JPH10255795A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH10255795A
JPH10255795A JP9054450A JP5445097A JPH10255795A JP H10255795 A JPH10255795 A JP H10255795A JP 9054450 A JP9054450 A JP 9054450A JP 5445097 A JP5445097 A JP 5445097A JP H10255795 A JPH10255795 A JP H10255795A
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
electrolyte battery
lithium
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9054450A
Other languages
Japanese (ja)
Other versions
JP3426900B2 (en
Inventor
Takeshi Maeda
丈志 前田
Naoya Nakanishi
直哉 中西
Hiroshi Kurokawa
宏史 黒河
Masahisa Fujimoto
正久 藤本
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Hiroshi Watanabe
浩志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP05445097A priority Critical patent/JP3426900B2/en
Publication of JPH10255795A publication Critical patent/JPH10255795A/en
Application granted granted Critical
Publication of JP3426900B2 publication Critical patent/JP3426900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery the decline of discharge capacity of which is not much even if charging and discharging is repeated and which has excellent cycle characteristics, by adding at least one kind among Na, K, Mg, Ca and Al to a composite oxide of Li, Co and Ni as positive electrode material. SOLUTION: LiXM1Y1 Co1- ZNiZO2 (wherein M1 is at least one kind of element of Na or K, and a condition, 0.5<=X<1.0, 0.5<X+Y1<=1.0, 0.1<=Z<=0.9 is complied with) is used for positive electrode material. LiXM2Y2 Co1- ZNiZO2 (wherein M2 is at least one kind of element of Mg and Ca, and a condition, 0.5<=X<1.0, 0.5<X+Y2/2<=1.0, 0.1<=Z<=0.9 is complied with) can be also used for the positive electrode material. LiXAlY3 Co1- ZNiZO2 (wherein a condition, 0.5<=X<1.0, 0.5<X+Y3/3<=1.0 is complied with) can be also used. Thereby, a nonaqueous electrolyte battery a decline of discharge capacity of which is not much and which has excellent cycle characteristics is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、正極と負極と非
水電解質とを備えた非水電解質電池において、特に、そ
の正極における正極材料に、リチウムとコバルトやニッ
ケルの複合酸化物を用いた非水電解質電池において、そ
のサイクル特性を改善させるようにしたものである。
The present invention relates to a non-aqueous electrolyte battery provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte, and particularly to a non-aqueous electrolyte battery using a composite oxide of lithium, cobalt, and nickel as a positive electrode material in the positive electrode. In a water electrolyte battery, the cycle characteristics are improved.

【0002】[0002]

【従来の技術】近年、高出力,高エネルギー密度の新型
電池の1つとして、電解質に非水電解液等を用い、リチ
ウムの酸化,還元を利用した高起電力の非水電解質電池
が利用されるようになった。
2. Description of the Related Art In recent years, a nonaqueous electrolyte battery having a high electromotive force using a nonaqueous electrolyte or the like as an electrolyte and utilizing the oxidation and reduction of lithium has been used as one of new batteries having a high output and a high energy density. It became so.

【0003】ここで、このような非水電解質電池におい
ては、その正極における正極材料として、リチウムの吸
蔵,放出が可能なリチウム−遷移金属複合酸化物が広く
使用されており、特に、高電位で充放電カーブの平坦性
が高い非水電解質電池が得られるようにするため、近年
においては、リチウムとコバルトやニッケルの複合酸化
物を正極材料に使用したものが利用されるようになっ
た。
[0003] In such a nonaqueous electrolyte battery, a lithium-transition metal composite oxide capable of inserting and extracting lithium is widely used as a positive electrode material for the positive electrode. In recent years, in order to obtain a nonaqueous electrolyte battery having a high flatness of a charge / discharge curve, a battery using a composite oxide of lithium, cobalt, and nickel as a positive electrode material has been used.

【0004】しかし、このようなリチウムとコバルトや
ニッケルの複合酸化物を正極材料に使用した場合におい
ても、充放電を繰り返して行なうと、次第に放電容量が
低下し、サイクル特性が悪いという問題があった。
[0004] However, even when such a composite oxide of lithium, cobalt and nickel is used for the positive electrode material, there is a problem that the discharge capacity is gradually reduced and the cycle characteristics are poor when charging and discharging are repeated. Was.

【0005】[0005]

【発明が解決しようとする課題】この発明は、正極と負
極と非水電解質とを備えた非水電解質電池における上記
のような問題を解決することを課題とするものであり、
その正極における正極材料に、上記のようなリチウムと
コバルトやニッケルの複合酸化物を用いた非水電解質電
池において、この正極材料を改良し、充放電を繰り返し
た場合においても放電容量が低下するということが少な
く、サイクル特性に優れた非水電解質電池が得られるよ
うにすることを課題とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in a non-aqueous electrolyte battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte.
In a non-aqueous electrolyte battery using the above-described composite oxide of lithium, cobalt and nickel as the positive electrode material of the positive electrode, the discharge capacity is reduced even when the positive electrode material is improved and charge and discharge are repeated. It is an object of the present invention to obtain a non-aqueous electrolyte battery which is less likely to have excellent cycle characteristics.

【0006】[0006]

【課題を解決するための手段】この発明の請求項1にお
ける非水電解質電池においては、上記のような課題を解
決するため、正極と負極と非水電解質とを備えた非水電
解質電池において、上記の正極における正極材料とし
て、LiX M1y1Co1-Z NiZ 2 (M1はNa,K
の少なくとも1種の元素であり、0.5≦X<1.0、
0.5<X+Y1≦1.0、0.1≦Z≦0.9の条件
を満たす。)を用いたのである。
According to a first aspect of the present invention, there is provided a non-aqueous electrolyte battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. As the positive electrode material in the above positive electrode, Li X M1 y1 Co 1 -Z Ni Z O 2 (M1 is Na, K
At least one element of 0.5 ≦ X <1.0,
The condition of 0.5 <X + Y1 ≦ 1.0 and 0.1 ≦ Z ≦ 0.9 is satisfied. ) Was used.

【0007】また、この発明の請求項2における非水電
解質電池においては、正極と負極と非水電解質とを備え
た非水電解質電池において、上記の正極における正極材
料として、LiX M2Y2Co1-Z NiZ 2 (M2はM
g,Caの少なくとも1種の元素であり、0.5≦X<
1.0、0.5<X+Y2 /2≦1.0、0.1≦Z≦
0.9の条件を満たす。)を用いたのである。
According to a second aspect of the present invention, there is provided a non-aqueous electrolyte battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein Li X M2 Y 2 Co 1 is used as a positive electrode material in the positive electrode. -Z Ni Z O 2 (M2 is M
g and Ca are at least one element, and 0.5 ≦ X <
1.0, 0.5 <X + Y2 / 2≤1.0, 0.1≤Z≤
The condition of 0.9 is satisfied. ) Was used.

【0008】また、この発明の請求項3における非水電
解質電池においては、正極と負極と非水電解質とを備え
た非水電解質電池において、上記の正極における正極材
料として、LiX AlY3Co1-Z NiZ 2 (0.5≦
X<1.0、0.5<X+Y3 /3≦1.0、の条件を
満たす。)を用いたのである。
According to a third aspect of the present invention, there is provided a non-aqueous electrolyte battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein Li X Al Y 3 Co 1 is used as a positive electrode material in the positive electrode. -Z Ni Z O 2 (0.5 ≦
The condition of X <1.0 and 0.5 <X + Y3 / 3≤1.0 is satisfied. ) Was used.

【0009】また、この発明の請求項4における非水電
解質電池においては、正極と負極と非水電解質とを備え
た非水電解質電池において、上記の正極における正極材
料として、LiX M1Y1M2Y2AlY3Co1-Z NiZ
2 (M1はNa,Kの少なくとも1種の元素、M2はM
g,Caの少なくとも1種の元素であり、0.5≦X<
1.0、0.5<X+Y1 +Y2 /2+Y3 /3≦1.
0、0.1≦Z≦0.9の条件を満たす。)を用いたの
である。
According to a fourth aspect of the present invention, there is provided a non-aqueous electrolyte battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein Li X M1 Y1 M2 Y2 is used as a positive electrode material in the positive electrode. Al Y3 Co 1-Z Ni Z O
2 (M1 is at least one element of Na and K, M2 is M
g and Ca are at least one element, and 0.5 ≦ X <
1.0, 0.5 <X + Y1 + Y2 / 2 + Y3 / 3≤1.
The condition of 0, 0.1 ≦ Z ≦ 0.9 is satisfied. ) Was used.

【0010】ここで、上記の請求項1〜4に示す非水電
解質電池のように、正極における正極材料として、リチ
ウムとコバルトとニッケルの複合酸化物を用いると共
に、さらにNa,K,Mg,Ca,Alの内の少なくと
も1種の元素を添加させると、この発明者の考察による
と、添加したこれらの元素がリチウムの一部と置換され
て、充放電を行なった場合における正極材料の構造の変
化が抑制されて、この正極材料の特性が低下するという
ことが少なくなり、充放電を繰り返して行なった場合に
おける放電容量の低下が抑制され、サイクル特性に優れ
た非水電解質電池が得られるようになると考えられる。
Here, as in the nonaqueous electrolyte battery according to the above-mentioned claims, a composite oxide of lithium, cobalt and nickel is used as a cathode material for the cathode, and Na, K, Mg, Ca , Al, at least one element is added, according to the inventor's consideration, the added element is replaced with a part of lithium, and the structure of the positive electrode material when charging and discharging is performed. The change is suppressed, the characteristics of the positive electrode material are less likely to be reduced, the decrease in the discharge capacity when charging and discharging are performed repeatedly is suppressed, and a nonaqueous electrolyte battery having excellent cycle characteristics is obtained. It is thought to be.

【0011】ここで、リチウムとコバルトとニッケルの
複合酸化物に対して、Na,K,Mg,Ca,Alの少
なくとも1種の元素を添加させてリチウムの一部を置換
させるにあたり、その置換量が多くなりすぎると、この
正極における単位当たりの容量が減少するため、Na,
Kを1価、Mg,Caを2価、Alを3価とした場合
に、その置換量が0.5価を超えないようにする。
Here, when adding at least one element of Na, K, Mg, Ca, and Al to the composite oxide of lithium, cobalt, and nickel to partially replace lithium, the amount of substitution is determined. Is too large, the capacity per unit of the positive electrode decreases, so that Na,
When K is monovalent, Mg and Ca are divalent, and Al is trivalent, the substitution amount should not exceed 0.5.

【0012】また、コバルトとニッケルの割合を示すZ
の値が0.1≦Z≦0.9にしたのは、この正極材料に
コバルトとニッケルが含有されて特性の良い非水電解質
電池が得られるようにするためである。
Z, which indicates the ratio of cobalt to nickel,
Is set to be 0.1 ≦ Z ≦ 0.9 in order to obtain a non-aqueous electrolyte battery having good characteristics by containing cobalt and nickel in the positive electrode material.

【0013】一方、この発明における非水電解質電池に
おいて、その負極に使用する負極材料としては、従来よ
り使用されている公知の負極材料を用いることができ、
例えば、黒鉛やコークス等の炭素材料、金属リチウム、
リチウム合金、LiX Fe23 ,LiX WO2 等の金
属酸化物、ポリアセチレン等の導電性高分子等を使用す
ることができ、特に、特性の良い非水電解質電池が得ら
れるようにするため、黒鉛等の炭素材料を負極に使用す
ることが好ましい。
On the other hand, in the nonaqueous electrolyte battery according to the present invention, as the negative electrode material used for the negative electrode, a known negative electrode material conventionally used can be used.
For example, carbon materials such as graphite and coke, metallic lithium,
Lithium alloys, metal oxides such as Li x Fe 2 O 3 and Li x WO 2 , and conductive polymers such as polyacetylene can be used, and in particular, a non-aqueous electrolyte battery with good characteristics can be obtained. Therefore, it is preferable to use a carbon material such as graphite for the negative electrode.

【0014】ここで、上記の炭素材料として使用される
黒鉛やコークスは、粉砕したものをそのまま用いても良
く、またこれに精製処理、500〜3700℃の加熱処
理、酸処理、アルカリ処理、膨張化処理等の処理を施し
たものを使用しても良く、特に、黒鉛を使用する場合、
十分な容量が得られるようにするため、格子面(002
4における面間隔(d002 )が3.35〜3.37Åの
範囲で、c軸方向の結晶子の大きさ(Lc)が400Å
以上のものを用いることが好ましい。
The graphite or coke used as the carbon material may be used in the form of pulverized material as it is, or may be subjected to purification treatment, heat treatment at 500 to 3700 ° C., acid treatment, alkali treatment, and expansion. It may be used that has been subjected to a treatment such as chemical treatment, especially when graphite is used,
In order to obtain a sufficient capacity, the lattice plane (002
4, the plane spacing (d 002 ) is in the range of 3.35 to 3.37 °, and the crystallite size (Lc) in the c-axis direction is 400 °.
It is preferable to use the above.

【0015】また、上記の非水電解質として非水電解液
を用いる場合、この非水電解液の溶媒としても、従来よ
り一般に使用されている公知の溶媒を使用することがで
き、例えば、エチレンカーボネート、プロピレンカーボ
ネート、ブチレンカーボネート、ビニレンカーボネート
等の環状炭酸エステルや、ジメチルカーボネート、ジエ
チルカーボネート、ジプロピルカーボネート、エチルメ
チルカーボネート、エチルプロピルカーボネート等の鎖
状炭酸エステル等を1種又は複数混合させたものを用い
ることができ、特に、上記の環状炭酸エステルと鎖状炭
酸エステルとを組み合わせて使用することが好ましい。
When a non-aqueous electrolyte is used as the non-aqueous electrolyte, a known solvent which has been generally used can be used as a solvent for the non-aqueous electrolyte. , Cyclic carbonates such as propylene carbonate, butylene carbonate, and vinylene carbonate, and dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, and a mixture of one or more linear carbonates such as ethyl propyl carbonate. They can be used, and it is particularly preferable to use the above-mentioned cyclic carbonate and chain carbonate in combination.

【0016】また、この非水電解液において、上記の溶
媒に溶解させる溶質にも公知のものを使用することがで
き、例えば、トリフルオロメタンスルホン酸リチウムL
iCF3 SO3 ,ヘキサフルオロリン酸リチウムLiP
6 ,過塩素酸リチウムLiClO4 ,テトラフルオロ
ホウ酸リチウムLiBF4 ,トリフルオロメタンスルホ
ン酸イミドリチウムLiN(CF3 SO2 2 等のリチ
ウム化合物を用いることができ、これらの溶質を上記の
溶媒に溶解させるにあたっては、一般にその濃度が0.
7〜1.5mol/lの割合になるようにする。
In this non-aqueous electrolyte, a known solute can be used as a solute to be dissolved in the above-mentioned solvent. For example, lithium trifluoromethanesulfonate L
iCF 3 SO 3 , lithium hexafluorophosphate LiP
Lithium compounds such as F 6 , lithium perchlorate LiClO 4 , lithium tetrafluoroborate LiBF 4 , lithium trifluoromethanesulfonate imide LiN (CF 3 SO 2 ) 2 can be used, and these solutes can be used in the above-mentioned solvent. In dissolving, generally, the concentration is set to 0.
The ratio is set to 7 to 1.5 mol / l.

【0017】さらに、この発明における非水電解質電池
においては、正極と負極とを分離させるセパレータ等に
ついても従来より一般に使用されている公知のものを用
いることができる。
Further, in the non-aqueous electrolyte battery according to the present invention, a known separator generally used conventionally can be used for the separator for separating the positive electrode and the negative electrode.

【0018】[0018]

【実施例】以下、この発明の非水電解質電池について、
実施例を挙げて具体的に説明すると共に、この実施例に
おける非水電解質電池の場合、充放電による容量の低下
が少なくなって、充放電サイクル特性が向上すること
を、比較例を挙げて明らかにする。なお、この発明にお
ける非水電解質電池は、下記の実施例に示したものに限
定されず、その要旨を変更しない範囲において適宜変更
して実施できるものである。
The non-aqueous electrolyte battery of the present invention will be described below.
Examples will be specifically described, and in the case of the nonaqueous electrolyte battery in this example, reduction in capacity due to charge / discharge is reduced and charge / discharge cycle characteristics are improved. To The nonaqueous electrolyte battery according to the present invention is not limited to those described in the following examples, and can be implemented by appropriately changing the scope of the invention without changing its gist.

【0019】(実施例1〜15)これらの実施例におい
ては、下記のようにして作製した正極と負極と非水電解
液とを用い、図1に示すような円筒型のリチウム二次電
池を作製した。
(Examples 1 to 15) In these examples, a cylindrical lithium secondary battery as shown in FIG. 1 was prepared by using a positive electrode, a negative electrode and a non-aqueous electrolyte prepared as follows. Produced.

【0020】[正極の作製]正極を作製するにあたって
は、下記の表1に示す各正極材料を得るように、Li,
Co,Niの各金属の水酸化物に対して、Na,K,M
g,Ca,Alの各金属の水酸化物をそれぞれ適切な割
合で混合させ、これらを空気中において800℃の温度
で24時間焼成して各正極材料を得た。
[Preparation of Positive Electrode] In preparing the positive electrode, Li, Li, and Li were used so as to obtain the respective positive electrode materials shown in Table 1 below.
Na, K, M for hydroxide of each metal of Co and Ni
The hydroxides of each of the metals g, Ca, and Al were mixed at an appropriate ratio, and were fired in air at a temperature of 800 ° C. for 24 hours to obtain each positive electrode material.

【0021】そして、このようにして得た各正極材料と
導電剤である人造黒鉛とをそれぞれ90:5の重量比で
混合させて各正極合剤を得た後、各正極合剤にそれぞれ
結着剤であるポリフッ化ビニリデンをN−メチル−2−
ピロリドン(NMP)に溶解させた溶液を加え、各正極
合剤とポリフッ化ビニリデンとがそれぞれ95:5の重
量比になるように混練して各スラリーを調製し、このス
ラリーをそれぞれ正極集電体であるアルミニウム箔の両
面にドクターブレード法により塗布し、これを150℃
で2時間真空乾燥させて各正極を作製した。
Then, each of the positive electrode materials thus obtained and artificial graphite as a conductive agent are mixed at a weight ratio of 90: 5 to obtain each positive electrode mixture, and then each positive electrode mixture is combined. N-methyl-2-vinylidene fluoride as an adhesive
A solution dissolved in pyrrolidone (NMP) is added, and each positive electrode mixture and polyvinylidene fluoride are kneaded so as to have a weight ratio of 95: 5 to prepare respective slurries. Is applied on both sides of an aluminum foil by a doctor blade method,
For 2 hours to produce each positive electrode.

【0022】[負極の作製]負極を作製するにあたって
は、格子面(002)における面間隔(d002 )が3.
356Å、c軸方向における結晶子の大きさ(Lc)が
1000Å以上になった炭素塊に空気流を噴射し、この
炭素塊をジェット粉砕した後、これをふるいにかけ、平
均粒径が約10μmになった黒鉛粉末を得た。
[Preparation of Negative Electrode] In preparing a negative electrode, the plane spacing (d 002 ) on the lattice plane ( 002 ) was set to 3.
An air stream is injected into the carbon lump having a crystallite size (Lc) of at least 356 ° in the c-axis direction of 1000 ° or more, and the carbon lump is jet-pulverized and then sieved to reduce the average particle size to about 10 μm. Graphite powder was obtained.

【0023】そして、この黒鉛粉末に、結着剤であるポ
リフッ化ビニリデンを上記のNMPに溶解させた溶液を
加え、黒鉛粉末とポリフッ化ビニリデンの重量比が8
5:15になるように混練してスラリーを調製し、この
スラリーを負極集電体である銅箔の両面にドクターブレ
ード法により塗布し、これを150℃で2時間真空乾燥
させて負極を作製した。
Then, a solution in which polyvinylidene fluoride as a binder is dissolved in the above NMP is added to the graphite powder, and the weight ratio of the graphite powder to polyvinylidene fluoride is 8%.
A slurry was prepared by kneading at a ratio of 5:15, and this slurry was applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method, and dried at 150 ° C. for 2 hours under vacuum to prepare a negative electrode. did.

【0024】[非水電解液の作製]非水電解液を作製す
るにあたっては、エチレンカーボネートと1,2−ジメ
トキシエタンとを1:1の体積比で混合させた混合溶媒
に、6フッ化リン酸リチウムLiPF6 を1mol/l
の割合で溶解させて非水電解液を作製した。
[Preparation of Non-Aqueous Electrolyte] In preparing a non-aqueous electrolyte, a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1 was mixed with phosphorus hexafluoride. 1 mol / l of lithium phosphate LiPF 6
To prepare a non-aqueous electrolyte.

【0025】[電池の作製]電池を作製するにあたって
は、図1に示すように、上記のようにして作製した各正
極1と負極2との間にそれぞれセパレータ3としてリチ
ウムイオン透過性のポリプロピレン製の微多孔膜を介在
させ、これらをスパイラル状に巻いてそれぞれ電池缶4
内に収容させた後、各電池缶4内にそれぞれ上記の非水
電解液を注液して封口し、正極1を正極リード5を介し
て正極蓋6に接続させると共に、負極2を負極リード7
を介して電池缶4に接続させ、電池缶4と正極蓋6とを
絶縁パッキン8により電気的に分離させて、各リチウム
二次電池を作製した。
[Preparation of Battery] In preparing a battery, as shown in FIG. 1, a lithium ion permeable polypropylene was used as a separator 3 between each positive electrode 1 and negative electrode 2 prepared as described above. These are wound in a spiral shape with a microporous membrane of
Then, the above-mentioned non-aqueous electrolyte is poured into each battery can 4 and sealed, and the positive electrode 1 is connected to the positive electrode lid 6 via the positive electrode lead 5 and the negative electrode 2 is connected to the negative electrode lead. 7
, And the battery can 4 and the positive electrode cover 6 were electrically separated by the insulating packing 8, thereby producing each lithium secondary battery.

【0026】(比較例1)この比較例においては、正極
における正極材料として、下記の表1に示すようにLi
Co0.5 Ni0.5 2 を用いるようにし、それ以外につ
いては、上記の各実施例の場合と同様にしてリチウム二
次電池を作製した。
Comparative Example 1 In this comparative example, as a positive electrode material for a positive electrode, as shown in Table 1 below, Li was used.
A lithium secondary battery was manufactured in the same manner as in each of the above examples except that Co 0.5 Ni 0.5 O 2 was used.

【0027】そして、上記のようにして作製した実施例
1〜15及び比較例1の各リチウム二次電池について、
それぞれ室温下において充電電流200mAで充電終止
電圧4.1Vまで充電させた後、放電電流200mAで
放電終止電圧2.75Vまで放電させ、これを1サイク
ルとして、200サイクルの充放電を繰り返して行な
い、初期容量と200サイクル後の容量を求めると共
に、1サイクルあたりの劣化率を求め、その結果を下記
の表1に合わせて示した。
Then, for each of the lithium secondary batteries of Examples 1 to 15 and Comparative Example 1 produced as described above,
Each was charged at room temperature at a charging current of 200 mA to a charging end voltage of 4.1 V, and then discharged at a discharging current of 200 mA to a discharging end voltage of 2.75 V. This was defined as one cycle, and charge and discharge were repeated for 200 cycles. The initial capacity and the capacity after 200 cycles were obtained, and the deterioration rate per cycle was obtained. The results are shown in Table 1 below.

【0028】[0028]

【表1】 [Table 1]

【0029】この結果から明らかなように、LiとCo
とNiとの複合酸化物に対して、さらにNa,K,M
g,Ca,Alの元素を添加させた実施例1〜15の各
リチウム二次電池においては、1サイクルあたりにおけ
る劣化率が、これらの元素を添加させなった比較例1の
リチウム二次電池に比べて低くなって、サイクル特性が
向上していた。なお、上記の実施例1〜15の各リチウ
ム二次電池を比較した場合、Na,K,Mg,Ca,A
lを加える量が多くなるほど電池の初期容量が低下して
おり、このため、前記のようにNa,K,Mg,Ca,
Alを加える量が0.5価を超えないようにすることが
好ましかった。
As is clear from the results, Li and Co
Na, K, and M with respect to the composite oxide of
In each of the lithium secondary batteries of Examples 1 to 15 to which the elements of g, Ca, and Al were added, the deterioration rate per cycle was lower than that of the lithium secondary battery of Comparative Example 1 in which these elements were not added. As compared with the above, the cycle characteristics were improved. When comparing the lithium secondary batteries of Examples 1 to 15, Na, K, Mg, Ca, A
The larger the amount of 1 added, the lower the initial capacity of the battery. Therefore, as described above, Na, K, Mg, Ca,
It was preferred that the amount of Al added not exceed 0.5 valency.

【0030】(実施例16〜33)これらの実施例にお
いては、正極を作製するにあたり、Li,Co,Niの
各金属の水酸化物に対して、Na,K,Mg,Ca,A
lの各金属の水酸化物を2種以上に組み合わせて混合さ
せ、下記の表2に示す各正極材料を得た。
(Examples 16 to 33) In these examples, in preparing the positive electrode, Na, K, Mg, Ca, and A were used with respect to the hydroxides of the respective metals Li, Co, and Ni.
1 and 2 or more of the metal hydroxides were combined and mixed to obtain each positive electrode material shown in Table 2 below.

【0031】そして、この表2に示す正極材料を用いる
以外は、上記の実施例1〜15の場合と同様にして、各
リチウム二次電池を作製した。
Each lithium secondary battery was manufactured in the same manner as in Examples 1 to 15 except that the positive electrode materials shown in Table 2 were used.

【0032】また、これらの実施例16〜33の各リチ
ウム二次電池についても、上記の場合と同様にして充放
電を繰り返して行ない、初期容量と200サイクル後の
容量を求めると共に、1サイクルあたりの劣化率を求
め、その結果を下記の表2に合わせて示した。
The charge and discharge of each of the lithium secondary batteries of Examples 16 to 33 were repeated in the same manner as described above to obtain the initial capacity and the capacity after 200 cycles. Was determined, and the results are shown in Table 2 below.

【0033】[0033]

【表2】 [Table 2]

【0034】(実施例34〜36)これらの実施例にお
いては、正極材料として、上記の実施例1と同じLi
0.9Na0.1 Co0.5 Ni0.5 2 を用いる一方、非水
電解液における溶媒として、下記の表3に示すように環
状炭酸エステルと鎖状炭酸エステルとを組み合わせて用
いるようにし、実施例34ではエチレンカーボネート
(EC)とジエチルカーボネート(DEC)とを1:1
の体積比で混合させた混合溶媒を、実施例35ではエチ
レンカーボネート(EC)とプロピレンカーボネート
(PC)とジメチルカーボネート(DMC)とを1:
1:2の体積比で混合させた混合溶媒を、実施例36で
はエチレンカーボネート(EC)とジメチルカーボネー
ト(DMC)とを1:1の体積比で混合させた混合溶媒
を用い、それ以外については、上記の実施例1の場合と
同様にして各リチウム二次電池を作製した。
(Examples 34 to 36) In these examples, the same Li material as in Example 1 was used as the positive electrode material.
While 0.9 Na 0.1 Co 0.5 Ni 0.5 O 2 is used, a cyclic carbonate and a chain carbonate are used in combination as a solvent in the non-aqueous electrolyte as shown in Table 3 below. 1: 1 of carbonate (EC) and diethyl carbonate (DEC)
In Example 35, ethylene carbonate (EC), propylene carbonate (PC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 1:
In Example 36, a mixed solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed in a volume ratio of 1: 1 was used. Each lithium secondary battery was produced in the same manner as in Example 1 described above.

【0035】そして、この実施例34〜36の各リチウ
ム二次電池についても、上記の場合と同様にして充放電
を繰り返して行ない、200サイクルの充放電を行なっ
た場合における1サイクルあたりの劣化率を求め、その
結果を下記の表3に合わせて示した。
Each of the lithium secondary batteries of Examples 34 to 36 was repeatedly charged and discharged in the same manner as described above, and the deterioration rate per cycle when the charge and discharge were performed for 200 cycles. And the results are shown in Table 3 below.

【0036】[0036]

【表3】 [Table 3]

【0037】この結果から明らかなように、非水電解液
における溶媒に環状炭酸エステルと鎖状炭酸エステルと
を組み合わせた混合溶媒を使用すると、上記の実施例1
の場合によりもさらに劣化率が少なくなり、充放電サイ
クル特性に優れたリチウム二次電池が得られた。
As is apparent from the results, when the mixed solvent in which the cyclic carbonate and the chain carbonate are combined is used as the solvent in the non-aqueous electrolyte, the above-mentioned Example 1 is used.
In this case, the deterioration rate was further reduced, and a lithium secondary battery having excellent charge / discharge cycle characteristics was obtained.

【0038】[0038]

【発明の効果】以上詳述したように、この発明における
非水電解質電池においては、正極における正極材料とし
て、リチウムとコバルトとニッケルの複合酸化物を用い
ると共に、さらにNa,K,Mg,Ca,Alの内の少
なくとも1種の元素を適当量添加させたため、この正極
材料の特性が充放電によって低下するということが少な
くなり、充放電を繰り返して行なった場合における放電
容量の低下が抑制され、サイクル特性に優れた非水電解
質電池が得られた。
As described in detail above, in the nonaqueous electrolyte battery according to the present invention, a composite oxide of lithium, cobalt and nickel is used as a cathode material for the cathode, and Na, K, Mg, Ca, Since at least one element of Al is added in an appropriate amount, the characteristics of the positive electrode material are less likely to be deteriorated by charge and discharge, and a decrease in discharge capacity when charge and discharge are repeatedly performed is suppressed. A non-aqueous electrolyte battery having excellent cycle characteristics was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例及び比較例の各非水電解質電
池の内部構造を示した断面説明図である。
FIG. 1 is an explanatory cross-sectional view showing an internal structure of each nonaqueous electrolyte battery of an example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 正久 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 渡辺 浩志 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Masahisa Fujimoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshiyuki Noma 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Hiroshi Watanabe Keihan Motodori, Moriguchi, Osaka 2-5-5 Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極と非水電解質とを備えた非水
電解質電池において、上記の正極における正極材料とし
て、LiX M1y1Co1-Z NiZ 2 (M1はNa,K
の少なくとも1種の元素であり、0.5≦X<1.0、
0.5<X+Y1 ≦1.0、0.1≦Z≦0.9の条件
を満たす。)を用いたことを特徴とする非水電解質電
池。
1. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein Li X M1 y1 Co 1 -Z Ni Z O 2 (M1 is Na, K
At least one element of 0.5 ≦ X <1.0,
The condition of 0.5 <X + Y1 ≦ 1.0 and 0.1 ≦ Z ≦ 0.9 is satisfied. A non-aqueous electrolyte battery comprising:
【請求項2】 正極と負極と非水電解質とを備えた非水
電解質電池において、上記の正極における正極材料とし
て、LiX M2Y2Co1-Z NiZ 2 (M2はMg,C
aの少なくとも1種の元素であり、0.5≦X<1.
0、0.5<X+Y2 /2≦1.0、0.1≦Z≦0.
9の条件を満たす。)を用いたことを特徴とする非水電
解質電池。
2. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein Li X M2 Y2 Co 1 -Z Ni Z O 2 (M2 is Mg, C
a at least one element, and 0.5 ≦ X <1.
0, 0.5 <X + Y2 / 2≤1.0, 0.1≤Z≤0.
Condition 9 is satisfied. A non-aqueous electrolyte battery comprising:
【請求項3】 正極と負極と非水電解質とを備えた非水
電解質電池において、上記の正極における正極材料とし
て、LiX AlY3Co1-Z NiZ 2 (0.5≦X<
1.0、0.5<X+Y3 /3≦1.0、0.1≦Z≦
0.9の条件を満たす。)を用いたことを特徴とする非
水電解質電池。
3. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein Li X Al Y3 Co 1 -Z Ni Z O 2 (0.5 ≦ X <
1.0, 0.5 <X + Y3 / 3≤1.0, 0.1≤Z≤
The condition of 0.9 is satisfied. A non-aqueous electrolyte battery comprising:
【請求項4】 正極と負極と非水電解質とを備えた非水
電解質電池において、上記の正極における正極材料とし
て、LiX M1Y1M2Y2AlY3Co1-Z Ni Z 2 (M
1はNa,Kの少なくとも1種の元素、M2はMg,C
aの少なくとも1種の元素であり、0.5≦X<1.
0、0.5<X+Y1 +Y2 /2+Y3/3≦1.0、
0.1≦Z≦0.9の条件を満たす。)を用いたことを
特徴とする非水電解質電池。
4. A non-aqueous solution comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte
In the electrolyte battery, the positive electrode material of the above positive electrode is
And LiXM1Y1M2Y2AlY3Co1-ZNi ZOTwo(M
1 is at least one element of Na and K, M2 is Mg, C
a at least one element, and 0.5 ≦ X <1.
0, 0.5 <X + Y1 + Y2 / 2 + Y3 / 3≤1.0,
The condition of 0.1 ≦ Z ≦ 0.9 is satisfied. )
Characteristic non-aqueous electrolyte battery.
JP05445097A 1997-03-10 1997-03-10 Non-aqueous electrolyte battery Expired - Lifetime JP3426900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05445097A JP3426900B2 (en) 1997-03-10 1997-03-10 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05445097A JP3426900B2 (en) 1997-03-10 1997-03-10 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH10255795A true JPH10255795A (en) 1998-09-25
JP3426900B2 JP3426900B2 (en) 2003-07-14

Family

ID=12971042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05445097A Expired - Lifetime JP3426900B2 (en) 1997-03-10 1997-03-10 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3426900B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151549A (en) * 2001-11-12 2003-05-23 Nippon Telegr & Teleph Corp <Ntt> Layered oxide electrode material and its manufacturing method and battery using the same
JP2005116470A (en) * 2003-10-10 2005-04-28 Toyota Central Res & Dev Lab Inc Nonaqueous lithium secondary battery
WO2006134851A1 (en) * 2005-06-16 2006-12-21 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2007287661A (en) * 2006-03-20 2007-11-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009104974A (en) * 2007-10-25 2009-05-14 Panasonic Corp Cathode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151549A (en) * 2001-11-12 2003-05-23 Nippon Telegr & Teleph Corp <Ntt> Layered oxide electrode material and its manufacturing method and battery using the same
JP2005116470A (en) * 2003-10-10 2005-04-28 Toyota Central Res & Dev Lab Inc Nonaqueous lithium secondary battery
WO2006134851A1 (en) * 2005-06-16 2006-12-21 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
US8673499B2 (en) 2005-06-16 2014-03-18 Panasonic Corporation Lithium ion secondary battery
JP2007287661A (en) * 2006-03-20 2007-11-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009104974A (en) * 2007-10-25 2009-05-14 Panasonic Corp Cathode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using it

Also Published As

Publication number Publication date
JP3426900B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
JP3685500B2 (en) Nonaqueous electrolyte secondary battery
JP3625680B2 (en) Lithium secondary battery
JP5152246B2 (en) Cathode active material for lithium ion secondary battery and lithium ion secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
WO2020044930A1 (en) Non-aqueous electrolyte secondary battery
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JP2004146363A (en) Nonaqueous electrolyte secondary battery
JP4245219B2 (en) Lithium secondary battery
JP3625679B2 (en) Lithium secondary battery
JP3972577B2 (en) Lithium secondary battery
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JPH087886A (en) Nonaquoeus electrolytic secondary battery and manufacture thereof
JP3426900B2 (en) Non-aqueous electrolyte battery
JP3670880B2 (en) Lithium secondary battery
JPH10255762A (en) Lithium battery
JP3670879B2 (en) Lithium secondary battery
JPH09320596A (en) Nonaqueous electrolytic battery
JP2000277111A (en) Lithium secondary battery
JP3776230B2 (en) Lithium secondary battery
JP3615416B2 (en) Lithium secondary battery
JP3691714B2 (en) Lithium secondary battery
JP3072049B2 (en) Lithium secondary battery
JP5019892B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 10

EXPY Cancellation because of completion of term