manufacturing method of a ceramic resistor which is formed by performing the processes of mixing, granulating, molding and firing, etc., of the power having zinc oxide as the main component and the aluminum oxide (3.0 to 40mol%), magnesium oxide (2.0 to 40mol%) and silicon oxide (0.1 to 10mol%) as additional components, the whole quantity or a part of magnesium oxide is replaced with magnesium nitrate, and the whole quantity of the magnesium oxide and the magnesium nitrate is made equivalent to the original magnesium oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力機器、特に遮
断器及び変圧器におけるセラミック抵抗体の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic resistor in power equipment, particularly in a circuit breaker and a transformer.

【0002】[0002]

【従来の技術】従来の抵抗体として、炭素系、金属ほう
化物系及び酸化亜鉛系がある。この炭素系は、 Al2O3
らなるマトリックス中に炭素粉を分散させた構造を有す
る。そして、該抵抗率は数百Ωcmである。また、金属ほ
う化物系は、金属ほう化物と非還元性ガラスとからなる
焼結体を用いて、温度特性、電流電圧特性及び耐量を兼
ね備えた抵抗体である。 さらに、酸化亜鉛系は、ZnOを
主成分とし、Al2O3、MgOを必須成分として、 SiO2、Y2O
3、Sb2O3、NiO、CaO、SrO、BaO等を少量含む焼結体であ
る。この抵抗率は10〜1000Ωcmであって、適用機器によ
ってこれらの成分を変える。この抵抗体は、優れた電圧
直線性、温度特性及び耐量を有する直線抵抗体である。
2. Description of the Related Art Conventional resistors include carbon, metal boride and zinc oxide. This carbon system has a structure in which carbon powder is dispersed in a matrix composed of Al 2 O 3 . The resistivity is several hundred Ωcm. In addition, the metal boride-based material is a resistor having a temperature characteristic, a current-voltage characteristic, and a withstand capability using a sintered body composed of a metal boride and a non-reducing glass. Further, the zinc oxide system contains ZnO as a main component, Al 2 O 3 and MgO as essential components, and SiO 2 , Y 2 O
3 , a sintered body containing a small amount of Sb 2 O 3 , NiO, CaO, SrO, BaO, etc. The resistivity is 10 to 1000 Ωcm, and these components are changed depending on the application equipment. This resistor is a linear resistor having excellent voltage linearity, temperature characteristics, and resistance.

【0003】そして、酸化亜鉛系の直線抵抗体の製造方
法として、特開平8−102404号公報に開示された
ものがあり、 ZnO、Al2O3、MgOを必須成分とする原料粉
を混合後、有機バインダーを加えて造粒し、金型で成形
した後の成形体を電気炉で焼成し、最後に相対する面に
電極を付けることによって、直線抵抗体を製作するもの
である。
As a method for manufacturing a zinc oxide-based linear resistor, there is a method disclosed in Japanese Patent Application Laid-Open No. 8-102404, in which a raw material powder containing ZnO, Al 2 O 3 and MgO as essential components is mixed. A linear resistor is manufactured by adding an organic binder, granulating the formed product, and forming the formed product in a mold, firing the product in an electric furnace, and finally attaching electrodes to opposing surfaces.

【0004】一方、酸化亜鉛系非直線抵抗体の場合の従
来技術として、スラリーのpH、粘性及び水分量を調整
し、抵抗体の電気特性、特に開閉サージ耐量を改善した
製造方法が、特公平7−109804号公報に開示され
ている。
On the other hand, as a conventional technique in the case of a zinc oxide-based non-linear resistor, a manufacturing method in which the pH, viscosity and moisture content of a slurry is adjusted to improve the electrical characteristics of the resistor, particularly the switching surge withstand capability, is disclosed in Japanese Patent Publication (Kokai). It is disclosed in JP-A-7-109804.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来技術
の酸化亜鉛系直線抵抗体の製造方法においては、 MgOが
アルカリ性のために、原料を湿式混合する工程や造粒す
る工程中にスラリーが凝固し、作業性を損なうばかりで
なく、抵抗体の電気特性をばらつかせる場合がある。即
ち、スラリーが凝固すると、撹拌に手間が掛かる上ノズ
ル穴が詰まって、スラリーが噴霧しなくなる。このとき
は直ちにノズル穴を解体し、洗浄せねばならない。洗浄
が遅れるとスラリーが益々凝固し、スプレードライヤー
に送ることができなくなるので、素早く処置後再セット
し始めからの操作手順により再噴霧するという難しさが
ある。しかもこのような凝固気味の造粒粉を用いると、
焼結体の成分分布が不均一になって、抵抗体の抵抗値及
び耐量等の電気特性がばらつき、歩留りに影響する。
However, in the above-mentioned conventional method for producing a zinc oxide linear resistor, MgO is alkaline, so that the slurry solidifies during the step of wet mixing the raw materials and the step of granulating. However, not only does the workability deteriorate, but also the electrical characteristics of the resistor may vary. That is, when the slurry solidifies, the upper nozzle hole, which takes time for stirring, is clogged, and the slurry is not sprayed. In this case, the nozzle hole must be immediately dismantled and cleaned. If the washing is delayed, the slurry is more and more solidified and cannot be sent to the spray drier. Therefore, there is a difficulty in that the slurry is quickly re-sprayed according to the operation procedure from the beginning after the treatment is reset. Moreover, using such a coagulated granulated powder,
The component distribution of the sintered body becomes non-uniform, and the electrical characteristics such as the resistance value and the withstand amount of the resistor vary, which affects the yield.

【0006】従って、本発明の目的は、生産性が向上す
るセラミック抵抗体の製造方法を提供することにある。
Accordingly, it is an object of the present invention to provide a method of manufacturing a ceramic resistor having improved productivity.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するセラ
ミック抵抗体の製造方法は、酸化亜鉛を主成分とし、3.
0〜40(モル%)の酸化アルミニウムと,2.0〜40(モル%)
の酸化マグネシウムと,0.1〜10(モル%)の酸化珪素と
を添加成分とする粉体を混合してスラリーを作る混合工
程と、該スラリーを造粒して造粒粉を作る造粒工程と、
該造粒粉を成形する成形工程と、該成形体を焼成する焼
成工程とを経て直線抵抗体を製造するセラミック抵抗体
の製造方法であって、前記混合工程の前記酸化マグネシ
ウムの全量(モル%)または一部(モル%)を硝酸マグネシ
ウムに置換し、前記酸化マグネシウムと前記硝酸マグネ
シウムとの総量を元の当該酸化マグネシウムに等量とす
るものである。
A method of manufacturing a ceramic resistor which achieves the above object comprises zinc oxide as a main component and 3.
0-40 (mol%) aluminum oxide and 2.0-40 (mol%)
Magnesium oxide, and 0.1-10 (mol%) silicon oxide
A mixing step of mixing a powder having the additive component to form a slurry, and a granulating step of granulating the slurry to form a granulated powder,
A method of manufacturing a ceramic resistor for manufacturing a linear resistor through a forming step of forming the granulated powder and a firing step of firing the molded body, wherein the total amount (mol%) of the magnesium oxide in the mixing step is ) Or a part (mol%) is replaced by magnesium nitrate, and the total amount of the magnesium oxide and the magnesium nitrate is made equal to the original magnesium oxide.

【0008】また、主成分の一部としての「0〜30(モル
%)の酸化亜鉛」と、 添加成分としての「3.0〜40(モル
%)の酸化アルミニウム,2.0〜40(モル%)の酸化マグネ
シウム及び0.1〜10(モル%)の酸化珪素」とを混合して添
加物スラリーを作る添加物混合工程と、該添加物スラリ
ーを乾燥しその後仮焼して仮焼粉を作る工程と、該仮焼
粉と前記主成分の残量とを混合してスラリーを作る混合
工程と、該スラリーを造粒して造粒粉を作る造粒工程
と、該造粒粉を成形する成形工程と、該成形体を焼成す
る焼成工程とを経て直線抵抗体を製造するセラミック抵
抗体の製造方法であって、 前記添加物混合工程の前記
酸化マグネシウムの全量(モル%)または一部(モル%)を
硝酸マグネシウムに置換し、 前記酸化マグネシウムと
前記硝酸マグネシウムとの総量を元の当該酸化マグネシ
ウムに等量とするものであっても良い。
Further, “0 to 30 (mol%) of zinc oxide” as a part of the main component, and “3.0 to 40 (mol%) of aluminum oxide, 2.0 to 40 (mol%)” as additional components. An additive mixing step of mixing magnesium oxide and 0.1 to 10 (mol%) silicon oxide to form an additive slurry, a step of drying the additive slurry, and then calcining to form a calcined powder; A mixing step of mixing the calcined powder and the remaining amount of the main component to form a slurry, a granulating step of granulating the slurry to form a granulated powder, and a forming step of forming the granulated powder. And a firing step of firing the molded body to produce a linear resistor through the firing step, wherein the total amount (mol%) or a part (mol%) of the magnesium oxide in the additive mixing step Is replaced with magnesium nitrate, and based on the total amount of the magnesium oxide and the magnesium nitrate, May be equivalent to the magnesium oxide.

【0009】そして、置換する前記硝酸マグネシウムの
量は、元の前記酸化マグネシウムの量の半分を越えない
ことが望ましい。 本発明によれば、マグネシウム原
料粉としての酸化マグネシウムの全量或いは一部を硝酸
マグネシウムに等量置換すると、混合工程中のスラリー
は酸性化傾向を示し凝固が回避される知見により、作業
性や歩留りの向上が図られる。
It is desirable that the amount of the magnesium nitrate to be replaced does not exceed half of the original amount of the magnesium oxide. According to the present invention, when the whole or a part of the magnesium oxide as the magnesium raw material powder is replaced with an equal amount of magnesium nitrate, the slurry during the mixing step tends to acidify and the coagulation is avoided, so that the workability and the yield are improved. Is improved.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。通常の酸化亜鉛系抵抗体では、 酸化アル
ミニウム(Al2O3に換算したもの)は、酸化亜鉛と反応し
て副化合物結晶粒を形成し電気抵抗を高めるために、
3.0〜40(モル%)添加する。 酸化マグネシウム(MgOに換
算したもの)は、電気抵抗を高め且つ抵抗温度係数を正
に転化するために、2.0〜40(モル%)添加する。 更に、
酸化珪素(SiO2に換算したもの)は、成形体の焼結性を高
めるために、0.1〜10(モル%)添加する。残量は、酸化
亜鉛(ZnOに換算したもの)であり、即ち、酸化亜鉛を主
成分(50モル%を越える量)としている。 従って、添加
成分の総量は、50(モル%)を越えない量である。
Embodiments of the present invention will be described below. In a normal zinc oxide-based resistor, aluminum oxide (converted to Al 2 O 3 ) reacts with zinc oxide to form sub-compound crystal grains and increase electrical resistance.
3.0 to 40 (mol%) is added. Magnesium oxide (converted to MgO) is added in an amount of 2.0 to 40 (mol%) in order to increase electric resistance and convert the temperature coefficient of resistance to positive. Furthermore,
Silicon oxide (converted to SiO 2 ) is added in an amount of 0.1 to 10 (mol%) in order to enhance the sinterability of the molded body. The remaining amount is zinc oxide (converted to ZnO), that is, zinc oxide as the main component (an amount exceeding 50 mol%). Therefore, the total amount of the added components does not exceed 50 (mol%).

【0011】その他、焼結性及び電気特性を高めるため
に、酸化イットリウム,酸化アンチモン,酸化ニッケ
ル,酸化カルシウム,酸化ストロンチウム,酸化バリウ
ム等を添加する。また、酸化カルシウム,酸化ストロン
チウム,酸化バリウムは耐量を改善するために少量添加
するのが望ましい。上記酸化アンチモンまたは酸化ニッ
ケルは電気特性も含めて改善するものである。
In addition, yttrium oxide, antimony oxide, nickel oxide, calcium oxide, strontium oxide, barium oxide and the like are added to improve sinterability and electric characteristics. Also, it is desirable to add a small amount of calcium oxide, strontium oxide, and barium oxide in order to improve the resistance. The above-mentioned antimony oxide or nickel oxide improves the electric characteristics and the like.

【0012】そして、上記成分割合にある材料(酸化物
粉体)を混合し作製する酸化亜鉛系抵抗体において、本
発明者等は、特公平7-109804号の開示技術を参考とし
て、スラリーの混合及び造粒する際に酢酸を添加してp
Hを下げてみたが、酸化亜鉛系抵抗体ではスラリーの凝
固に関しては改善されなかった。この原因は、混合中に
スラリーの粘度を調節するためにスラリー温度が上昇
し、酢酸が蒸発することにあると判明した。
In addition, in a zinc oxide-based resistor manufactured by mixing materials (oxide powders) having the above component ratios, the present inventors have made reference to the technology disclosed in Japanese Patent Publication No. Add acetic acid during mixing and granulation
Although H was lowered, the solidification of the slurry was not improved with the zinc oxide-based resistor. This was found to be due to the fact that the temperature of the slurry increased during mixing to adjust the viscosity of the slurry, and that the acetic acid evaporated.

【0013】そこで、本発明者等は、マグネシウム原料
粉としての酸化マグネシウム(MgOに換算したもの)の全
量または一部を、 硝酸マグネシウムに置換して添加す
ると、混合工程中のスラリーの凝固が改善されることを
見出した。そして、スラリーの凝固が回避されると焼結
体の均一性が確保され、電気特性のばらつき低減に結び
付くことも見出した。上記硝酸マグネシウムとしては、
市販されている硝酸マグネシウム・六水和物Mg(NO3)2・6H
2O(モル%)を用いた。
Therefore, the present inventors have proposed that, when magnesium oxide (converted to MgO) as a raw material powder is entirely or partially replaced with magnesium nitrate, the solidification of the slurry during the mixing step is improved. Found to be. It has also been found that, when the solidification of the slurry is avoided, the uniformity of the sintered body is ensured, which leads to a reduction in variation in electrical characteristics. As the above magnesium nitrate,
Commercially available magnesium nitrate has hexahydrate Mg (NO 3) 2 · 6H
2 O (mol%) was used.

【0014】一方、焼成温度は、1100〜1300(℃)の範囲
が適当である。即ち、この焼成温度の範囲であれば、最
終的には添加した硝酸マグネシウムが分解して酸化マグ
ネシウムに転化するからである。 尚、硝酸マグネシウ
ム・六水和物では400(℃)でMgOが生成するので、前記焼
成温度の範囲では、十分MgOに転化する。
On the other hand, the firing temperature is suitably in the range of 1100 to 1300 (° C.). That is, within the range of the calcination temperature, the added magnesium nitrate is finally decomposed and converted into magnesium oxide. Since magnesium oxide is generated at 400 (° C.) in magnesium nitrate hexahydrate, it is sufficiently converted to MgO within the above-mentioned firing temperature range.

【0015】以上を纏めれば、本発明によるセラミック
抵抗体の製造方法の特徴は、酸化亜鉛を主成分とし、酸
化アルミニウムがAl2O3に換算して3.0〜40(モル%)と,
酸化マグネシウムがMgOに換算して2.0〜40(モル%)と,
酸化珪素がSiO2に換算して0.1〜10(モル%)とを添加成
分とする粉体を、 混合した後に造粒,成形,焼成(電極付
け)などによって作製するセラミック抵抗体の製造方法
において、 混合時に酸化マグネシウムの代わりに、当
該酸化マグネシウムに等量(モル%)の硝酸マグネシウム
を置換して添加する点にある。
In summary, the method of manufacturing a ceramic resistor according to the present invention is characterized in that zinc oxide is a main component and aluminum oxide is 3.0 to 40 (mol%) in terms of Al 2 O 3 .
Magnesium oxide is converted to MgO from 2.0 to 40 (mol%),
In a method for manufacturing a ceramic resistor, a powder containing 0.1 to 10 (mol%) of silicon oxide in terms of SiO 2 as an additional component is mixed, and then granulated, molded, fired (with electrodes), and the like. The point is that, instead of magnesium oxide during mixing, an equivalent amount (mol%) of magnesium nitrate is substituted for the magnesium oxide and added.

【0016】換言すれば、本発明によるセラミック抵抗
体の製造方法の他の特徴は、 「焼成を含む工程において
酸化マグネシウム(MgO)に転化し 且つ酸性化傾向を示す
マグネシウム化合物系材」を、混合工程において酸化マ
グネシウム(MgO)の等量と置換添加することにあると言
える。そして、上記「マグネシウム化合物系材」として、
硝酸マグネシウム・六水和物(Mg(NO3)2・6H2O)を見い出し
たものである。
In other words, another feature of the method for manufacturing a ceramic resistor according to the present invention is that a “magnesium compound-based material that is converted to magnesium oxide (MgO) in a process including sintering and has a tendency to acidify” is mixed. It can be said that in the process, substitution replacement with an equivalent amount of magnesium oxide (MgO) is performed. And, as the “magnesium compound-based material”,
It has been found magnesium nitrate hexahydrate (Mg (NO 3 ) 2 .6H 2 O).

【0017】以下の具体的な実施例(即ち、代表的な例)
を示して本発明について詳説する。 [実施例1]原料粉の元の組成は、 添加成分( 必須成
分)として、 Al2O3が10.0(モル%)、SiO2が3.0(モル
%)、MgOが5.0(モル%)、主成分として、ZnOが残量82
(モル%)とした。 この5.0(モル%)のMgOの全量または
一部と置換する硝酸マグネシウム(Mg(NO3)2・6H2O)を、
0.5,1.0,2.0,3.0,4.0および全量5.0(モル%)の6通
りとした。尚、硝酸マグネシウムが零(モル%)は、従来
例と同じである。 また、MgOとMg(NO3)2・6H2Oとの総量
は元のMgO量の5(モル%)と等量になっている。
The following specific examples (ie, representative examples)
The present invention will be described in detail with reference to FIG. [Example 1] The original composition of the raw material powder was as follows: Al 2 O 3 was 10.0 (mol%), SiO 2 was 3.0 (mol%), MgO was 5.0 (mol%), As a component, the remaining amount of ZnO is 82
(Mol%). Magnesium nitrate (Mg (NO 3 ) 2 .6H 2 O) which replaces all or part of the 5.0 (mol%) MgO,
There were six types: 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 (mol%). The case where the content of magnesium nitrate is zero (mol%) is the same as that of the conventional example. The total amount of MgO and Mg (NO 3 ) 2 .6H 2 O is equivalent to 5 (mol%) of the original MgO amount.

【0018】次ぎに、これらの原料粉と一緒に有機バイ
ンダー及び消泡剤を、順次ディスパーミルに投入して撹
拌し、 即ち、粉体を混合してスラリーを作る混合工程
(前述の湿式混合する工程)を経て、スラリーにした。
スラリーの固形分濃度は55〜65(%)、 サンプルスラ
リーのpHは5.5〜10、粘度は20〜25(Pa・s)であった。
混合終了後、スラリーは直ちにスラリータンクに貯蔵さ
れ、造粒粉を作る造粒工程において、スプレードライヤ
ーで造粒した。この造粒粉を直径50(mm)、厚さ11(mm)に
金型で成形した。 この成形体は、350〜550(℃)間の温
度に1時間保持してバインダー抜きした。 次いでこれ
を電気炉に入れ、1100〜1250(℃)の温度に4時間保持し
て焼成した。最後に焼結体の両面を研磨し、アルミニウ
ムを溶射して電極を付けた。
Next, an organic binder and an antifoaming agent are sequentially put into a disper mill together with these raw material powders and stirred, that is, a mixing step of mixing the powders to form a slurry.
Through the above-mentioned wet mixing step, a slurry was obtained.
The solid content concentration of the slurry was 55 to 65 (%), the pH of the sample slurry was 5.5 to 10, and the viscosity was 20 to 25 (Pa · s).
After the completion of mixing, the slurry was immediately stored in a slurry tank, and granulated by a spray drier in a granulating step of forming granulated powder. This granulated powder was molded with a mold to a diameter of 50 (mm) and a thickness of 11 (mm). The molded body was held at a temperature between 350 and 550 (° C.) for 1 hour to remove the binder. Next, this was placed in an electric furnace and calcined while being kept at a temperature of 1100 to 1250 (° C.) for 4 hours. Finally, both surfaces of the sintered body were polished, and aluminum was sprayed to attach electrodes.

【0019】表1には、各スラリーのpH及びノズル穴
の詰まり並びに各抵抗体の電気抵抗の不合格率及び耐量
(を表わす通電時間)を比較した。 ノズル穴の詰まり
は、100(kg)のスラリーを造粒したときに起った回数、
電気抵抗の不合格率は、抵抗値の合格範囲から外れたも
のの割合、通電時間(耐量)は、39(Ω)の抵抗体に3.5(A)
の交流電流を流したとき熱暴走するまでの時間である。
なお、酸化マグネシウム及び硝酸マグネシウムの量(モ
ル%)を併記した。
Table 1 shows the pH of each slurry, the clogging of the nozzle hole, the rejection rate and the resistance of the electric resistance of each resistor.
(Indicating the energizing time). The number of times nozzle nozzle clogging occurred when granulating 100 (kg) slurry,
The rejection rate of the electrical resistance is the ratio of those that are out of the acceptable range of the resistance value, and the energization time (withstand capacity) is 3.5 (A) for the 39 (Ω) resistor
This is the time until the thermal runaway occurs when an AC current is applied.
The amounts (mol%) of magnesium oxide and magnesium nitrate are also shown.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から、実施例1〜6は、従来例1と比
べて、スラリーのpHがアルカリ性から酸性に転化する
あるいは酸性に近づくという酸性化傾向を示し、ノズル
穴の詰まりの回数が少なくなり、メンテナンス(保守性)
を含めて、混合する工程や造粒する工程の作業性の向上
に結び付くことが判った。また、焼結体の成分分布がよ
り均一になって、抵抗体の電気抵抗の不合格率が低減
し、即ち、電気特性が均一で歩留りが良くなることが確
認された。
From Table 1, it can be seen that Examples 1 to 6 show an acidification tendency in which the pH of the slurry is converted from alkaline to acidic or approaches acidic, and the number of clogging of the nozzle hole is smaller than that of Conventional Example 1. And maintenance (maintainability)
It has been found that this leads to an improvement in the workability of the mixing step and the granulation step. Further, it was confirmed that the component distribution of the sintered body became more uniform, and the rejection rate of the electrical resistance of the resistor was reduced, that is, the electrical characteristics were uniform and the yield was improved.

【0022】一方、通電時間に関しては、実施例1〜6
は従来例より劣ることが判った。この原因は、硝酸マグ
ネシウムを添加すると抵抗温度係数が小さくなるためで
あると推考される。そして、耐量を含めた総合評価につ
いて、抵抗体の用途や補足データ等を考慮して行った結
果、実施例1〜3の範囲の硝酸マグネシウムの置換量
(モル%)が実用的であると判断された。即ち、酸化マグ
ネシウムと置換する硝酸マグネシウムの量(モル%)は、
酸化マグネシウムの半分(1/2)以下が望ましいと言え
る。 このように、本実施例は、従来例より生産性(作業
性,歩留り,保守性など)に優れることが理解される。
On the other hand, with respect to the energization time,
Was inferior to the conventional example. This is presumed to be because the temperature coefficient of resistance decreases when magnesium nitrate is added. Then, the overall evaluation including the withstand amount was performed in consideration of the use of the resistor, supplementary data, and the like.
(Mol%) was determined to be practical. That is, the amount (mol%) of magnesium nitrate to be replaced with magnesium oxide is
It can be said that half (1/2) or less of magnesium oxide is desirable. Thus, it is understood that the present embodiment is superior in productivity (workability, yield, maintainability, and the like) to the conventional example.

【0023】[実施例2]実施例2は、2段階に分けて
混合する場合である。主成分としての酸化亜鉛の「一部
としてのZnO 5.0(モル%)」と、 添加成分としての「Al2O
3 5.0(モル%)と、SiO2 2.0(モル%)と、MgO 6.0(モル
%)と、 そしてMgOと置換したMg(NO3)2・6H2O 1.0(モル
%)」とを混合する添加物混合工程にて、添加物スラリー
を作った。 この添加物スラリーを乾燥し、その後950〜
1150(℃)間の温度で仮焼した。次ぎに、この仮焼粉19.0
(モル%)と主成分の残量 81.0(モル%)とを有機バイン
ダー及び消泡剤と一緒に、 順次ディスパーミルに投入
して撹拌し、即ち、粉体を混合してスラリーを作る混合
工程を経てスラリーにした。このスラリーは、直ちにス
ラリータンクに貯蔵され、造粒工程において、スプレー
ドライヤーで造粒した。スラリーの固形分濃度は62
(%)、サンプルスラリーのpHは8.5、粘度は21(Pa・s)
であった。
[Embodiment 2] Embodiment 2 is a case where mixing is performed in two stages. "ZnO 5.0 (mol%) as a part" of zinc oxide as a main component and "Al 2 O as an additional component
3 5.0 (mol%), SiO 2 2.0 (mol%), MgO 6.0 (mol%), and Mg (NO 3 ) 2 .6H 2 O 1.0 (mol%) substituted with MgO ” In the additive mixing step, an additive slurry was made. The additive slurry is dried and then 950-
It was calcined at a temperature between 1150 (° C). Next, this calcined powder 19.0
(Mol%) and the remaining amount of the main component, 81.0 (mol%), together with an organic binder and an antifoaming agent, are successively charged into a disper mill and stirred, that is, a mixing step of mixing powder to form a slurry. Into a slurry. This slurry was immediately stored in a slurry tank, and granulated by a spray drier in a granulation step. The solids concentration of the slurry is 62
(%), PH of sample slurry is 8.5, viscosity is 21 (Pa ・ s)
Met.

【0024】この造粒粉を直径110(mm)、厚さ28(mm)に
金型で成形した。この成形体は、500(℃)の温度に1時
間保持してバインダー抜きした。次いでこれを電気炉に
入れ、1150(℃)の温度に4時間保持して焼成した。最後
に、焼結体の両面を研磨し、アルミニウムを溶射して電
極を付けた。
本実施例においては、Mg(NO3)2・6H2Oを添加せず、 MgO
を7.0(モル%)添加した比較例(即ち、従来例)と比べ
て、スラリーの凝固は回避され、また、スラリーのノズ
ル穴の詰まりがなく、作業性が容易であった。しかも、
抵抗体の電気抵抗の合格率が高かった。
The granulated powder was formed into a diameter of 110 (mm) and a thickness of 28 (mm) using a metal mold. The molded body was held at a temperature of 500 (° C.) for 1 hour to remove the binder. Then, it was placed in an electric furnace and calcined while maintaining the temperature at 1150 (° C.) for 4 hours. Finally, both surfaces of the sintered body were polished, and aluminum was sprayed to attach electrodes.
In this example, Mg (NO 3 ) 2 .6H 2 O was not added, and MgO
In comparison with the comparative example (i.e., the conventional example) in which 7.0 (mol%) was added, solidification of the slurry was avoided, the nozzle holes of the slurry were not clogged, and the workability was easy. Moreover,
The pass rate of the electrical resistance of the resistor was high.

【0025】また、上記の添加物混合工程において、
主成分のZnOの量を零(モル%)とし、かつまた、Mg(NO3)
2・6H2Oを7.0(モル%)の全量を置換添加した他の実施例
の場合であっても、比較例に比べて作業性が改善される
ことが判明している。さらに、酸化マグネシウムの量を
MgOに換算して2.0〜40(モル%)添加していろいろ確認し
た結果、酸化マグネシウムの量が10(モル%)を越える
と、焼結性が劣化し、且つ、生産性も低下することが判
明した。 したがって、MgOの添加する絶対量は、2.0〜1
0(モル%)の範囲が望ましいと言える。 さら
にまた、本実施例においても、酸化マグネシウムと置換
する硝酸マグネシウムの量(モル%)は、酸化マグネシウ
ムの半分(1/2)以下が望ましいことが確認された。
In the above additive mixing step,
The amount of ZnO as the main component is set to zero (mol%), and Mg (NO 3 )
Even for other embodiments the total amount was added substituted 2 · 6H 2 O 7.0 (mol%), it has been found to be improved workability as compared with Comparative Example. In addition, the amount of magnesium oxide
As a result of adding 2.0 to 40 (mol%) in terms of MgO and confirming variously, when the amount of magnesium oxide exceeds 10 (mol%), sinterability may deteriorate and productivity may also decrease. found. Therefore, the absolute amount of MgO added is 2.0 to 1
It can be said that a range of 0 (mol%) is desirable. Furthermore, in this example, it was confirmed that the amount (mol%) of magnesium nitrate to be replaced with magnesium oxide is desirably not more than half (1/2) of magnesium oxide.

【0026】以上を纏めれば、本発明によるセラミック
抵抗体の製造方法の別の特徴は、酸化亜鉛を主成分と
し、酸化アルミニウムがAl2O3に換算して3.0〜40(モル
%)と,酸化マグネシウムがMgOに換算して2.0〜40(モル
%)、望ましくは、2.0〜10(モル%)と,酸化珪素がSiO2
に換算して0.1〜10(モル%)とを添加成分とする粉体
を、混合した後に造粒,成形,焼成(電極付け)などによっ
て作製するセラミック抵抗体の製造方法において、酸化
アルミニウムと酸化マグネシウムと酸化珪素と酸化亜鉛
の一部とを予め混合,仮焼する仮焼工程を設け、該仮焼
工程における該酸化マグネシウムの一部を硝酸マグネシ
ウムと等価置換するところにあると言える。
Summarizing the above, another feature of the method for manufacturing a ceramic resistor according to the present invention is that zinc oxide is a main component and aluminum oxide is 3.0 to 40 (mol%) in terms of Al 2 O 3. , Magnesium oxide is 2.0 to 40 (mol%) in terms of MgO, desirably 2.0 to 10 (mol%), and silicon oxide is SiO 2
In a method of manufacturing a ceramic resistor, which is prepared by mixing, mixing, and then granulating, molding, and firing (attaching electrodes) a powder containing 0.1 to 10 (mol%) as an additive component, aluminum oxide and oxide It can be said that a calcining step of mixing and calcining magnesium, silicon oxide and a part of zinc oxide in advance is provided, and a part of the magnesium oxide in the calcining step is equivalently replaced with magnesium nitrate.

【0027】[0027]

【発明の効果】本発明によれば、スラリーの凝固が少な
いので、粉体処理の作業性が良好であり、且つ焼結体の
成分分布の均一性が高いので、電気特性がばらつかない
効果もある。
According to the present invention, since the solidification of the slurry is small, the workability of the powder treatment is good, and the uniformity of the component distribution of the sintered body is high, so that the electrical characteristics do not vary. There is also.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 滋 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 高橋 研 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeru Tanaka 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Ken Takahashi 7-1 Omikacho, Hitachi City, Ibaraki Prefecture No. 1 Inside the Hitachi Research Laboratory, Hitachi, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分とし、 3.0〜40(モル%)
の酸化アルミニウムと,2.0〜40(モル%)の酸化マグネ
シウムと,0.1〜10(モル%)の酸化珪素とを添加成分と
する粉体を混合してスラリーを作る混合工程と、該スラ
リーを造粒して造粒粉を作る造粒工程と、該造粒粉を成
形する成形工程と、該成形体を焼成する焼成工程とを経
て直線抵抗体を製造するセラミック抵抗体の製造方法で
あって、 前記混合工程の前記酸化マグネシウムの全量(モル%)ま
たは一部(モル%)を硝酸マグネシウムに置換し、前記酸
化マグネシウムと前記硝酸マグネシウムとの総量を元の
当該酸化マグネシウムに等量とすることを特徴とするセ
ラミック抵抗体の製造方法。
Claims: 1. A zinc oxide as a main component, 3.0 to 40 (mol%)
A mixing step of mixing a powder containing aluminum oxide, 2.0 to 40 (mol%) of magnesium oxide, and 0.1 to 10 (mol%) of silicon oxide as additive components to form a slurry, and forming the slurry. A method for producing a linear resistor through a granulating step of forming granulated powder by granulation, a forming step of forming the granulated powder, and a firing step of firing the formed body, The entire amount (mol%) or a part (mol%) of the magnesium oxide in the mixing step is replaced with magnesium nitrate, and the total amount of the magnesium oxide and the magnesium nitrate is made equal to the original magnesium oxide. A method for manufacturing a ceramic resistor, comprising:
【請求項2】主成分の一部としての「0〜30(モル%)の酸
化亜鉛」と、 添加成分としての「3.0〜40(モル%)の酸化
アルミニウム, 2.0〜40(モル%)の酸化マグネシウムお
よび0.1〜10(モル%)の酸化珪素」とを混合して添加物ス
ラリーを作る添加物混合工程と、該添加物スラリーを乾
燥しその後仮焼して仮焼粉を作る工程と、該仮焼粉と前
記主成分の残量とを混合してスラリーを作る混合工程
と、該スラリーを造粒して造粒粉を作る造粒工程と、該
造粒粉を成形する成形工程と、該成形体を焼成する焼成
工程とを経て直線抵抗体を製造するセラミック抵抗体の
製造方法で、 前記添加物混合工程の前記酸化マグネシウムの全量(モ
ル%) または一部(モル%)を硝酸マグネシウムに置換
し、 前記酸化マグネシウムと前記硝酸マグネシウムと
の総量を元の当該酸化マグネシウムに等量とすることを
特徴とするセラミック抵抗体の製造方法。
2. A composition comprising “0 to 30 (mol%) of zinc oxide” as a part of the main component, and “3.0 to 40 (mol%) of aluminum oxide, 2.0 to 40 (mol%)” as an additional component. Mixing magnesium oxide and 0.1 to 10 (mol%) silicon oxide "to form an additive slurry, drying the additive slurry, and then calcining to form a calcined powder; A mixing step of mixing the calcined powder and the remaining amount of the main component to form a slurry, a granulating step of granulating the slurry to form a granulated powder, and a forming step of forming the granulated powder. And a firing step of firing the formed body to produce a linear resistor. A method of manufacturing a ceramic resistor, wherein the entire amount (mol%) or a part (mol%) of the magnesium oxide in the additive mixing step is nitric acid. Replace with magnesium, and add the total amount of the magnesium oxide and the magnesium nitrate to the original Method for producing a ceramic resistor, characterized in that an equal amount to the magnesium reduction.
【請求項3】請求項1または請求項2において、置換す
る前記硝酸マグネシウムの量は、元の前記酸化マグネシ
ウムの量の半分を越えないことを特徴とするセラミック
抵抗体の製造方法。
3. A method according to claim 1, wherein the amount of said magnesium nitrate to be replaced does not exceed half of the original amount of said magnesium oxide.
JP05461997A 1997-03-10 1997-03-10 Manufacturing method of ceramic resistor Expired - Lifetime JP3541113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05461997A JP3541113B2 (en) 1997-03-10 1997-03-10 Manufacturing method of ceramic resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05461997A JP3541113B2 (en) 1997-03-10 1997-03-10 Manufacturing method of ceramic resistor

Publications (2)

Publication Number Publication Date
JPH10256002A true JPH10256002A (en) 1998-09-25
JP3541113B2 JP3541113B2 (en) 2004-07-07

Family

ID=12975762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05461997A Expired - Lifetime JP3541113B2 (en) 1997-03-10 1997-03-10 Manufacturing method of ceramic resistor

Country Status (1)

Country Link
JP (1) JP3541113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173784A (en) * 2021-06-11 2021-07-27 国网电力科学研究院武汉南瑞有限责任公司 Zinc oxide resistance card capable of reducing residual voltage ratio and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106205917A (en) * 2016-08-18 2016-12-07 陆川县华鑫电子厂 A kind of high pressure resistant graphite linear resistance and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173784A (en) * 2021-06-11 2021-07-27 国网电力科学研究院武汉南瑞有限责任公司 Zinc oxide resistance card capable of reducing residual voltage ratio and preparation method thereof

Also Published As

Publication number Publication date
JP3541113B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
JPH04100201A (en) Voltage nonlinear resistor for capped surge arrester and its manufacture
EP0473419B1 (en) Voltage non-linear resistor and method of producing the same
JP3541113B2 (en) Manufacturing method of ceramic resistor
JP3251134B2 (en) Method for producing sintered zinc oxide
CN112335001B (en) Ceramic material, varistor and method for producing the ceramic material and varistor
JPH09301767A (en) Production of ceramic resistor
JPH10203865A (en) Production of ceramic resistor
JPH0685363B2 (en) High voltage varistor and manufacturing method thereof
JP2623188B2 (en) Varistor and manufacturing method thereof
JPH0630284B2 (en) Method for manufacturing voltage non-linear resistance element
JP3353015B2 (en) Method of manufacturing voltage non-linear resistor
JPH03297101A (en) Power resistor and manufacture thereof
JP2727699B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating
JPH0822912A (en) Manufacture of high permeability mnzn ferrite
JP2572884B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JP2819714B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic
JPH0555008A (en) Voltage-dependent nonlinear resistor
JPH09110520A (en) Ferrite sintered compact
JP2572882B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JP2000091114A (en) High permeability oxide magnetic material
JPH10223410A (en) Production of voltage nonlinear resistor
JP2819691B2 (en) Manufacturing method of zinc oxide varistor
JPH07249505A (en) Manufacture of nonlinear resistor
JPH09219336A (en) Manufacturing method for grain boundary insulating semiconductor ceramic capacitor
JPH0632647A (en) Production of dielectric ceramic composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

EXPY Cancellation because of completion of term