JPH10253554A - Equipment for total reflection fluorescent x-ray analysis - Google Patents

Equipment for total reflection fluorescent x-ray analysis

Info

Publication number
JPH10253554A
JPH10253554A JP9051414A JP5141497A JPH10253554A JP H10253554 A JPH10253554 A JP H10253554A JP 9051414 A JP9051414 A JP 9051414A JP 5141497 A JP5141497 A JP 5141497A JP H10253554 A JPH10253554 A JP H10253554A
Authority
JP
Japan
Prior art keywords
ray
sample
primary
rays
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9051414A
Other languages
Japanese (ja)
Other versions
JP3673849B2 (en
Inventor
Tadashi Uko
忠 宇高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP05141497A priority Critical patent/JP3673849B2/en
Publication of JPH10253554A publication Critical patent/JPH10253554A/en
Application granted granted Critical
Publication of JP3673849B2 publication Critical patent/JP3673849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate simultaneous analysis of a plurality of elements in a wide range on the same sample, by providing a plurality of irradiation systems each casting a primary X ray on the surface of the sample and by making the incident angles of the primary X rays on the sample differ from each other. SOLUTION: In a first irradiation system 1, a first X-ray source 12 emits an X ray B1. This ray is made monochromatic and converged by a first spectroscope 14 and a W-L β1 ray B2 thus formed is cast on a sample surface 51 at an incident angle ϕ1. In a second irradiation system 2, at the same time, an Mo-Kα ray B2 is cast on the sample surface 51 at an incident angle ϕ2. The irradiation systems 1 and 2 are both positioned in the same azimuth. When the incident angle on one side is set, therefore, the incident angle on the other side is set automatically and thereby setting of the incident angles is facilitated. Each primary X ray B2 excites atoms of a sample 50, fluorescent X rays B3 inherent in elements are generated and part of them enters an X-ray detector 4 and subjected to spectral analysis in a multiple pulse-height analyzer 5. Since both of the W-L β1 ray and the Mo-Kα ray are used, a plurality of elements in a wide range can be analyzed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、同一試料について
複数の元素を同時に蛍光X線分析する全反射蛍光X線分
析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a total reflection X-ray fluorescence analyzer for simultaneously analyzing a plurality of elements in the same sample by X-ray fluorescence.

【0002】[0002]

【従来の技術】従来から、試料の表面層の元素分析に適
したものとして、試料表面にX線源からの1次X線を微
小な入射角で照射して、試料から発生する蛍光X線を分
析する全反射蛍光X線分析装置が知られている。この全
反射蛍光X線分析装置の一例を図4に示す。
2. Description of the Related Art Conventionally, as an element suitable for elemental analysis of a surface layer of a sample, primary X-rays from an X-ray source are irradiated at a small incident angle onto a sample surface to generate fluorescent X-rays generated from the sample. There is known a total reflection X-ray fluorescence spectrometer for analyzing the fluorescence. FIG. 4 shows an example of this total reflection X-ray fluorescence spectrometer.

【0003】図4において、X線源11のタ−ゲット材
41から出たX線B1は、分光結晶13に向かう。上記
X線B1のうち所定の波長の特性X線は、分光結晶13
で回折されて単色化され、その1次X線(回折X線)B
2が、試料台7上のシリコンウェハのような試料50の
表面51に微小な入射角α(例えば、0.05°〜0.20°程
度)で照射される。入射した1次X線B2は、その大部
分が全反射されて反射光線B4となり、残りの一部が試
料50を励起して、試料50を構成する元素固有の蛍光
X線B3を発生させる。蛍光X線B3は、試料表面51
に対向して配置したX線検出器4に入射する。この入射
した蛍光X線B3は、X線検出器4において、そのX線
強度が検出された後、X線検出器4からの検出信号aに
基づき、多重波高分析器5によってスペクトル分析がな
される。
In FIG. 4, an X-ray B 1 emitted from a target material 41 of an X-ray source 11 travels to a spectral crystal 13. The characteristic X-ray of a predetermined wavelength among the X-rays B1 is the spectral crystal 13
Is diffracted into a single color, and its primary X-ray (diffraction X-ray) B
2 is irradiated onto the surface 51 of the sample 50 such as a silicon wafer on the sample stage 7 at a small incident angle α (for example, about 0.05 ° to 0.20 °). Most of the incident primary X-ray B2 is totally reflected and becomes a reflected light beam B4, and the remaining part excites the sample 50 to generate a fluorescent X-ray B3 unique to the element constituting the sample 50. The fluorescent X-ray B3 is applied to the sample surface 51.
Is incident on the X-ray detector 4 disposed opposite to. The X-ray detector 4 detects the X-ray intensity of the incident fluorescent X-ray B3, and then performs a spectrum analysis by the multiplex height analyzer 5 based on the detection signal a from the X-ray detector 4. .

【0004】この種の全反射蛍光X線分析装置は、1次
X線B2の試料50への入射角αが微小であり、反射光
線B4および散乱X線がX線検出器4に入射しにくい。
このため、X線検出器4により検出される蛍光X線B3
の出力レベルに比べてノイズが小さい、つまり、大きな
S/N 比が得られ、そのため、分析感度がよく、例えば微
量の不純物が含まれていても検出できる。
In this type of total reflection X-ray fluorescence spectrometer, the incident angle α of the primary X-ray B2 to the sample 50 is very small, and the reflected light beam B4 and the scattered X-ray are hardly incident on the X-ray detector 4. .
Therefore, the fluorescent X-ray B3 detected by the X-ray detector 4
Noise is smaller than the output level of
An S / N ratio is obtained, so that the analysis sensitivity is good, and for example, even if a trace amount of impurities is contained, it can be detected.

【0005】上記において、同一の試料50について、
広範囲の複数の元素固有の蛍光X線B3を発生させる場
合には、X線源11を交換して異なる波長の特性X線を
用いる必要があり、このような異なる特性X線を回折さ
せるために、分光結晶13を交換する必要がある。
In the above, for the same sample 50,
When generating fluorescent X-rays B3 unique to a plurality of elements over a wide range, it is necessary to replace the X-ray source 11 and use characteristic X-rays having different wavelengths. , It is necessary to replace the crystal 13.

【0006】[0006]

【発明が解決しようとする課題】上記のように、従来装
置においては、同一試料50について広範囲の複数の元
素を蛍光X線分析する場合、X線源11および分光結晶
13からなる照射系を交換しなければならず、また、そ
の都度測定することになるので、測定作業が煩雑である
という問題があった。
As described above, in the conventional apparatus, when a wide range of a plurality of elements are subjected to fluorescent X-ray analysis for the same sample 50, the irradiation system including the X-ray source 11 and the spectral crystal 13 is exchanged. In addition, there is a problem that the measurement operation is complicated because the measurement must be performed each time.

【0007】また、上記照射系を交換する際に、全反射
させる必要性から試料50への入射角αが微小かつ許容
範囲が狭いため、照射系の位置や角度、または試料台7
の位置や角度を上記許容範囲内となるように調整する作
業が困難で、試料分析に時間がかかるという問題もあっ
た。
When the irradiation system is exchanged, the incident angle α to the sample 50 is small and the allowable range is narrow due to the necessity of total reflection.
It is difficult to adjust the position and angle of the sample so as to be within the above-mentioned allowable range, and there is a problem that it takes time to analyze the sample.

【0008】この発明は上記の問題点を解決して、同一
試料について広範囲の複数の元素の同時分析が容易にで
きる全反射蛍光X線分析装置を提供することを目的とし
ている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a total reflection X-ray fluorescence spectrometer capable of solving the above-mentioned problems and facilitating simultaneous analysis of a plurality of elements in a wide range on the same sample.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の蛍光X線分析装置は、試料表面に1次X
線を照射して試料表面で全反射を生じさせる照射系が複
数設けられ、各照射系による1次X線の試料への入射角
が互いに相違している。
In order to achieve the above object, an X-ray fluorescence spectrometer according to the first aspect of the present invention provides a primary X-ray analyzer on a sample surface.
A plurality of irradiation systems for irradiating a line to cause total reflection on the sample surface are provided, and the angles of incidence of primary X-rays on the sample by the respective irradiation systems are different from each other.

【0010】上記構成によれば、複数の照射系による1
次X線の試料への入射角が互いに相違しているので、同
一試料に複数の相異なる1次X線を同時に入射させるこ
とにより、広範囲の複数の元素を同時に蛍光X線分析で
きる。
[0010] According to the above configuration, one of the plurality of irradiation systems is used.
Since the angles of incidence of the secondary X-rays on the sample are different from each other, a plurality of different primary X-rays are simultaneously incident on the same sample, whereby a wide range of a plurality of elements can be simultaneously subjected to fluorescent X-ray analysis.

【0011】好ましくは、各照射系は、前記1次X線を
発生するX線源と、前記1次X線を単色化して前記試料
に入射させる分光器とを有している。従って、相異なる
複数の単色化された1次X線を試料表面に照射すること
ができる。
Preferably, each irradiation system has an X-ray source for generating the primary X-rays and a spectroscope for monochromaticizing the primary X-rays and causing the primary X-rays to enter the sample. Therefore, a plurality of different monochromatic primary X-rays can be irradiated to the sample surface.

【0012】好ましくは、各照射系からの1次X線の光
路が試料表面に直交する同一平面上に位置している。従
って、複数の照射系について、試料表面への入射角の設
定を容易に行うことができる。
Preferably, the optical path of the primary X-ray from each irradiation system is located on the same plane orthogonal to the sample surface. Therefore, it is possible to easily set the angle of incidence on the sample surface for a plurality of irradiation systems.

【0013】好ましくは、少なくとも第1と第2の照射
系を備え、両照射系は、1次X線を発生する共通のX線
源を有し、第1の照射系は前記1次X線を単色化してL
線を試料に入射させる第1の分光器を有し、第2の照射
系は前記1次X線を単色化してM線を試料に入射させる
第2の分光器を有している。従って、同一試料に1次X
線を単色化したL線とM線とを同時に入射させることに
より、広範囲の複数の元素を同時に蛍光X線分析でき
る。また、軽元素の測定精度を向上させることができ
る。
Preferably, at least first and second irradiation systems are provided, both of which have a common X-ray source for generating primary X-rays, and wherein the first irradiation system is provided with the primary X-rays. To monochromatic
A second spectroscope has a first spectroscope for making a line incident on the sample, and a second irradiating system has a second spectroscope for making the primary X-ray monochromatic and causing an M-ray to enter the sample. Therefore, primary X
X-ray fluorescence analysis of a plurality of elements in a wide range can be performed at the same time by simultaneously inputting the monochromatic L-ray and the M-ray. In addition, the measurement accuracy of light elements can be improved.

【0014】好ましくは、前記共通のX線源と異なるX
線源と、この異なるX線源からの1次X線を単色化して
前記試料に入射させる第3の分光器とを有する。従っ
て、同一試料に相異なる3つの単色化された1次X線を
同時に入射させて、より広範囲の複数の元素を同時に蛍
光X線分析できる。
Preferably, an X different from the common X-ray source
A source and a third spectroscope for monochromaticizing primary X-rays from the different X-ray sources and making the primary X-rays incident on the sample. Accordingly, three different monochromatic primary X-rays are simultaneously incident on the same sample, and a wider range of a plurality of elements can be simultaneously subjected to fluorescent X-ray analysis.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は、本発明の第1実施形態に係
る全反射蛍光X線分析装置の側面図を示す。本装置は、
シリコンウエハのような試料50に1次X線B2を同時
に照射して試料表面51でそれぞれ全反射を生じさせる
複数の照射系、例えば2つの第1の照射系および第2の
照射系2と、試料表面51に対向して配置された半導体
検出器(SSD)からなるX線検出器4と、多重波高分
析器5とを備えている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a side view of a total reflection X-ray fluorescence spectrometer according to the first embodiment of the present invention. This device is
A plurality of irradiation systems for simultaneously irradiating a sample 50 such as a silicon wafer with primary X-rays B2 to cause total reflection on the sample surface 51, for example, two first irradiation systems and a second irradiation system 2, An X-ray detector 4 composed of a semiconductor detector (SSD) and a multiplex height analyzer 5 are provided to face the sample surface 51.

【0016】第1の照射系1は、試料50に照射する1
次X線B2となるX線B1を発生する第1のX線源12
と、発生したX線B1を絞るスリット6と、絞られたX
線B1を単色化して前記試料50に1次X線B2を入射
させる第1の分光結晶(分光器)14とを有している。
また、第2の照射系2は、試料50に照射する1次X線
B2となるX線B1を発生する第2のX線源32と、発
生したX線B1を絞るスリット6と、絞られたX線B1
を単色化して前記試料50に1次X線B2を入射させる
第2の分光結晶34とを有している。
The first irradiation system 1 irradiates the sample 50 with 1
First X-ray source 12 for generating X-ray B1 to be the next X-ray B2
And a slit 6 for narrowing the generated X-ray B1,
A first dispersive crystal (spectroscope) 14 for converting the line B1 into a single color and allowing the primary X-ray B2 to be incident on the sample 50;
Further, the second irradiation system 2 includes a second X-ray source 32 that generates an X-ray B1 serving as a primary X-ray B2 that irradiates the sample 50, a slit 6 that narrows the generated X-ray B1, X-ray B1
And a second dispersive crystal 34 for making the primary X-ray B2 incident on the sample 50 by making the sample monochromatic.

【0017】両照射系1,2は、ともにX線分析装置の
前方(図の左側)から、つまり試料50に対して同一方
位から1次X線B2が試料50の同一照射エリアへ同時
に入射するように配置されており、第1の照射系1から
の1次X線B2の試料50への微小な入射角φ1と、第
2の照射系2からの1次X線B2の試料50への微小な
入射角φ2とは互いに相違している。また、この例で
は、試料5Oへの各入射角φ1,φ2の設定を容易にす
るために、各照射系1,2からの1次X線B2の光路K
1,K2が試料表面51に直交する同一平面上に位置し
ている。
In both irradiation systems 1 and 2, primary X-rays B2 simultaneously enter the same irradiation area of the sample 50 from the front of the X-ray analyzer (left side in the figure), that is, from the same direction with respect to the sample 50. And a small incident angle φ1 of the primary X-ray B2 from the first irradiation system 1 to the sample 50, and a small incident angle φ1 of the primary X-ray B2 from the second irradiation system 2 to the sample 50. It is different from the minute incident angle φ2. In this example, in order to easily set the incident angles φ1 and φ2 to the sample 50, the optical path K of the primary X-rays B2 from the irradiation systems 1 and 2 is set.
1 and K2 are located on the same plane orthogonal to the sample surface 51.

【0018】上記各X線源12,32は、互いに異なる
ターゲットを有しており、異なる1次X線B2を出射す
る。例えば、第1のX線源12はタングステンWのター
ゲット材42を有しており、第2のX線源32はモリブ
デンMoのターゲット材43を有している。この場合、
上記第1の分光結晶14はW−Lβ1 線を回折し、一
方、第2の分光結晶34はMo−Kα線を回折する。こ
れにより、試料50には、単色化された相異なる2本の
1次X線B2が照射されることになる。
The X-ray sources 12 and 32 have different targets from each other and emit different primary X-rays B2. For example, the first X-ray source 12 has a target material 42 of tungsten W, and the second X-ray source 32 has a target material 43 of molybdenum Mo. in this case,
The first spectral crystal 14 diffracts the W-Lβ 1 line, while the second spectral crystal 34 diffracts the Mo-Kα line. Thus, the sample 50 is irradiated with two different primary X-rays B2 that have been made monochromatic.

【0019】X線検出器4は、試料50から発生した蛍
光X線B3のX線強度を検出し、多重波高分析器5は、
X線検出器4からの検出信号aを入力とし、X線検出器
4に入射した蛍光X線B3のスペクトル分析を行う。
The X-ray detector 4 detects the X-ray intensity of the fluorescent X-ray B3 generated from the sample 50.
The detection signal a from the X-ray detector 4 is input, and the spectrum analysis of the fluorescent X-ray B3 incident on the X-ray detector 4 is performed.

【0020】このように、複数の照射系1,2を、それ
ぞれの1次X線B2が上記のように同一方位から微小の
入射角で試料50へ同時に入射するように配置できるの
は、全反射型の蛍光X線分析装置において、試料50に
入射する各照射系1,2からの1次X線B2のビーム幅
が小さく、一方の照射系の分光結晶を他方の照射系の光
路を妨げない程に小さくできるとの本出願人の知見に基
づくものである。以下、この知見について説明する。
As described above, the plurality of irradiation systems 1 and 2 can be arranged such that the respective primary X-rays B2 are simultaneously incident on the sample 50 from the same direction at a small incident angle as described above. In the reflection-type X-ray fluorescence spectrometer, the beam width of the primary X-rays B2 from each of the irradiation systems 1 and 2 incident on the sample 50 is small, and the spectral crystal of one irradiation system obstructs the optical path of the other irradiation system. It is based on the applicant's finding that it can be made as small as possible. Hereinafter, this finding will be described.

【0021】図1において、試料50から発生した蛍光
X線B3を有効に取り出すために、X線検出器4と試料
50間の距離をできるだけ接近させて使用する必要があ
る。通常、X線検出器4の先端から試料50までの距離
は、1.5〜2mmである。この条件とX線検出器4の
半導体を形成するSi(Li)の大きさ10mmφとの
関係で、X線検出器4で検出される試料表面51におけ
る1次X線B2のビームの広がりは裾幅で16mmであ
る。
In FIG. 1, in order to effectively extract the fluorescent X-rays B3 generated from the sample 50, it is necessary to use the X-ray detector 4 and the sample 50 as close as possible. Usually, the distance from the tip of the X-ray detector 4 to the sample 50 is 1.5 to 2 mm. Due to the relationship between this condition and the size of Si (Li) forming the semiconductor of the X-ray detector 4 of 10 mmφ, the spread of the primary X-ray B2 beam on the sample surface 51 detected by the X-ray detector 4 is reduced. The width is 16 mm.

【0022】全反射現象における臨界角φcは、ρを試
料の密度、λを入射X線の波長とすると、φc≒√ρ・
λであり、この例では、第1のX線源12にW−Lβ1
線(エネルギー9.67keV,波長1.2817Å)
を使用し、試料50にシリコンウェーハを使用している
ので、この場合、臨界角φc=0.187°になる。し
たがって、実際に装置として使用する1次X線B2の試
料50に対する入射角は高々0.4°である。
The critical angle φc in the total reflection phenomenon is represented by φc ≒ √ρ ·, where ρ is the density of the sample and λ is the wavelength of the incident X-ray.
λ, and in this example, the first X-ray source 12 has W-Lβ 1
Line (energy 9.67 keV, wavelength 1.2817 °)
Is used, and a silicon wafer is used for the sample 50. In this case, the critical angle φc is 0.187 °. Therefore, the incident angle of the primary X-ray B2 actually used as the device with respect to the sample 50 is at most 0.4 °.

【0023】上記の入射角を0.4°で、X線検出器4
の試料表面51上での視野を16mmとしたときの1次
X線B2のビームの幅は、16sin0.4°=0.1
1(mm)となる。つまり、第1の照射系1の光路K1
の幅は0.11(mm)である。
When the above incident angle is 0.4 ° and the X-ray detector 4
When the visual field on the sample surface 51 is 16 mm, the beam width of the primary X-ray B2 is 16 sin 0.4 ° = 0.1
1 (mm). That is, the optical path K1 of the first irradiation system 1
Is 0.11 (mm).

【0024】いま、第2のX線源32のMo−Kα線
(エネルギー17.44keV,波長0.7107Å)
をグラファイト(2d=6.708Å)のようなブラッ
グ角θの大きい第2の分光結晶34で分光すると、ブラ
ッグ角θはθ=6.08°となる。このとき、ビームの
幅を0.11mmとすると、有効な第2の分光結晶34
の長さは1.04mmとなる。
Now, the Mo-Kα ray of the second X-ray source 32 (energy 17.44 keV, wavelength 0.7107 °)
Is divided by the second spectral crystal 34 having a large Bragg angle θ such as graphite (2d = 6.708 °), and the Bragg angle θ becomes θ = 6.08 °. At this time, assuming that the beam width is 0.11 mm, the effective second dispersive crystal 34
Is 1.04 mm.

【0025】従って、第1の照射系1の試料50に対す
る1次X線B2のビーム幅が0.11mmと小さく、ま
た、第2の分光結晶34の長さも1.04mmと小さく
できるので、第1の照射系1の光路K1を妨げないよう
に第2の分光結晶34を配置でき、2つの照射系1,2
は、同一方位から同一試料50に異なる入射角で照射で
きる。
Accordingly, the beam width of the primary X-ray B2 with respect to the sample 50 of the first irradiation system 1 can be reduced to 0.11 mm, and the length of the second spectral crystal 34 can be reduced to 1.04 mm. The second spectral crystal 34 can be arranged so as not to obstruct the optical path K1 of the first irradiation system 1,
Can irradiate the same sample 50 from the same direction at different incident angles.

【0026】つぎに、本装置の動作を図1に基づいて説
明する。まず、上記各照射系1,2を、試料50に対す
る同一方位から各1次X線B2が試料表面51に微小な
入射角φ1,φ2で照射するように配置する。そして、
第1の照射系1において、第1のX線源12から1次X
線B2となるX線B1を出射し、これを第1の分光結晶
14で単色化するとともに集光させてW−Lβ1線B2
を入射角φ1で試料表面51に照射する。これと同時
に、第2の照射系2において、第2のX線源32から1
次X線B2となるX線B1を出射し、これを第2の分光
結晶34で単色化するとともに集光させてMo−Kα線
B2を入射角φ2で試料表面51に照射する。
Next, the operation of the present apparatus will be described with reference to FIG. First, the irradiation systems 1 and 2 are arranged so that each primary X-ray B2 irradiates the sample surface 51 at a small incident angle φ1, φ2 from the same direction with respect to the sample 50. And
In the first irradiation system 1, the primary X-ray source 12
An X-ray B1 to be a line B2 is emitted, and the X-ray B1 is monochromatized and condensed by the first dispersive crystal 14 to form a W-Lβ 1 line
Is irradiated on the sample surface 51 at an incident angle φ1. At the same time, the second X-ray source 32
An X-ray B1 to be the next X-ray B2 is emitted, monochromatized and condensed by the second spectral crystal 34, and the Mo-Kα ray B2 is irradiated onto the sample surface 51 at an incident angle φ2.

【0027】この場合、上述のように、第1の照射系1
におけるW−Lβ1 線の臨界角φcは0.18°である
ので、入射角φ1は、試料50に対する最適の測定角度
0.18°÷2≒0.1°に設定され、第2の照射系2
におけるMo−Kα線の臨界角φcは0.09°である
ので、入射角φ2は、最適の測定角度0.09°÷2≒
0.05°に設定される。入射角の設定は、試料50を
載置した試料台7を、図1の上下方向へ移動させ、か
つ、図1の紙面に直交する軸AXの回りにR方向に回動
させることにより行われる。このとき、両照射系1,2
は、ともに同一方位にあるので、試料50に対する一方
の照射系の入射角を設定すれば、他方の照射系の入射角
が自動的に設定されるから、入射角の設定が容易にな
る。しかも、両照射系1,2をコンパクトにまとめられ
る。
In this case, as described above, the first irradiation system 1
Since the critical angle φc of the W-Lβ 1 line at 0.18 is 0.18 °, the incident angle φ1 is set to the optimal measurement angle 0.18 ° ÷ 2 ≒ 0.1 ° with respect to the sample 50, and the second irradiation System 2
Is the critical angle φc of the Mo-Kα ray at 0.09 °, the incident angle φ2 is the optimum measurement angle 0.09 ° {2}.
It is set to 0.05 °. The setting of the incident angle is performed by moving the sample stage 7 on which the sample 50 is placed in the vertical direction in FIG. 1 and rotating the sample stage 7 in the R direction about an axis AX orthogonal to the plane of FIG. . At this time, both irradiation systems 1, 2
Are in the same azimuth, setting the incident angle of one irradiation system with respect to the sample 50 automatically sets the incident angle of the other irradiation system, which facilitates setting of the incident angle. In addition, the two irradiation systems 1 and 2 can be made compact.

【0028】こうして、試料50には、両照射系1,2
から単色化された相異なる2本の1次X線B2が同時に
照射される。各1次X線B2は、試料50の原子を励起
し、試料50から元素固有の蛍光X線B3が発生する。
蛍光X線B3の一部は、X線検出器4に入射し、多重波
高分析器5でスペクトル分析される。この状態を図2に
示す。
Thus, the sample 50 is provided with both irradiation systems 1, 2
, Two different primary X-rays B2 monochromatized are simultaneously irradiated. Each primary X-ray B2 excites an atom of the sample 50, and the sample 50 generates an element-specific fluorescent X-ray B3.
A part of the fluorescent X-ray B3 enters the X-ray detector 4 and is subjected to spectrum analysis by the multiplex height analyzer 5. This state is shown in FIG.

【0029】図2のように、W−Lβ1 線によってZn
〜Siなどの軽元素を分析でき、Mo−Kα線により
W,Auなどの元素を分析することできる。W−Lβ1
線のみでは、W,Auを励起できないし、Mo−Kα線
のみでは、エネルギレベルが大きく離れたSi,S,C
rを十分励起できない。これに対して、図1の装置は、
第1と第2の照射系1,2からW−Lβ1 線とMo−K
α線の両方を使用するので、広範囲の複数の元素を分析
することができる。
[0029] As shown in FIG. 2, Zn by W-Lβ 1 line
Light elements such as ~ Si can be analyzed, and elements such as W and Au can be analyzed by Mo-Kα rays. W-Lβ 1
W and Au cannot be excited only by the line, and only Mo-Kα line cannot be used to excite Si, S, C
r cannot be excited sufficiently. In contrast, the device of FIG.
W-Lβ 1 ray and Mo-K from the first and second irradiation systems 1 and 2
Since both α rays are used, a wide range of multiple elements can be analyzed.

【0030】さらに、2本の相異なるW−Lβ1 線とM
o−Kα線の1次X線B2が試料50に同時に照射され
ることにより、軽元素Si〜ZnのX線強度が向上す
る。例えば、W−Lβ1 線のみの場合のX線強度を1と
すると、軽元素Si〜Znは、W−Lβ1 線とMo−K
α線で同時に照射された場合、W−Lβ1 線とともにM
o−Kα線で励起されてそのX線強度は1.5倍にな
る。したがって、軽元素の励起効率が向上し分析精度が
向上する。
Furthermore, two different W-L? 1 line and M
By simultaneously irradiating the sample 50 with the primary X-ray B2 of the o-Kα ray, the X-ray intensity of the light elements Si to Zn is improved. For example, assuming that the X-ray intensity in the case of only the W-Lβ 1 line is 1, the light elements Si to Zn have the W-Lβ 1 line and the Mo-K
When irradiated simultaneously α-rays, M with W-L? 1 line
When excited by o-Kα rays, the X-ray intensity becomes 1.5 times. Therefore, the light element excitation efficiency is improved, and the analysis accuracy is improved.

【0031】このように、本装置は、容易に同一試料に
ついて広範囲の複数の元素の同時分析ができるものであ
り、従来のように、X線源および分光結晶の交換の必要
がなく、また、その都度2回測定する必要もなく、1回
の測定で広範囲の複数の元素の分析が可能になる。さら
に、軽元素の励起効率も向上し、測定精度が向上する。
As described above, the present apparatus can easily analyze a wide range of a plurality of elements on the same sample easily, and does not require the exchange of the X-ray source and the spectral crystal unlike the conventional one. It is not necessary to measure twice each time, and a single measurement can analyze a wide range of a plurality of elements. Furthermore, the excitation efficiency of the light element is improved, and the measurement accuracy is improved.

【0032】次に、第2実施形態の説明に移る。本装置
は、図3に示すように、第1の照射系1と第2の照射系
2を、共通のX線源(第1のX線源)12を備えたもの
とし、さらに、別途第3の照射系3を設けている。タン
グステンWのターゲット材42を有する共通のX線源1
2を有する第1の照射系1は、前記1次X線B1を単色
化してW−Lβ1 線のようなL線を試料50に入射させ
る第1の分光器12を有し、第2の照射系2は前記1次
X線B1を単色化してW−Mα1 線のようなM線を試料
50に入射させる第2の分光器24を有している。な
お、この場合、W−Mα線を吸収しないように、X線源
12の図示しないベリリウム窓を薄くしておく必要があ
る。上記第3の照射系3は、モリブデンMoのターゲッ
ト材43Aを有する第2のX線源32Aと、この第2の
X線源32Aからの1次X線B1を単色化して試料50
に入射させる第3の分光器34Aとを有する。
Next, the operation of the second embodiment will be described. In this apparatus, as shown in FIG. 3, the first irradiation system 1 and the second irradiation system 2 are provided with a common X-ray source (first X-ray source) 12. Three irradiation systems 3 are provided. Common X-ray source 1 having tungsten W target material 42
A first irradiation system 1 having a second monochromator 2 has a first spectroscope 12 for monochromaticizing the primary X-ray B1 and causing an L-ray such as a W-Lβ 1 ray to enter the sample 50, and The irradiation system 2 has a second spectroscope 24 for monochromaticizing the primary X-ray B1 and causing the M-ray such as the W-Mα 1 ray to enter the sample 50. In this case, a beryllium window (not shown) of the X-ray source 12 needs to be thinned so as not to absorb W-Mα rays. The third irradiation system 3 includes a second X-ray source 32A having a target material 43A of molybdenum Mo, and a primary X-ray B1 from the second X-ray source 32A, which is made monochromatic to obtain a sample 50.
And a third spectroscope 34A that makes the light incident on the third spectroscope.

【0033】各照射系1〜3は、ともにX線分析装置の
前方(図の左側)から、つまり試料50に対する同一方
位から3本の相異なる1次X線B2が試料50へ入射す
るように配置され、各照射系1〜3による1次X線B1
の試料50への入射角φ1〜φ3が互いに相違してい
る。この場合も、各照射系1〜3は、ともに同一方位に
あるので、試料50に対する入射角の設定が容易で、か
つ小型化が図れる。
Each of the irradiation systems 1 to 3 is arranged such that three different primary X-rays B2 are incident on the sample 50 from the front (left side in the figure) of the X-ray analyzer, that is, from the same direction with respect to the sample 50. Primary X-rays B1 arranged by each of the irradiation systems 1 to 3
The incident angles φ1 to φ3 of the sample 50 are different from each other. Also in this case, since the irradiation systems 1 to 3 are all in the same direction, setting of the incident angle with respect to the sample 50 is easy, and downsizing can be achieved.

【0034】各照射系1〜3は、第1のX線源12がタ
ングステンWのターゲット材42を有し、第3のX線源
32AがモリブデンMoのターゲット材43Aを有する
ので、上述のように、W−Lβ1 線の試料50への入射
角φ1は最適値である0.1°に、Mo−Kα線の入射
角φ3は最適値である0.05°に設定される。また、
W−Mα1 線の臨界角度φcは1°であるので、入射角
φ2は1°÷2≒0.5°の最適値に設定される。
In each of the irradiation systems 1 to 3, the first X-ray source 12 has the target material 42 of tungsten W and the third X-ray source 32A has the target material 43A of molybdenum Mo. the incident angle φ1 of the sample 50 of the W-L? 1 line to 0.1 ° is optimum, the incident angle φ3 of Mo-K [alpha line is set to 0.05 ° is optimum. Also,
Since the critical angle φc of the W-Mα 1 line is 1 °, the incident angle φ2 is set to an optimum value of 1 ° ÷ 2 ≒ 0.5 °.

【0035】上記各照射系1〜3の各1次X線B2の試
料50への同時照射により、W−Lβ1 線によりZn〜
Siなどの元素を分析し、Mo−Kα線によりW,Au
などの元素を分析し、また、エネルギーレベルの低いW
−Mα1 線により、Siよりもさらにエネルギーレベル
の低い(波長の長い)Na,Alなどの元素を分析する
ことができる。したがって、第1実施形態よりも一層広
範囲の複数の元素を分析することができる。
[0035] By simultaneous irradiation to the sample 50 of the primary X-rays B2 of the illumination system 1 to 3, Zn2 by W-L? 1 line
Elements such as Si are analyzed, and W, Au
Analyze elements such as W
The -Emuarufa 1 line, (longer wavelength) lower energy level than Si Na, can be analyzed element such as Al. Accordingly, a wider range of a plurality of elements can be analyzed than in the first embodiment.

【0036】[0036]

【発明の効果】以上のように、本発明によれば、複数の
照射系による1次X線の試料への入射角が互いに相違し
ているので、同一試料に複数の相異なる1次X線を同時
に入射させて、広範囲の複数の元素を同時に蛍光X線分
析できる。
As described above, according to the present invention, the angles of incidence of primary X-rays on a sample by a plurality of irradiation systems are different from each other. At the same time, and a wide range of elements can be simultaneously subjected to fluorescent X-ray analysis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る蛍光X線分析装置
を示す側面図である。
FIG. 1 is a side view showing an X-ray fluorescence spectrometer according to a first embodiment of the present invention.

【図2】蛍光X線分析できる元素を示す配列図である。FIG. 2 is an array diagram showing elements that can be subjected to fluorescent X-ray analysis.

【図3】第2実施形態に係る蛍光X線分析装置を示す側
面図である。
FIG. 3 is a side view showing a fluorescent X-ray analyzer according to a second embodiment.

【図4】従来の蛍光X線分析装置を示す側面図である。FIG. 4 is a side view showing a conventional fluorescent X-ray analyzer.

【符号の説明】[Explanation of symbols]

1…第1の照射系、2…第2の照射系、3…第3の照射
系、12…第1のX線源、32,32A…第2のX線
源、14…第1の分光器、34,24…第2の分光器、
34A…第3の分光器、50…試料。
DESCRIPTION OF SYMBOLS 1 ... 1st irradiation system, 2 ... 2nd irradiation system, 3 ... 3rd irradiation system, 12 ... 1st X-ray source, 32, 32A ... 2nd X-ray source, 14 ... 1st spectroscopy Instruments, 34, 24 ... second spectroscope,
34A: third spectroscope, 50: sample.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 試料表面に1次X線を照射して試料表面
で全反射を生じさせる照射系と、前記試料からの蛍光X
線を検出するX線検出器とを備えた全反射蛍光X線分析
装置において、 前記照射系が複数設けられ、各照射系による1次X線の
試料への入射角が互いに相違していることを特徴とする
全反射蛍光X線分析装置。
An irradiation system for irradiating a sample surface with primary X-rays to cause total reflection on the sample surface, and a fluorescent X-ray from the sample.
A total reflection X-ray fluorescence spectrometer provided with an X-ray detector for detecting X-rays, wherein the plurality of irradiation systems are provided, and the angles of incidence of primary X-rays on the sample by the respective irradiation systems are different from each other. A total reflection X-ray fluorescence analyzer.
【請求項2】 請求項1において、 各照射系は、前記1次X線を発生するX線源と、前記1
次X線を単色化して前記試料に入射させる分光器とを有
している全反射蛍光X線分析装置。
2. An irradiation system according to claim 1, wherein each irradiation system comprises: an X-ray source for generating the primary X-ray;
A total reflection X-ray fluorescence spectrometer, comprising: a spectroscope that monochromatizes the next X-ray and makes it incident on the sample.
【請求項3】 請求項2において、 各照射系からの1次X線の光路が試料表面に直交する同
一平面上に位置している全反射蛍光X線分析装置。
3. The total reflection X-ray fluorescence spectrometer according to claim 2, wherein the optical path of the primary X-ray from each irradiation system is located on the same plane orthogonal to the sample surface.
【請求項4】 請求項1において、 少なくとも第1と第2の照射系を備え、 両照射系は、1次X線を発生する共通のX線源を有し、
第1の照射系は前記1次X線を単色化してL線を試料に
入射させる第1の分光器を有し、第2の照射系は前記1
次X線を単色化してM線を試料に入射させる第2の分光
器を有している全反射蛍光X線分析装置。
4. The method according to claim 1, further comprising at least first and second irradiation systems, both of which have a common X-ray source for generating primary X-rays,
The first irradiation system has a first spectroscope for monochromaticizing the primary X-ray and making the L-ray incident on a sample, and the second irradiation system has the first irradiation system.
A total reflection X-ray fluorescence spectrometer having a second spectroscope for monochromaticizing the next X-ray and making the M-ray incident on the sample.
【請求項5】 請求項4において、さらに、 前記共通のX線源と異なるX線源と、この異なるX線源
からの1次X線を単色化して前記試料に入射させる第3
の分光器とを有する全反射蛍光X線分析装置。
5. The apparatus according to claim 4, further comprising an X-ray source different from the common X-ray source, and a primary X-ray from the different X-ray source being monochromatic and incident on the sample.
Total reflection X-ray fluorescence spectrometer comprising:
JP05141497A 1997-03-06 1997-03-06 Total reflection X-ray fluorescence analyzer Expired - Lifetime JP3673849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05141497A JP3673849B2 (en) 1997-03-06 1997-03-06 Total reflection X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05141497A JP3673849B2 (en) 1997-03-06 1997-03-06 Total reflection X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JPH10253554A true JPH10253554A (en) 1998-09-25
JP3673849B2 JP3673849B2 (en) 2005-07-20

Family

ID=12886280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05141497A Expired - Lifetime JP3673849B2 (en) 1997-03-06 1997-03-06 Total reflection X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP3673849B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195963A (en) * 2000-12-25 2002-07-10 Ours Tex Kk X-ray spectroscope apparatus and x-ray analyzing apparatus
JP2015513767A (en) * 2012-02-28 2015-05-14 エックス−レイ オプティカル システムズ インコーポレーテッド X-ray analyzer in which multiple excitation energy bands are generated using an X-ray tube anode and monochromating optics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208900A (en) * 1990-12-03 1992-07-30 Technos:Kk Setting of irradiation angle of energy beam
JPH06174664A (en) * 1992-12-03 1994-06-24 Kao Corp Fluorescent x-ray analysis method and device therefor
JPH08136479A (en) * 1994-11-08 1996-05-31 Technos Kenkyusho:Kk Total reflection-type fluorescent x-ray analyzing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208900A (en) * 1990-12-03 1992-07-30 Technos:Kk Setting of irradiation angle of energy beam
JPH06174664A (en) * 1992-12-03 1994-06-24 Kao Corp Fluorescent x-ray analysis method and device therefor
JPH08136479A (en) * 1994-11-08 1996-05-31 Technos Kenkyusho:Kk Total reflection-type fluorescent x-ray analyzing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195963A (en) * 2000-12-25 2002-07-10 Ours Tex Kk X-ray spectroscope apparatus and x-ray analyzing apparatus
JP2015513767A (en) * 2012-02-28 2015-05-14 エックス−レイ オプティカル システムズ インコーポレーテッド X-ray analyzer in which multiple excitation energy bands are generated using an X-ray tube anode and monochromating optics

Also Published As

Publication number Publication date
JP3673849B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
US5497008A (en) Use of a Kumakhov lens in analytic instruments
US6934359B2 (en) Wavelength dispersive XRF system using focusing optic for excitation and a focusing monochromator for collection
US7023955B2 (en) X-ray fluorescence system with apertured mask for analyzing patterned surfaces
KR100690457B1 (en) X-ray measuring and testing complex
US6697454B1 (en) X-ray analytical techniques applied to combinatorial library screening
JPH0769477B2 (en) X-ray spectrometer
EP0800647A1 (en) Apparatus for simultaneous x-ray diffraction and x-ray fluorescence measurements
JPWO2004086018A1 (en) X-ray fluorescence analyzer
JP2002189004A (en) X-ray analyzer
JP2001124711A (en) Fluorescence x-ray analysis method and evaluation method of sample structure
US6628748B2 (en) Device and method for analyzing atomic and/or molecular elements by means of wavelength dispersive X-ray spectrometric devices
JP3673849B2 (en) Total reflection X-ray fluorescence analyzer
JP2685726B2 (en) X-ray analyzer
JP4051427B2 (en) Photoelectron spectrometer and surface analysis method
JPH08220027A (en) X-ray fluorescence analyzer
GB2343825A (en) X-ray micro-diffraction apparatus comprising a cylindrical surrounding the specimen
JPH08201320A (en) X-ray analyzer
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
US6650728B2 (en) Apparatus and method for the analysis of atomic and molecular elements by wavelength dispersive X-ray spectrometric devices
RU2137114C1 (en) Method of small-angle introscopy and device for its realization ( versions )
JP2000214107A (en) X-ray fluorescence analyzer
JPH10282022A (en) Fluorescent x-ray analysis method and apparatus
JP2002005858A (en) Total reflection x-ray fluorescence analyzer
JP2002093594A (en) X-ray tube and x-ray analyzer
WO1997025614A1 (en) X-ray analysis apparatus including a rotatable primary collimator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term