JPH10203865A - Production of ceramic resistor - Google Patents
Production of ceramic resistorInfo
- Publication number
- JPH10203865A JPH10203865A JP9009168A JP916897A JPH10203865A JP H10203865 A JPH10203865 A JP H10203865A JP 9009168 A JP9009168 A JP 9009168A JP 916897 A JP916897 A JP 916897A JP H10203865 A JPH10203865 A JP H10203865A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- slurry
- magnesium
- terms
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はセラミック抵抗体の
製造法に関する。The present invention relates to a method for manufacturing a ceramic resistor.
【0002】[0002]
【従来の技術】従来の抵抗体として、炭素系,金属ほう
化物系及び酸化亜鉛系がある。2. Description of the Related Art Conventional resistors include a carbon-based resistor, a metal boride-based resistor, and a zinc oxide-based resistor.
【0003】炭素系はAl2O3からなるマトリックス中
に炭素粉を分散させた構造を有する。この抵抗率は数百
Ωcmである。A carbon-based material has a structure in which carbon powder is dispersed in a matrix made of Al 2 O 3 . This resistivity is several hundred Ωcm.
【0004】金属ほう化物系は金属ほう化物と非還元性
ガラスとからなる焼結体を用い、温度特性,電流電圧特
性及び耐量を兼ね備えた抵抗体である。[0004] The metal boride system is a resistor which uses a sintered body composed of a metal boride and a non-reducing glass and has temperature characteristics, current-voltage characteristics, and withstand capability.
【0005】他方、酸化亜鉛系はZnOを主成分とし、
Al2O3,MgOを必須成分として、SiO2 ,Y
2O3,Sb2O3,NiO,CaO,SrO,BaO等を
少量含む焼結体である。この抵抗率は10〜1000Ω
cmであって、適用機器によってこれらの成分を変える。
この抵抗体は、優れた電圧直線性,温度特性及び耐量を
有する。[0005] On the other hand, zinc oxide is mainly composed of ZnO,
Al 2 O 3 , MgO as essential components, SiO 2 , Y
It is a sintered body containing a small amount of 2 O 3 , Sb 2 O 3 , NiO, CaO, SrO, BaO and the like. This resistivity is 10-1000Ω
cm, depending on the application equipment.
This resistor has excellent voltage linearity, temperature characteristics and resistance.
【0006】この抵抗体の量産工程は、ZnO,Al2
O3,MgOを必須成分とする原料粉をディスパーミル
によって混合後、有機バインダを加えてスプレドライヤ
によって造粒し、金型で成形後、成形体を電気炉で焼成
し、最後に相対する面に電極を付けることによって作製
される。The mass production process of this resistor is performed by using ZnO, Al 2
Raw material powder containing O 3 and MgO as essential components is mixed by a disper mill, an organic binder is added, granulated by a spray dryer, molded by a mold, and the molded body is fired by an electric furnace. It is produced by attaching an electrode to the.
【0007】一方、酸化亜鉛系非抵抗体の場合、スラリ
のpH,粘性及び水分量を調整し、抵抗体の電気特性、
特に開閉サージ耐量を改善した特許として、特公平7−
109804号公報が開示されている。On the other hand, in the case of a zinc oxide type non-resistor, the pH, viscosity and water content of the slurry are adjusted so that the electrical characteristics of the resistor,
In particular, a patent with improved switching surge withstand capability
No. 109804 is disclosed.
【0008】[0008]
【発明が解決しようとする課題】従来の酸化亜鉛系抵抗
体の製造法では、MgOがアルカリ性のために原料を混
合及び造粒中にスラリが凝固を起こし、作業性を損な
い、しかも抵抗体の電気特性をばらつかせる一因となる
問題があった。In the conventional method for manufacturing a zinc oxide-based resistor, the slurry is solidified during mixing and granulation of the raw materials because MgO is alkaline, impairing the workability and, furthermore, reducing the resistance of the resistor. There is a problem that causes the electrical characteristics to vary.
【0009】スラリが凝固すると、撹拌に手間がかかる
上、ノズル孔が詰まって、スラリが噴霧しなくなる。こ
のときは直ちにノズル孔を解体し、洗浄せねばならな
い。洗浄が遅れるとスラリが、益々凝固してしまい、ス
プレドライヤに送ることができなくなるので、す早く処
置後再セットし、始めからの操作手順により再噴霧す
る。しかもこの造粒粉を用いると焼結体の成分分布が不
均一になって、抵抗体の抵抗値及び耐量等の電気特性が
ばらつき、不良品が発生する。When the slurry solidifies, the stirring takes time and the nozzle holes are clogged, so that the slurry does not spray. In this case, the nozzle hole must be immediately dismantled and cleaned. If the washing is delayed, the slurry is more and more solidified and cannot be sent to the spray dryer. Therefore, the slurry is quickly reset after the treatment, and sprayed again according to the operation procedure from the beginning. Moreover, when this granulated powder is used, the component distribution of the sintered body becomes non-uniform, and the electrical characteristics such as the resistance value and the withstand amount of the resistor vary, resulting in defective products.
【0010】そこで、特公平7−109804 号公報の技術を
適用して、スラリの混合及び造粒する際に酢酸を添加し
てpHを下げてみたが、酸化亜鉛系抵抗体ではスラリ凝
固は改善されなかった。この原因は、混合中にスラリの
粘度を調節するためにスラリ温度が上昇し、酢酸が蒸発
することに起因する。[0010] In view of the above, applying the technique of Japanese Patent Publication No. 7-109804 to lower the pH by adding acetic acid when mixing and granulating the slurry, the slurry solidification is improved with the zinc oxide type resistor. Was not done. This is due to the fact that the slurry temperature rises during the mixing to adjust the viscosity of the slurry and the acetic acid evaporates.
【0011】本発明の目的は、作業性が良好なセラミッ
ク抵抗体の製造法を提供することにある。An object of the present invention is to provide a method of manufacturing a ceramic resistor having good workability.
【0012】本発明の他の目的は、電気特性がばらつか
ず、且つ耐量が大きいセラミック抵抗体の製造法を提供
することにある。Another object of the present invention is to provide a method for manufacturing a ceramic resistor having a large electric resistance without variation in electric characteristics.
【0013】[0013]
【課題を解決するための手段】上記目的を達成するため
に、本発明は酸化亜鉛を主成分とし、酸化アルミニウム
がAl2O3に換算して3.0〜40 モル%、酸化マグネ
シウムがMgOに換算して2.0〜40 モル%、酸化珪
素がSiO2 に換算して0.1〜10 モル%を必須成分
とする粉体を混合後、造粒,成型,焼成,電極付けする
セラミック抵抗体の製造法で、上記混合工程で添加する
酸化マグネシウム粉体のうちモル比で50%以下の量を
酸性マグネシウム化合物と置換して添加することを特徴
とするセラミック抵抗体の製造法を提供する。In order to achieve the above object, the present invention comprises zinc oxide as a main component, aluminum oxide of 3.0 to 40 mol% in terms of Al 2 O 3 , and magnesium oxide of MgO. 2.0 to 40 mol% in terms of, ceramic silicon oxide after mixing the powder as an essential component from 0.1 to 10 mol% in terms of SiO 2, granulation, molding, sintering and attached electrodes The present invention provides a method for producing a ceramic resistor, wherein a magnesium oxide powder added in the mixing step is replaced with an acidic magnesium compound in an amount of 50% or less in molar ratio. I do.
【0014】発明者等はマグネシウム原料粉に、従来用
いていたMgOの代わりに、酢酸マグネシウム、しゅう
酸マグネシウム等の酸性のマグネシウム化合物を用いる
と、混合工程中のスラリの凝固が改善され、このため作
業性及び抵抗体の電気特性のばらつきが改善されること
を見出した。しかし、実施例に述べるようにマグネシウ
ム原料粉として、全量酸性のマグネシウム化合物を用い
ると、耐量が劣化することが判った。酸性マグネシウム
化合物の添加量が多いと耐量が劣化するのは、抵抗体の
抵抗温度係数が250℃以上で負に転化するためであ
る。そこで、酸化マグネシウムを残して、一部酸性のマ
グネシウム化合物を添加したところ耐量が改善された。The present inventors have found that when an acidic magnesium compound such as magnesium acetate, magnesium oxalate or the like is used instead of the conventionally used MgO for the magnesium raw material powder, the solidification of the slurry during the mixing step is improved, and It has been found that the workability and the variation in the electrical characteristics of the resistor are improved. However, as described in the examples, it was found that the use of a totally acidic magnesium compound as the magnesium raw material powder deteriorated the resistance. When the amount of the acidic magnesium compound is large, the resistance is deteriorated because the resistance temperature coefficient of the resistor is converted to a negative value at 250 ° C. or higher. Then, when a partly acidic magnesium compound was added while leaving magnesium oxide, the withstand amount was improved.
【0015】酸化アルミニウムは酸化亜鉛と反応して、
副化合物結晶粒を形成し、電気抵抗を高めるために3.
0〜40 モル%添加する。酸化マグネシウムは電気抵
抗を高め、且つ抵抗温度係数を正に転化するために2.
0〜40 モル%添加する。酸化珪素は成形体の焼結性
を高めるために0.1〜10 モル%添加する。その他、
焼結性及び電気特性を高めるために、酸化イットリウ
ム,酸化アンチモン,酸化ニッケル,酸化カルシウム,
酸化ストロンチウム,酸化バリウム等を添加する。酸化
カルシウム,酸化ストロンチウム,酸化バリウムは耐量
を改善するために少量添加するのが望ましい。酸化アン
チモン,酸化ニッケルは電気特性を改善する。焼成温度
は1100〜1300℃間が適当である。この焼成によ
り酢酸マグネシウム,しゅう酸マグネシウムは酸化マグ
ネシウムに転化する。Aluminum oxide reacts with zinc oxide,
3. To form sub-compound crystal grains and increase electric resistance.
0-40 mol% is added. Magnesium oxide increases the electrical resistance and converts the temperature coefficient of resistance to positive.
0-40 mol% is added. Silicon oxide is added in an amount of 0.1 to 10 mol% in order to enhance the sinterability of the molded body. Others
Yttrium oxide, antimony oxide, nickel oxide, calcium oxide,
Strontium oxide, barium oxide, etc. are added. It is desirable to add a small amount of calcium oxide, strontium oxide, and barium oxide in order to improve the resistance. Antimony oxide and nickel oxide improve electrical characteristics. The firing temperature is suitably between 1100 and 1300 ° C. This firing converts magnesium acetate and magnesium oxalate to magnesium oxide.
【0016】[0016]
【発明の実施の形態】以下、本発明の実施例を説明す
る。Embodiments of the present invention will be described below.
【0017】(実施例1)原料粉組成はAl2O311.
0モル%,MgO5.5モル%、このMgOと置換する
酢酸マグネシウム(MgCH3COO)20,1.0,2.
0,3.0,4.0,5.5モル%の6種類、SiO2 2.
0モル%,残量ZnOとした。これらの原料粉と一緒に
有機バインダ及び消泡剤を、順次ディスパーミルに投入
し、撹拌してスラリにした。スラリの固形分濃度は65
%、サンプルスラリのpH6.2〜9.8、粘度25Pa・
sであった。混合終了後スラリは直ちにスラリタンクに
貯蔵され、スプレドライヤによって造粒した。Example 1 The composition of the raw material powder was Al 2 O 3 11.
0 mol%, 5.5 mol% of MgO, and magnesium acetate (MgCH 3 COO) 20 which replaces this MgO.
6 types of 0, 3.0, 4.0, 5.5 mol%, SiO 2 2.
0 mol%, the remaining amount was ZnO. An organic binder and an antifoaming agent together with these raw material powders were sequentially charged into a disper mill and stirred to form a slurry. The solids concentration of the slurry is 65
%, Sample slurry pH 6.2-9.8, viscosity 25Pa.
s. After the completion of mixing, the slurry was immediately stored in a slurry tank and granulated by a spray dryer.
【0018】この造粒粉を直径50mmΦ,厚さ11mmに
金型で成型した。この成型体は350〜550℃間の温度
に1時間保持してバインダ抜きした。次いで、これを電
気炉に入れ、1150〜1270℃の温度に4時間保持
して焼成した。最後に、焼結体の両面を研磨し、アルミ
ニウムを溶射して電極を付けた。This granulated powder was molded in a mold having a diameter of 50 mmΦ and a thickness of 11 mm. The molded body was kept at a temperature between 350 and 550 ° C. for 1 hour to remove the binder. Next, this was placed in an electric furnace and calcined while maintaining the temperature at 1150 to 1270 ° C. for 4 hours. Finally, both surfaces of the sintered body were polished, and aluminum was sprayed to attach electrodes.
【0019】表1には6種類の抵抗体のスラリの凝固,
抵抗体の歩留まり及び耐量を比較した。Table 1 shows the solidification of the slurry of the six types of resistors.
The yield and resistance of the resistors were compared.
【0020】[0020]
【表1】 [Table 1]
【0021】ノズル孔の詰まりは、100kgのスラリを
造粒したときに起った回数,電気抵抗の不合格率は抵抗
値の合格範囲から外れたものの割合、通電時間は39Ω
の抵抗体に3.5A の交流電流を流したとき熱暴走する
までの時間である。なお、酸化マグネシウム量,酢酸マ
グネシウム量及びスラリのpHを併記した。The clogging of the nozzle hole is caused by the number of times when a slurry of 100 kg is granulated, the rejection rate of the electric resistance is a percentage of the resistance value outside the acceptable range, and the energizing time is 39Ω.
This is the time until thermal runaway occurs when 3.5 A alternating current is passed through the resistor. The amounts of magnesium oxide, magnesium acetate, and the pH of the slurry are also shown.
【0022】実施例1,2は従来例1と比べてノズル孔
の詰まる回数が少なく、電気抵抗の不合格率が低い。一
方、比較例1〜3よりノズル孔の詰まる回数が多く、電
気抵抗の不合格率は高いが、通電時間が長い。実施例は
従来例より生産性が優れ、比較例より耐量が大きいこと
が判る。In Examples 1 and 2, the number of times of clogging of the nozzle holes is smaller than in Conventional Example 1, and the rejection rate of electric resistance is low. On the other hand, the number of times of clogging of the nozzle holes is larger than in Comparative Examples 1 to 3, and the rejection rate of the electrical resistance is higher, but the energization time is longer. It can be seen that the example is superior in productivity to the conventional example and has a higher tolerance than the comparative example.
【0023】(実施例2)酸性マグネシウム原料粉とし
てしゅう酸マグネシウム(MgC2O4)を用い、実施例
1と同様にして、抵抗体を作製した。スラリの固形分濃
度は62〜65%、サンプルスラリのpH6.5〜9.
8、粘度23〜25Pa・sであった。Example 2 A resistor was produced in the same manner as in Example 1 except that magnesium oxalate (MgC 2 O 4 ) was used as the raw material powder of acidic magnesium. The solid content of the slurry is 62-65%, and the pH of the sample slurry is 6.5-9.5.
8. The viscosity was 23 to 25 Pa · s.
【0024】表2には6種類の抵抗体の酸化マグネシウ
ム量,しゅう酸マグネシウム量,スラリのpH,ノズル
孔の詰まり,電気抵抗の不合格率及び通電時間を比較し
た。Table 2 compares the amount of magnesium oxide, the amount of magnesium oxalate, the pH of the slurry, the clogging of the nozzle hole, the rejection rate of the electrical resistance, and the energizing time of the six types of resistors.
【0025】[0025]
【表2】 [Table 2]
【0026】実施例1,2は従来例2と比べてノズル孔
の詰まる回数が少なく、電気抵抗の不合格率が低い。一
方、比較例4〜6よりノズル孔の詰まる回数が多く、電
気抵抗の不合格率は高いが、通電時間が長い。In Examples 1 and 2, the number of times of clogging of the nozzle holes is smaller than in Conventional Example 2, and the rejection rate of the electric resistance is low. On the other hand, the number of times of clogging of the nozzle holes is larger than in Comparative Examples 4 to 6, and the rejection rate of the electrical resistance is higher, but the energization time is longer.
【0027】[0027]
【発明の効果】本発明によれば、スラリの凝固が少ない
ので、作業性が良好であり、且つ、抵抗体の耐量が大き
いので、稼働時の破損が少なく、作業性及び電気特性の
両面に優れている。また、焼結体の成分分布の均一性が
高いので、電気特性がばらつかない。According to the present invention, since the solidification of the slurry is small, the workability is good, and since the resistance of the resistor is large, the breakage during operation is small, and both the workability and the electrical characteristics are improved. Are better. In addition, since the component distribution of the sintered body is highly uniform, the electrical characteristics do not vary.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 誠一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 田中 滋 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 高橋 研 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Seiichi Yamada 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Shigeru Tanaka 7-1 Omikacho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Ken Takahashi 7-1-1, Omika-cho, Hitachi City, Ibaraki Pref. Hitachi, Ltd. Hitachi Research Laboratory
Claims (1)
がAl2O3に換算して3.0〜40モル%、酸化マグネ
シウムがMgOに換算して2.0〜40 モル%、酸化珪
素がSiO2 に換算して0.1〜10 モル%を必須成分
とする粉体を混合後、造粒,成型,焼成,電極付けする
セラミック抵抗体の製造法において、上記酸化マグネシ
ウム粉体のモル比で50%以下の量を酸性マグネシウム
化合物と置換して添加することを特徴とするセラミック
抵抗体の製造法。1. Zinc oxide as a main component, aluminum oxide is 3.0 to 40 mol% in terms of Al 2 O 3 , magnesium oxide is 2.0 to 40 mol% in terms of MgO, and silicon oxide is After mixing powder having an essential component of 0.1 to 10 mol% in terms of SiO 2 , in a method of producing a ceramic resistor for granulation, molding, firing, and electrode attachment, the molar ratio of the magnesium oxide powder is adjusted. A method for producing a ceramic resistor, comprising adding an amount of 50% or less by substituting with an acidic magnesium compound in (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9009168A JPH10203865A (en) | 1997-01-22 | 1997-01-22 | Production of ceramic resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9009168A JPH10203865A (en) | 1997-01-22 | 1997-01-22 | Production of ceramic resistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10203865A true JPH10203865A (en) | 1998-08-04 |
Family
ID=11713077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9009168A Pending JPH10203865A (en) | 1997-01-22 | 1997-01-22 | Production of ceramic resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10203865A (en) |
-
1997
- 1997-01-22 JP JP9009168A patent/JPH10203865A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH075363B2 (en) | PTC porcelain composition and method for producing the same | |
JPH10203865A (en) | Production of ceramic resistor | |
JP3541113B2 (en) | Manufacturing method of ceramic resistor | |
JPH09301767A (en) | Production of ceramic resistor | |
JPH08259319A (en) | Low-temperature-baked dielectric porcelain and its production | |
JP2727699B2 (en) | Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating | |
JP3915130B2 (en) | Setter for firing | |
JP3555395B2 (en) | Barium lead titanate based semiconductor porcelain composition | |
JPH03257902A (en) | Manufacture of voltage nonlinear resistor | |
JP2506368B2 (en) | Method for producing alumina-based ceramics | |
CN1029761C (en) | Composite charicteristic thermistor and its making method | |
JP2549756B2 (en) | Manufacturing method of voltage non-linear resistor for arrester with gap | |
JPH0734405B2 (en) | Voltage nonlinear resistor | |
JPH05258920A (en) | Manufacture of voltage non-linear resistor | |
JP2000286104A (en) | Manufacture of positive temperature coefficient thermistor | |
JPH08119733A (en) | Piezoelectric ceramic composition | |
JP2819691B2 (en) | Manufacturing method of zinc oxide varistor | |
JP2000003803A (en) | Positive temperature coefficient thermistor and production method thereof | |
JPH1092605A (en) | Manufacture of positive temperature thermistor | |
JP3139584B2 (en) | Method for manufacturing voltage non-linear resistor | |
JPH0812808B2 (en) | Method of manufacturing voltage non-linear resistor | |
JPH07109804B2 (en) | Method for manufacturing voltage non-linear resistor | |
JPH09330804A (en) | Manufacture of positive characteristic thermistor | |
JPH07142207A (en) | Barium titanate semiconductor ceramic and its manufacture | |
JPH0547514A (en) | Manufacture of non-linearly voltage dependent resistor |