JPH10253170A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH10253170A
JPH10253170A JP5797597A JP5797597A JPH10253170A JP H10253170 A JPH10253170 A JP H10253170A JP 5797597 A JP5797597 A JP 5797597A JP 5797597 A JP5797597 A JP 5797597A JP H10253170 A JPH10253170 A JP H10253170A
Authority
JP
Japan
Prior art keywords
temperature
suction pipe
degree
compressor
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5797597A
Other languages
Japanese (ja)
Inventor
Seiya Kira
誠也 吉良
Hironori Ishihara
洋紀 石原
Masaki Yamamoto
政樹 山本
Tsugunori Inoue
世紀 井上
Hajime Kurata
肇 倉田
Hideki Matsumoto
英希 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP5797597A priority Critical patent/JPH10253170A/en
Publication of JPH10253170A publication Critical patent/JPH10253170A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which can improve its reliability and reduce its consumed power by decreasing the number of times of starts and stops of a compressor. SOLUTION: A controller 10 controls the degree of superheat of the suction pipe of a compressor 1 so that an operating capacity becomes maximum when the temperature difference between room temperature and setting temperature is higher than an upper threshold value and a coefficient of performance COP becomes maximum when the temperature difference is smaller than a lower threshold value. Further, the controller 1 10 controls the degree of superheat of the suction pipe of the compressor 1 so that the degree of superheat of the suction pipe is substantially inversely proportional to the temperature difference from the degree of superheat of the inlet pipe obtained when the operating capacity is maximum to that when the coefficient of performance COP is maximum, in case the temperature difference is within a range from the upper threshold value to the lower threshold value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、運転能力を制御
すると共に、成績係数COP(coefficient ofperforman
ce)を制御する空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling driving performance and a coefficient of performance (COP).
The present invention relates to an air conditioner for controlling ce).

【0002】[0002]

【従来の技術】従来、空気調和機としては、圧縮機の運
転周波数が一定で常に最大能力で運転するものがある。
この空気調和機では、例えば冷房運転において室内温度
と設定温度との温度差が小さくなっても、最大能力で運
転を継続し、室内温度が設定温度になった後、しばらく
して室内温度が設定温度よりも低くなってサーモオフ
し、圧縮機が停止する。その後、室内温度が徐々に上昇
して、室内温度が設定温度よりも高くなり、室内温度と
設定温度との温度差が大きくなると、サーモオンして、
圧縮機が再び起動する。
2. Description of the Related Art Conventionally, as an air conditioner, there is an air conditioner in which the operating frequency of a compressor is constant and always operates at a maximum capacity.
In this air conditioner, for example, even if the temperature difference between the indoor temperature and the set temperature in the cooling operation becomes small, the operation continues at the maximum capacity, and after the indoor temperature reaches the set temperature, the indoor temperature is set for a while. When the temperature drops below the temperature, the thermostat turns off and the compressor stops. Thereafter, when the room temperature gradually rises, the room temperature becomes higher than the set temperature, and the temperature difference between the room temperature and the set temperature increases, the thermo-on is performed.
The compressor starts again.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記空気調
和機では、図5に示すように、室内温度の変動に従って
圧縮機の運転/停止を繰り返すため、信頼性が低下する
という欠点がある。また、上記空気調和機では、常に最
大能力で運転するため、消費電力も増大するという欠点
がある。
However, the air conditioner described above has a drawback that the reliability is reduced because the operation of the compressor is repeatedly started / stopped in accordance with the fluctuation of the room temperature, as shown in FIG. In addition, the air conditioner has a drawback that power consumption increases because the air conditioner always operates at the maximum capacity.

【0004】そこで、この発明の目的は、圧縮機の発停
回数を減らすことによって、信頼性を向上できると共
に、消費電力を低減できる空気調和機を提供することに
ある。
An object of the present invention is to provide an air conditioner that can improve reliability and reduce power consumption by reducing the number of times the compressor starts and stops.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の空気調和機は、圧縮機,凝縮器,電動膨
張弁および蒸発器が環状に接続された冷媒回路を有する
空気調和機において、室内温度と設定温度との温度差が
上しきい値よりも大きいとき、運転能力が最大になるよ
うに上記圧縮機の吸込管過熱度を制御する一方、上記温
度差が下しきい値よりも小さいとき、成績係数COPが
最大になるように上記圧縮機の吸込管過熱度を制御する
と共に、上記温度差が上記上しきい値から上記下しきい
値までの範囲内のとき、上記温度差に応じて、運転能力
が最大になるときの吸込管過熱度から成績係数COPが
最大になるときの吸込管過熱度までの間で上記圧縮機の
吸込管過熱度を制御する制御装置を備えたことを特徴と
している。
According to one aspect of the present invention, there is provided an air conditioner having a refrigerant circuit in which a compressor, a condenser, an electric expansion valve, and an evaporator are connected in a ring shape. In the above, when the temperature difference between the room temperature and the set temperature is larger than the upper threshold, while controlling the degree of superheat of the suction pipe of the compressor so that the operating capacity is maximized, the temperature difference is lower When the temperature difference is within the range from the upper threshold to the lower threshold, the suction pipe superheat degree of the compressor is controlled so that the coefficient of performance COP is maximized. In accordance with the temperature difference, a control device that controls the suction pipe superheat degree of the compressor between the suction pipe superheat degree when the operating capacity is maximized and the suction pipe superheat degree when the coefficient of performance COP is maximized. It is characterized by having.

【0006】上記請求項1の空気調和機によれば、上記
構成の冷媒回路では、一般に、運転能力が最大になると
きの圧縮機の吸込管過熱度は0℃付近と低く、成績係数
COPは小さくなって効率が悪くなるのに対して、成績
係数COPが最大すなわち効率が最大になるときの圧縮
機の吸込管過熱度は例えば8℃付近と高く、運転能力は
小さくなる。そこで、例えば冷房運転において、室内温
度が設定温度よりも高く、室内温度と設定温度との温度
差が上しきい値よりも大きい場合は、上記制御装置は、
電動膨張弁の開度,室内ファンの回転数および圧縮機の
運転周波数等を制御することによって、運転能力が最大
になるように圧縮機の吸込管過熱度を制御する。そうし
て、最大能力で運転することにより、室内温度が徐々に
下がり、室内温度と設定温度との温度差が上しきい値と
下しきい値の範囲内になると、制御装置は、その温度差
に応じて、運転能力が最大になるときの吸込管過熱度か
ら成績係数COPが最大になるときの吸込管過熱度まで
の間で吸込管過熱度を制御する。その後、上記室内温度
と設定温度との温度差が下しきい値よりも小さいとき、
上記制御装置は、成績係数COPが最大になるように圧
縮機の吸込管過熱度を制御して、最大効率で運転する。
このように、上記室内温度と設定温度との温度差に応じ
て、圧縮機の吸込管過熱度を効果的に制御するので、室
内温度が設定温度に確実に調整されて、冷房運転で冷え
すぎたり、暖房運転で暖めすぎたりすることがなく、運
転停止回数を減らし、圧縮機の停止回数を低減する。し
たがって、上記圧縮機の発停回数を減らすことによっ
て、信頼性を向上できると共に、室内温度と設定温度と
の温度差が上しきい値と下しきい値の範囲内では、最大
能力時よりも運転能力を小さくしつつ成績係数COPす
なわち効率が高くなるように効果的に制御して、消費電
力を低減できる。
According to the air conditioner of the first aspect, in the refrigerant circuit having the above structure, the superheat degree of the suction pipe of the compressor when the operating capacity is maximized is as low as about 0 ° C., and the coefficient of performance COP is generally low. While the efficiency decreases as the size decreases, the degree of superheat of the suction pipe of the compressor when the coefficient of performance COP is maximized, that is, when the efficiency is maximized, is as high as, for example, about 8 ° C., and the operating capacity is reduced. Therefore, for example, in the cooling operation, when the room temperature is higher than the set temperature and the temperature difference between the room temperature and the set temperature is larger than the upper threshold, the control device includes:
By controlling the degree of opening of the electric expansion valve, the number of rotations of the indoor fan, the operating frequency of the compressor, and the like, the degree of superheat of the suction pipe of the compressor is controlled so that the operating capacity is maximized. Then, by operating at the maximum capacity, the room temperature gradually decreases, and when the temperature difference between the room temperature and the set temperature falls within the range of the upper threshold value and the lower threshold value, the control device In accordance with the difference, the suction pipe superheat degree is controlled from the suction pipe superheat degree when the operating capacity is maximized to the suction pipe superheat degree when the coefficient of performance COP is maximized. Thereafter, when the temperature difference between the room temperature and the set temperature is smaller than the lower threshold,
The control device controls the degree of superheat of the suction pipe of the compressor so that the coefficient of performance COP becomes maximum, and operates at the maximum efficiency.
In this way, since the degree of superheat of the suction pipe of the compressor is effectively controlled in accordance with the temperature difference between the indoor temperature and the set temperature, the indoor temperature is reliably adjusted to the set temperature, and the room is cooled too much in the cooling operation. The number of stoppages of the compressor is reduced, and the number of stoppages of the compressor is reduced without being excessively heated in the heating operation. Therefore, the reliability can be improved by reducing the number of start and stop of the compressor, and when the temperature difference between the room temperature and the set temperature is within the range of the upper threshold value and the lower threshold value, it is higher than at the maximum capacity. Power consumption can be reduced by effectively controlling the coefficient of performance COP, that is, the efficiency, while reducing the driving capacity.

【0007】また、請求項2の空気調和機は、請求項1
の空気調和機において、上記制御装置は、上記温度差が
上記上しきい値から上記下しきい値までの範囲内のと
き、上記圧縮機の吸込管過熱度が上記温度差に略反比例
するように吸込管過熱度を制御することを特徴としてい
る。
[0007] The air conditioner according to the second aspect of the present invention is the first aspect of the invention.
In the air conditioner, the control device is configured such that, when the temperature difference is within the range from the upper threshold to the lower threshold, the degree of superheat of the suction pipe of the compressor is substantially inversely proportional to the temperature difference. It is characterized in that the degree of superheat of the suction pipe is controlled.

【0008】上記請求項2の空気調和機によれば、上記
温度差が上しきい値で運転能力を最大にするときの吸込
管過熱度から上記温度差が下しきい値で成績係数COP
を最大にするときの吸込管過熱度までの間で、圧縮機の
吸込管過熱度が上記温度差に略反比例するように、すな
わち、上記温度差が上しきい値側で大きい場合は、運転
能力を大きくし成績係数COPを小さくするのに対し
て、上記温度差が下しきい値側で小さい場合は、大きな
運転能力を必要としないので、運転能力を小さくし成績
係数COPを大きくするように、圧縮機の吸込管過熱度
を制御する。したがって、上記温度差に応じて目標とな
る吸込管過熱度を簡単に決定でき、吸込管過熱度を的確
に制御できる。
According to the air conditioner of the second aspect, the temperature difference is the lower threshold and the coefficient of performance COP is based on the degree of superheat of the suction pipe when the operating capacity is maximized at the upper threshold.
When the superheat degree of the suction pipe of the compressor is substantially inversely proportional to the temperature difference, that is, up to the suction pipe superheat degree at the time of maximizing If the temperature difference is small on the lower threshold side while the capacity is increased and the coefficient of performance COP is reduced, a large operating capacity is not required, so that the operating capacity is reduced and the coefficient of performance COP is increased. Next, the degree of superheat of the suction pipe of the compressor is controlled. Therefore, the target suction pipe superheat degree can be easily determined according to the temperature difference, and the suction pipe superheat degree can be accurately controlled.

【0009】また、請求項3の空気調和機は、請求項1
または2の空気調和機において、上記制御装置は、上記
圧縮機の吸込管過熱度に相当する吐出管温度を制御する
ことを特徴としている。
[0009] The air conditioner according to the third aspect is characterized by the first aspect.
In the air conditioner of the second aspect, the control device controls a discharge pipe temperature corresponding to a suction pipe superheat degree of the compressor.

【0010】上記請求項3の空気調和機によれば、上記
吐出管温度が吸込管過熱度に相当するので、目標とする
吸込管過熱度に基づいて吐出管温度を容易に換算するこ
とが可能である。したがって、上記圧縮機の吸込管過熱
度を検出するセンサを設けることなく、冷媒回路の保護
用に設けられた吐出管温度を検出するセンサを用いて、
吸込管過熱度の制御ができ、コストを低減できる。
According to the air conditioner of the third aspect, since the discharge pipe temperature corresponds to the suction pipe superheat degree, the discharge pipe temperature can be easily converted based on the target suction pipe superheat degree. It is. Therefore, without providing a sensor for detecting the degree of superheat of the suction pipe of the compressor, using a sensor for detecting the temperature of the discharge pipe provided for protection of the refrigerant circuit,
The superheat degree of the suction pipe can be controlled, and the cost can be reduced.

【0011】また、請求項4の空気調和機は、請求項1
または2の空気調和機において、上記室内温度を検出す
る室内温度センサと、上記圧縮機の吐出管温度を検出す
る吐出管温度センサとを備えて、上記制御装置は、上記
室内温度センサにより検出された室内温度と上記設定温
度との温度差を算出する温度差算出部と、上記温度差算
出部により算出された上記温度差に基づいて、目標吸込
管過熱度を算出する目標吸込管過熱度算出部と、上記目
標吸込管過熱度算出部により算出された上記目標吸込管
過熱度に基づいて、目標吐出管温度を算出する目標吐出
管温度算出部と、上記吐出管温度センサにより検出され
る吐出管温度が上記目標吐出管温度算出部により算出さ
れた目標吐出管温度になるように、上記電動膨張弁の開
度を制御する電動膨張弁制御部とを有することを特徴と
している。
[0011] The air conditioner of claim 4 is characterized in that
Or, in the air conditioner of 2, the indoor temperature sensor for detecting the indoor temperature, and a discharge pipe temperature sensor for detecting the discharge pipe temperature of the compressor, the control device is detected by the indoor temperature sensor A temperature difference calculating section for calculating a temperature difference between the room temperature and the set temperature, and a target suction pipe superheat degree calculation for calculating a target suction pipe superheat degree based on the temperature difference calculated by the temperature difference calculation section. A target discharge pipe temperature calculating section for calculating a target discharge pipe temperature based on the target suction pipe superheat degree calculated by the target suction pipe superheat degree calculation section; and a discharge detected by the discharge pipe temperature sensor. An electric expansion valve control unit that controls an opening degree of the electric expansion valve so that the pipe temperature becomes the target discharge pipe temperature calculated by the target discharge pipe temperature calculation unit.

【0012】上記請求項4の空気調和機によれば、上記
温度差算出部により上記室内温度センサにより検出され
た室内温度と設定温度との温度差を算出する。その温度
差に基づいて、目標吸込管過熱度算出部により目標吸込
管過熱度を算出する。すなわち、上記温度差が上しきい
値よりも大きいとき、運転能力が最大になるときの目標
吸込管過熱度を求める一方、上記温度差が下しきい値よ
りも小さいとき、成績係数COPが最大になるときの目
標吸込管過熱度を求めると共に、上記温度差が上しきい
値から下しきい値までの範囲内のとき、上記温度差に応
じて、運転能力が最大になるときの吸込管過熱度から成
績係数COPが最大になるときの吸込管過熱度までの間
で目標吸込管過熱度を求めるのである。次に、上記目標
吸込管過熱度算出部により算出された目標吸込管過熱度
に基づいて、目標吐出管温度算出部により目標吐出管温
度を算出する。上記圧縮機の吐出管温度は吸込管過熱度
に相当し、吸込管過熱度に基づいて吐出管温度を容易に
換算できるので、上記吐出管温度センサが吸込管過熱度
を検出するセンサを兼ねる。そして、上記吐出管温度セ
ンサにより検出される吐出管温度が目標吐出管温度にな
るように、電動膨張弁制御部により電動膨張弁の開度を
制御する。こうして、上記電動膨張弁の開度制御により
吐出管温度が目標吐出管温度になるようにして、吸込管
過熱度が目標吸込管過熱度にするので、制御性のよい安
定した運転ができると共に、電動膨張弁の開閉以外のエ
ネルギーを必要とせず、効率のよい運転ができる。
According to the air conditioner of the fourth aspect, the temperature difference calculating section calculates the temperature difference between the room temperature detected by the room temperature sensor and the set temperature. Based on the temperature difference, the target suction pipe superheat degree calculation unit calculates the target suction pipe superheat degree. That is, when the temperature difference is larger than the upper threshold value, the target suction pipe superheat degree at which the operating capacity is maximized is determined, while when the temperature difference is smaller than the lower threshold value, the coefficient of performance COP is maximized. When the target suction pipe superheat degree is obtained, and when the temperature difference is within the range from the upper threshold value to the lower threshold value, the suction pipe at the time when the operating capacity is maximized according to the temperature difference is obtained. The target suction pipe superheat degree is obtained from the degree of superheat to the suction pipe superheat degree at which the coefficient of performance COP is maximized. Next, the target discharge pipe temperature is calculated by the target discharge pipe temperature calculation section based on the target suction pipe superheat degree calculated by the target suction pipe superheat degree calculation section. The discharge pipe temperature of the compressor corresponds to the suction pipe superheat degree, and the discharge pipe temperature can be easily converted based on the suction pipe superheat degree. Therefore, the discharge pipe temperature sensor also serves as a sensor for detecting the suction pipe superheat degree. Then, the opening of the electric expansion valve is controlled by the electric expansion valve control unit such that the discharge pipe temperature detected by the discharge pipe temperature sensor becomes the target discharge pipe temperature. Thus, by controlling the opening degree of the electric expansion valve so that the discharge pipe temperature becomes the target discharge pipe temperature and the suction pipe superheat degree becomes the target suction pipe superheat degree, stable operation with good controllability can be performed. Efficient operation is possible without requiring energy other than opening and closing of the electric expansion valve.

【0013】[0013]

【発明の実施の形態】以下、この発明の空気調和機を図
示の実施の形態により詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an air conditioner according to the present invention will be described in detail with reference to the illustrated embodiments.

【0014】図1はこの発明の実施の一形態の空気調和
機の回路図であり、1は圧縮機、2は上記圧縮機1の吐
出側に接続された四路弁、3は上記四路弁2に一端が接
続された室外熱交換器、4は上記室外熱交換器3の他端
に一端が接続された電動膨張弁、5は上記電動膨張弁4
の他端に一端が接続された室内熱交換器、6は上記室内
熱交換器5の他端に四路弁2を介して接続されたアキュ
ムレータである。また、上記空気調和機は、室内熱交換
器5の近傍に吸込温度すなわち室内温度Taを検出する
室内温度センサ21と、上記圧縮機1の吐出管温度を検
出する吐出管温度センサ22と、上記室内温度センサ2
1と吐出管温度センサ22からの出力を受けて、上記圧
縮機1や電動膨張弁4等を制御する制御装置10とを備
えている。
FIG. 1 is a circuit diagram of an air conditioner according to an embodiment of the present invention, wherein 1 is a compressor, 2 is a four-way valve connected to the discharge side of the compressor 1, and 3 is the four-way valve. An outdoor heat exchanger having one end connected to the valve 2, 4 is an electric expansion valve having one end connected to the other end of the outdoor heat exchanger 3, and 5 is an electric expansion valve 4.
Is an indoor heat exchanger having one end connected to the other end, and 6 is an accumulator connected to the other end of the indoor heat exchanger 5 via the four-way valve 2. The air conditioner also includes an indoor temperature sensor 21 that detects an intake temperature, that is, an indoor temperature Ta, near the indoor heat exchanger 5, a discharge pipe temperature sensor 22 that detects a discharge pipe temperature of the compressor 1, Indoor temperature sensor 2
1 and a control device 10 that receives the output from the discharge pipe temperature sensor 22 and controls the compressor 1, the electric expansion valve 4, and the like.

【0015】上記制御装置10は、マイクロコンピュー
タと入出力回路等からなり、上記室内温度センサ21に
より検出された室内温度Taとリモコン(図示せず)等に
より設定される設定温度Tsとの温度差△Tを算出する
温度差算出部11と、上記温度差算出部11により算出
された温度差△Tに基づいて、目標吸込管過熱度SHを
算出する目標吸込管過熱度算出部12と、上記目標吸込
管過熱度算出部12により算出された目標吸込管過熱度
SHに基づいて、目標吐出管温度Tkを算出する目標吐
出管温度算出部13と、上記目標吐出管温度算出部13
により算出された目標吐出管温度Tkになるように電動
膨張弁4の開度を制御する電動膨張弁制御部14とを有
している。
The control device 10 comprises a microcomputer, an input / output circuit, and the like. A temperature difference between the room temperature Ta detected by the room temperature sensor 21 and a set temperature Ts set by a remote controller (not shown) or the like. A temperature difference calculating section 11 for calculating ΔT, a target suction pipe superheating degree calculating section 12 for calculating a target suction pipe superheating degree SH based on the temperature difference ΔT calculated by the temperature difference calculating section 11, A target discharge pipe temperature calculator 13 for calculating a target discharge pipe temperature Tk based on the target suction pipe superheat degree SH calculated by the target suction pipe superheat degree calculator 12, and a target discharge pipe temperature calculator 13
And a motor-operated expansion valve controller 14 that controls the opening of the motor-operated expansion valve 4 so that the target discharge pipe temperature Tk is calculated.

【0016】上記構成の空気調和機において、例えば、
冷房運転を行う場合、四路弁2を実線の切換位置に切り
換えて、圧縮機1を起動すると、圧縮機1から吐出され
た冷媒は、凝縮器としての室外熱交換器3,電動膨張弁
4,蒸発器としての室内熱交換器5およびアキュムレー
タ6の順に循環する。そうして、上記室外熱交換器3で
冷媒が凝縮した後、電動膨張弁4で減圧された冷媒が室
内熱交換器5で蒸発して、室内を冷房する。
In the air conditioner having the above configuration, for example,
When performing the cooling operation, when the four-way valve 2 is switched to the switching position indicated by the solid line and the compressor 1 is started, the refrigerant discharged from the compressor 1 is supplied to the outdoor heat exchanger 3 as a condenser and the electric expansion valve 4. Circulate in the order of the indoor heat exchanger 5 as an evaporator and the accumulator 6. Then, after the refrigerant is condensed in the outdoor heat exchanger 3, the refrigerant decompressed by the electric expansion valve 4 evaporates in the indoor heat exchanger 5 to cool the room.

【0017】また、上記空気調和機では、図2に示すよ
うに、圧縮機1の吸込管過熱度に対する能力(冷房/暖
房能力)の特性曲線と、圧縮機1の吸込管過熱度に対す
る成績係数COPの特性曲線とはずれがあり、空気調和
機の構成等によって異なるが、一般的に、運転能力の最
大ポイントが吸込管過熱度0℃付近にあるのに対して成
績係数COPの最大ポイントすなわち最大効率のポイン
トが吸込管過熱度8℃付近にある。そこで、上記空気調
和機では、冷房運転において、室内温度Taが設定温度
Tsよりも高く、かつ、室内温度Taと設定温度Tsとの
温度差が上しきい値を越えている場合は、吸込管過熱度
が0℃になるように、電動膨張弁4の開度を制御する。
一方、上記室内温度Taが設定温度Tsよりも高く、か
つ、室内温度Taと設定温度Tsとの温度差が下しきい値
未満の場合は、吸込管過熱度が8℃になるように、電動
膨張弁4の開度を制御する。そして、上記室内温度Ta
が設定温度Tsよりも高く、かつ、室内温度Taと設定温
度Tsとの温度差が上しきい値から下しきい値までの範
囲内である場合は、0℃から8℃までの間で吸込管過熱
度が上記温度差に略反比例するように、電動膨張弁4の
開度を制御する。
In the air conditioner, as shown in FIG. 2, a characteristic curve of the capacity (cooling / heating capacity) of the compressor 1 with respect to the degree of superheat of the suction pipe and the coefficient of performance of the compressor 1 with respect to the degree of superheat of the suction pipe. Although it differs from the characteristic curve of the COP and varies depending on the configuration of the air conditioner, etc., generally, the maximum point of the operating capacity is near the suction pipe superheat degree 0 ° C., whereas the maximum point of the coefficient of performance COP, that is, the maximum point The point of efficiency is around the suction pipe superheat degree of 8 ° C. Therefore, in the air conditioner, in the cooling operation, when the indoor temperature Ta is higher than the set temperature Ts and the temperature difference between the indoor temperature Ta and the set temperature Ts exceeds the upper threshold, the suction pipe The opening degree of the electric expansion valve 4 is controlled so that the degree of superheat becomes 0 ° C.
On the other hand, when the room temperature Ta is higher than the set temperature Ts and the temperature difference between the room temperature Ta and the set temperature Ts is less than the lower threshold, the electric motor is controlled so that the suction pipe superheat degree becomes 8 ° C. The opening degree of the expansion valve 4 is controlled. Then, the room temperature Ta
Is higher than the set temperature Ts, and if the temperature difference between the room temperature Ta and the set temperature Ts is within the range from the upper threshold to the lower threshold, the suction between 0 ° C. and 8 ° C. The opening of the electric expansion valve 4 is controlled so that the degree of superheating of the pipe is substantially inversely proportional to the temperature difference.

【0018】図3は上記空気調和機の冷房運転時の制御
装置10の動作を説明するフローチャートである。
FIG. 3 is a flowchart illustrating the operation of the control device 10 during the cooling operation of the air conditioner.

【0019】以下、図3に従って制御装置10の運転能
力および成績係数COPを制御する処理について説明す
る。
Hereinafter, a process for controlling the operation capability and the coefficient of performance COP of the control device 10 will be described with reference to FIG.

【0020】まず、処理がスタートすると、ステップS
1で上記温度差算出部11によって室内温度センサ21
により検出された室内温度Taと設定温度Tsとの温度差
△T(=Ta−Ts)を算出する。
First, when the process starts, step S
In step 1, the indoor temperature sensor 21 is
Is calculated, the temperature difference ΔT (= Ta−Ts) between the room temperature Ta detected by the above and the set temperature Ts is calculated.

【0021】次に、ステップS2に進み、ステップS1
で算出された温度差△Tに基づいて、目標吸込管過熱度
算出部12により目標吸込管過熱度SHを算出する。す
なわち、上記温度差△Tが上しきい値よりも大きいとき
は、運転能力を最大にする0℃に目標吸込管過熱度SH
を設定し、温度差△Tが下しきい値よりも小さいとき
は、成績係数COPを最大にする8℃に目標吸込管過熱
度SHを設定して、温度差△Tが上しきい値から下しき
い値までの範囲内では、0℃から8℃までの間で温度差
△Tに略反比例する目標吸込管過熱度SHを算出するの
である。
Next, the process proceeds to step S2, and step S1
The target suction pipe superheat degree calculating section 12 calculates the target suction pipe superheat degree SH based on the temperature difference ΔT calculated in the above. That is, when the temperature difference ΔT is larger than the upper threshold value, the target suction pipe superheat degree SH is set to 0 ° C. at which the operation capacity is maximized.
When the temperature difference ΔT is smaller than the lower threshold value, the target suction pipe superheat degree SH is set to 8 ° C. at which the coefficient of performance COP is maximized, and the temperature difference ΔT is increased from the upper threshold value. Within the range up to the lower threshold value, the target suction pipe superheat degree SH that is substantially inversely proportional to the temperature difference ΔT between 0 ° C. and 8 ° C. is calculated.

【0022】次に、ステップS3に進み、ステップS2
で算出された目標吸込管過熱度SHに基づいて、目標吐
出管温度算出部13により目標吐出管温度Tkを算出す
る。この目標吐出管温度Tkは次式を用いて求める。
Next, the process proceeds to step S3, and step S2
The target discharge pipe temperature calculating section 13 calculates the target discharge pipe temperature Tk on the basis of the target suction pipe superheat degree SH calculated in (1). The target discharge pipe temperature Tk is obtained using the following equation.

【0023】 Tk=T2(SH=2)+f(SH) …………… (1) SH : 目標吸込管過熱度 T2(SH=2) : SHが2℃となるときの吐出管温度 f(SH) : SHの関数 なお、上記T2(SH=2)は、空気調和機の能力等に応じて
予め計算により求めると共に、関数f(SH)は、空気調和
機の能力等に応じて定める。
Tk = T2 (SH = 2) + f (SH) (1) SH: target suction pipe superheat degree T2 (SH = 2): discharge pipe temperature f when SH reaches 2 ° C. SH): SH function Note that T2 (SH = 2) is calculated in advance according to the performance of the air conditioner and the like, and the function f (SH) is determined according to the performance of the air conditioner and the like.

【0024】次に、ステップS4に進み、ステップS3
で算出された目標吐出管温度Tkに基づいて、電動膨張
弁制御部14により電動膨張弁4の開度をPID(比例
・積分・微分)制御して、吐出管温度が目標吐出管温度
Tkになるようにした後、この処理を終了する。
Next, the process proceeds to step S4, and the process proceeds to step S3.
Based on the target discharge pipe temperature Tk calculated in the above, the opening degree of the electric expansion valve 4 is controlled by PID (proportional / integral / derivative) by the electric expansion valve control unit 14 so that the discharge pipe temperature becomes the target discharge pipe temperature Tk. After that, the process ends.

【0025】以下、冷房運転中、この処理を繰り返す。Hereinafter, this process is repeated during the cooling operation.

【0026】なお、図4は上しきい値10℃,下しきい
値1℃とした場合の温度差△Tと目標吸込管過熱度SH
との関係を示している。図4において、上記温度差△T
が1℃よりも低い場合は、目標吸込管過熱度SHを8℃
とし、温度差△Tが1℃から10℃まで目標吸込管過熱
度SHが8℃から0℃まで直線的に変化し、温度差△T
が1℃よりも高い場合は、目標吸込管過熱度SHを0℃
とする。また、上述の制御装置10の処理は、室内温度
Taが設定温度Tsよりも高い冷房運転の場合について説
明しているが、室内温度Taが設定温度Tsよりも低い暖
房運転の場合は、温度差△T=Ta−Tsの代わりに温度
差△T=Ts−Taを用いる。
FIG. 4 shows the temperature difference ΔT when the upper threshold value is set to 10 ° C. and the lower threshold value is set to 1 ° C. and the target suction pipe superheat degree SH.
The relationship is shown. In FIG. 4, the temperature difference ΔT
Is lower than 1 ° C., the target suction pipe superheat SH is set to 8 ° C.
The target suction pipe superheat SH changes linearly from 8 ° C. to 0 ° C. from 1 ° C. to 10 ° C., and the temperature difference ΔT
Is higher than 1 ° C., the target suction pipe superheat SH is set to 0 ° C.
And Further, the above-described processing of the control device 10 describes the case of the cooling operation in which the room temperature Ta is higher than the set temperature Ts. However, in the case of the heating operation in which the room temperature Ta is lower than the set temperature Ts, the temperature difference The temperature difference ΔT = Ts−Ta is used instead of ΔT = Ta−Ts.

【0027】このように、上記空気調和機では、室内温
度Taと設定温度Tsとの温度差△Tに応じて、圧縮機1
の吸込管過熱度を効果的に制御するので、図5の点線で
示すように、室内温度が設定温度Tsに確実に調整され
て、冷房運転における冷え過ぎや暖房運転における暖め
過ぎによる運転停止の回数を減らし、圧縮機1の停止回
数を低減する。したがって、上記圧縮機1の発停回数を
低減することによって、信頼性を向上できる。また、上
記温度差△Tが上しきい値と下しきい値の範囲内では、
最大能力時よりも運転能力を小さくしつつ成績係数CO
Pすなわち効率が高くなるように効果的に制御して、消
費電力を低減することができる。
As described above, in the above air conditioner, the compressor 1 is operated in accordance with the temperature difference ΔT between the room temperature Ta and the set temperature Ts.
5, the indoor temperature is surely adjusted to the set temperature Ts, as shown by the dotted line in FIG. 5, to stop the operation due to excessive cooling in the cooling operation or excessive heating in the heating operation. The number of times is reduced, and the number of times the compressor 1 is stopped is reduced. Therefore, the reliability can be improved by reducing the number of times the compressor 1 starts and stops. When the temperature difference ΔT is within the range between the upper threshold value and the lower threshold value,
Coefficient of performance CO while lowering driving capacity than at maximum capacity
Effective control is performed so that P, that is, efficiency is increased, and power consumption can be reduced.

【0028】また、上記温度差△Tが上しきい値から下
しきい値までの範囲内のとき、温度差△Tに略反比例す
る目標吸込管過熱度SHになるように吸込管過熱度を制
御するので、温度差△Tに応じて目標吸込管過熱度SH
を容易に決定でき、吸込管過熱度を的確に制御すること
ができる。
When the temperature difference ΔT is within the range from the upper threshold value to the lower threshold value, the suction pipe superheat degree is set so as to become the target suction pipe superheat degree SH which is substantially inversely proportional to the temperature difference ΔT. The target suction pipe superheat degree SH is controlled according to the temperature difference ΔT.
Can be easily determined, and the degree of superheat of the suction pipe can be accurately controlled.

【0029】また、上記吐出管温度センサ22により検
出される吐出管温度は、吸込管過熱度に対応し、式1に
よりに目標吸込管過熱度SHに基づいて目標吐出管温度
Tkを容易に換算することができる。したがって、上記
圧縮機1の吸込管過熱度を検出するセンサを設けること
なく、冷媒回路保護用に設けられた吐出管温度センサ2
2を用いて、吐出管温度を制御することにより吸込管過
熱度を制御でき、コストを低減することができる。
The discharge pipe temperature detected by the discharge pipe temperature sensor 22 corresponds to the suction pipe superheat degree, and the target discharge pipe temperature Tk can be easily converted based on the target suction pipe superheat degree SH according to the following equation (1). can do. Accordingly, without providing a sensor for detecting the degree of superheat of the suction pipe of the compressor 1, the discharge pipe temperature sensor 2 provided for protecting the refrigerant circuit is provided.
By controlling the discharge pipe temperature by using 2, the degree of superheat of the suction pipe can be controlled, and the cost can be reduced.

【0030】また、上記吐出管温度センサ22により検
出される吐出管温度が目標吐出管温度Tkになるよう
に、すなわち、吸込管過熱度が目標吸込管過熱度SHに
なるように、電動膨張弁制御部14により電動膨張弁4
の開度を制御するので、制御性のよい安定した運転がで
きる。また、室内ファンの回転数や圧縮機の運転周波数
等に比べて、吸込管過熱度の制御に電動膨張弁4の開閉
以外にエネルギーを必要とせず、効率のよい運転を行う
ことができる。
Further, the electric expansion valve is controlled so that the discharge pipe temperature detected by the discharge pipe temperature sensor 22 becomes the target discharge pipe temperature Tk, that is, the suction pipe superheat degree becomes the target suction pipe superheat degree SH. The electric expansion valve 4 is controlled by the controller 14.
, The stable operation with good controllability can be achieved. In addition, compared to the number of rotations of the indoor fan, the operating frequency of the compressor, and the like, energy other than opening and closing of the electric expansion valve 4 is required for controlling the degree of superheat of the suction pipe, and efficient operation can be performed.

【0031】上記実施の形態では、冷暖房運転を行う空
気調和機について説明したが、冷房運転または暖房運転
の一方を行う空気調和機にこの発明を適用してもよい。
In the above embodiment, the air conditioner performing the cooling / heating operation has been described. However, the present invention may be applied to an air conditioner performing either the cooling operation or the heating operation.

【0032】また、上記実施の形態では、室内温度Ta
と設定温度Tsとの温度差△Tが上しきい値から下しき
い値の範囲内のとき、その温度差△Tに略反比例する目
標吸込管過熱度SHを算出したが、目標吸込管過熱度を
算出する方法はこれに限らず、テーブル等を用いて目標
吸込管過熱度を算出してもよい。
In the above embodiment, the room temperature Ta
When the temperature difference ΔT between the temperature and the set temperature Ts is within the range from the upper threshold value to the lower threshold value, the target suction pipe superheat degree SH that is substantially inversely proportional to the temperature difference ΔT is calculated. The method of calculating the degree is not limited to this, and the target suction pipe superheat degree may be calculated using a table or the like.

【0033】また、上記実施の形態では、目標吸込管過
熱度SHに相当する目標吐出管温度Tkを式1を用いて
求めたが、他の換算式やテーブル等を用いて目標吐出管
温度を求めてもよいのは勿論である。
Further, in the above embodiment, the target discharge pipe temperature Tk corresponding to the target suction pipe superheat degree SH is obtained by using the equation (1). However, the target discharge pipe temperature is obtained by using other conversion formulas and tables. Of course, you may ask.

【0034】また、上記実施の形態では、電動膨張弁4
の開度を調整することによって、圧縮機1の吸込管過熱
度に相当する吐出管温度を制御したが、室内ファンの回
転数や圧縮機の運転周波数等を制御することによって、
圧縮機の吸込管過熱度を制御してもよい。
In the above embodiment, the electric expansion valve 4
By controlling the opening degree of the compressor, the discharge pipe temperature corresponding to the suction pipe superheat degree of the compressor 1 was controlled, but by controlling the rotation speed of the indoor fan, the operating frequency of the compressor, and the like,
The superheat degree of the suction pipe of the compressor may be controlled.

【0035】また、上記実施の形態では、上記吐出管温
度センサ22により検出される吐出管温度が目標吐出管
温度になるように、電動膨張弁4の開度を制御したが、
吸込管過熱度を検出するセンサを設けて、そのセンサに
より検出される吸込管過熱度が目標吸込管過熱度になる
ように、電動膨張弁の開度等を制御してもよい。
In the above embodiment, the opening of the electric expansion valve 4 is controlled so that the discharge pipe temperature detected by the discharge pipe temperature sensor 22 becomes the target discharge pipe temperature.
A sensor for detecting the degree of superheat of the suction pipe may be provided, and the degree of opening of the electric expansion valve may be controlled so that the degree of superheat of the suction pipe detected by the sensor becomes the target degree of superheat of the suction pipe.

【0036】また、上記実施の形態において、上記圧縮
機1は、インバータ制御により運転周波数が代わるもの
であっても、圧縮機が一定の運転周波数で運転されるも
のであってもよい。
In the above-described embodiment, the compressor 1 may have an operation frequency changed by inverter control, or may operate the compressor at a constant operation frequency.

【0037】[0037]

【発明の効果】以上より明らかなように、請求項1の発
明の空気調和機は、圧縮機,凝縮器,電動膨張弁および蒸
発器が環状に接続された冷媒回路を有する空気調和機に
おいて、制御装置は、室内温度と設定温度との温度差が
上しきい値よりも大きいとき、運転能力が最大になるよ
うに圧縮機の吸込管過熱度を制御する一方、上記温度差
が下しきい値よりも小さいとき、成績係数COPが最大
になるように圧縮機の吸込管過熱度を制御すると共に、
上記温度差が上しきい値から下しきい値までの範囲内の
とき、上記温度差に応じて、運転能力が最大になるとき
の吸込管過熱度から成績係数COPが最大になるときの
吸込管過熱度までの間で圧縮機の吸込管過熱度を制御す
るものである。
As is clear from the above, the air conditioner according to the first aspect of the present invention is an air conditioner having a refrigerant circuit in which a compressor, a condenser, an electric expansion valve, and an evaporator are connected in a ring. When the temperature difference between the room temperature and the set temperature is larger than the upper threshold, the control device controls the degree of superheat of the suction pipe of the compressor so that the operating capacity is maximized, while the temperature difference is lower. When it is smaller than the value, while controlling the degree of superheat of the suction pipe of the compressor so that the coefficient of performance COP becomes maximum,
When the temperature difference is within the range from the upper threshold to the lower threshold, the suction pipe superheat degree when the operating capacity is maximized and the suction when the coefficient of performance COP is maximized are determined according to the temperature difference. The superheat degree of the suction pipe of the compressor is controlled until the pipe superheat degree.

【0038】したがって、請求項1の発明の空気調和機
によれば、上記室内温度と設定温度との温度差に応じ
て、圧縮機の吸込管過熱度を効果的に制御して、室内温
度が設定温度に確実に調整され、冷房運転で冷えすぎた
り、暖房運転で暖めすぎたりすることがなく、サーモオ
フによる運転停止回数を減らし、圧縮機の停止回数を低
減する。したがって、上記圧縮機の発停回数を減らすこ
とによって、信頼性を向上することができる。また、上
記温度差が上しきい値よりも小さい範囲では、温度差に
応じて運転能力を制限して、効率よく運転することによ
って、消費電力を低減することができる。
Therefore, according to the air conditioner of the first aspect of the present invention, the degree of superheat of the suction pipe of the compressor is effectively controlled in accordance with the temperature difference between the indoor temperature and the set temperature, so that the indoor temperature is reduced. The temperature is reliably adjusted to the set temperature, so that the cooling operation does not cause excessive cooling and the heating operation does not cause excessive heating, and the number of times of operation stop due to thermo-off is reduced, thereby reducing the number of times the compressor is stopped. Therefore, the reliability can be improved by reducing the number of times of starting and stopping of the compressor. Further, in the range where the temperature difference is smaller than the upper threshold, the power consumption can be reduced by restricting the operation capacity according to the temperature difference and operating efficiently.

【0039】また、請求項2の発明の空気調和機は、請
求項1の空気調和機において、上記制御装置は、上記温
度差が上記上しきい値から上記下しきい値までの範囲内
のとき、上記圧縮機の吸込管過熱度を温度差に略反比例
するように制御するものである。
According to a second aspect of the present invention, in the air conditioner of the first aspect, the control device is arranged such that the temperature difference is within a range from the upper threshold value to the lower threshold value. At this time, the superheat degree of the suction pipe of the compressor is controlled so as to be substantially inversely proportional to the temperature difference.

【0040】したがって、請求項2の発明の空気調和機
によれば、上記温度差に応じて目標となる吸込管過熱度
を容易に決定でき、吸込管過熱度を的確に制御すること
ができる。
Therefore, according to the air conditioner of the present invention, the target superheat degree of the suction pipe can be easily determined according to the temperature difference, and the superheat degree of the suction pipe can be accurately controlled.

【0041】また、請求項3の発明の空気調和機は、請
求項1または2の空気調和機において、上記制御装置
は、上記圧縮機の吸込管過熱度に相当する吐出管温度を
制御するものである。
According to a third aspect of the present invention, in the air conditioner of the first or second aspect, the control device controls a discharge pipe temperature corresponding to a suction pipe superheat degree of the compressor. It is.

【0042】したがって、請求項3の発明の空気調和機
によれば、目標とする吸込管過熱度に基づいて吐出管温
度を容易に換算することができるので、吸込管過熱度を
検出するセンサを用いることなく、冷媒回路保護用に設
けられた吐出管温度を検出するセンサを用いて、吸込管
過熱度の制御ができ、コストを低減することができる。
Therefore, according to the air conditioner of the present invention, since the discharge pipe temperature can be easily converted based on the target suction pipe superheat degree, a sensor for detecting the suction pipe superheat degree can be provided. It is possible to control the degree of superheat of the suction pipe by using a sensor for detecting the temperature of the discharge pipe provided for protecting the refrigerant circuit without using the same, thereby reducing the cost.

【0043】また、請求項4の発明の空気調和機は、請
求項1または2の空気調和機において、上記室内温度を
検出する室内温度センサと、上記圧縮機の吐出管温度を
検出する吐出管温度センサとを備えて、上記制御装置の
温度差算出部により、上記室内温度センサにより検出さ
れた室内温度と上記設定温度との温度差を算出し、上記
温度差算出部により算出された温度差に基づいて、目標
吸込管過熱度算出部により目標吸込管過熱度を算出し、
上記目標吸込管過熱度算出部により算出された目標吸込
管過熱度に基づいて、目標吐出管温度算出部により目標
吐出管温度を算出すると共に、上記吐出管温度センサに
より検出される吐出管温度が上記目標吐出管温度算出部
により算出された目標吐出管温度になるように、電動膨
張弁制御部により上記電動膨張弁の開度を制御するもの
である。
The air conditioner according to a fourth aspect of the present invention is the air conditioner according to the first or second aspect, wherein an indoor temperature sensor for detecting the indoor temperature and a discharge pipe for detecting a discharge pipe temperature of the compressor. A temperature sensor, wherein a temperature difference between the indoor temperature detected by the indoor temperature sensor and the set temperature is calculated by a temperature difference calculation unit of the control device, and the temperature difference calculated by the temperature difference calculation unit is calculated. Based on the target suction pipe superheat degree calculation unit calculates the target suction pipe superheat degree,
Based on the target suction pipe superheat degree calculated by the target suction pipe superheat degree calculation section, the target discharge pipe temperature is calculated by the target discharge pipe temperature calculation section, and the discharge pipe temperature detected by the discharge pipe temperature sensor is calculated. The degree of opening of the electric expansion valve is controlled by the electric expansion valve controller so that the target discharge pipe temperature calculated by the target discharge pipe temperature calculator is obtained.

【0044】したがって、請求項4の発明の空気調和機
によれば、上記電動膨張弁の開度制御によって、吐出管
温度が目標吐出管温度になるようにして、吸込管過熱度
を目標吸込管過熱度になるように、電動膨張弁の開度を
制御するので、制御性のよい安定した運転ができ、電動
膨張弁の開閉以外のエネルギーを必要とせず、効率のよ
い運転を行うことができる。
Therefore, according to the air conditioner of the present invention, the degree of superheat of the suction pipe is reduced by controlling the opening degree of the electric expansion valve so that the discharge pipe temperature becomes the target discharge pipe temperature. Since the degree of opening of the electric expansion valve is controlled so as to achieve the degree of superheat, stable operation with good controllability can be performed, and energy efficient operation other than opening and closing of the electric expansion valve can be performed, and efficient operation can be performed. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1はこの発明の実施の一形態の空気調和機
の回路図である。
FIG. 1 is a circuit diagram of an air conditioner according to an embodiment of the present invention.

【図2】 図2は上記空気調和機において、圧縮機の吸
込管過熱度に対する運転能力および成績係数COPの関
係を示す図である。
FIG. 2 is a diagram showing a relationship between an operating capacity and a coefficient of performance COP with respect to a degree of superheat of a suction pipe of a compressor in the air conditioner.

【図3】 図3は上記空気調和機の制御装置の動作を説
明するフローチャートである。
FIG. 3 is a flowchart illustrating an operation of the control device of the air conditioner.

【図4】 図4は上記空気調和機の温度差と目標吸込管
過熱度との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a temperature difference of the air conditioner and a target suction pipe superheat degree.

【図5】 図5は従来の空気調和機の圧縮機の運転/停
止の繰り返しを示す図である。
FIG. 5 is a view showing repetition of operation / stop of a compressor of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四路弁、3…室外熱交換器、4…電動
膨張弁、5…室内熱交換器、6…アキュムレータ、10
…制御装置、11…温度差算出部、12…目標吸込管過
熱度算出部、13…目標吐出管温度算出部、14…電動
膨張弁制御部、21…室内温度センサ、22…吐出管温
度センサ。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Electric expansion valve, 5 ... Indoor heat exchanger, 6 ... Accumulator, 10
... Control device, 11 ... Temperature difference calculator, 12 ... Target suction pipe superheat degree calculator, 13 ... Target discharge pipe temperature calculator, 14 ... Electric expansion valve controller, 21 ... Room temperature sensor, 22 ... Discharge pipe temperature sensor .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 政樹 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 井上 世紀 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 倉田 肇 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 松本 英希 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Masaki Yamamoto 1304 Kanaokacho, Sakai City, Osaka Daikin Industries Inside the Kanaoka Plant of Sakai Seisakusho Co., Ltd. (72) Inventor Seiki Inoue 1304 Kanaokacho Sakai City, Osaka Daikin Industries, Ltd. Inside the Sakai Plant Kanaoka Plant (72) Inventor Hajime Kurata 1304 Kanaokacho, Sakai City, Osaka Daikin Industries, Ltd. Inside the Sakai Plant Kanaoka Plant (72) Inventor Hideki Matsumoto 1304 Kanaokacho, Sakai City, Osaka Daikin Industries, Ltd. Kanaoka factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(1),凝縮器,電動膨張弁(4)およ
び蒸発器が環状に接続された冷媒回路を有する空気調和
機において、 室内温度と設定温度との温度差が上しきい値よりも大き
いとき、運転能力が最大になるように上記圧縮機(1)の
吸込管過熱度を制御する一方、上記温度差が下しきい値
よりも小さいとき、成績係数(COP)が最大になるよう
に上記圧縮機(1)の吸込管過熱度を制御すると共に、上
記温度差が上記上しきい値から上記下しきい値までの範
囲内のとき、上記温度差に応じて、運転能力が最大にな
るときの吸込管過熱度から成績係数(COP)が最大にな
るときの吸込管過熱度までの間で上記圧縮機(1)の吸込
管過熱度を制御する制御装置(10)を備えたことを特徴
とする空気調和機。
In an air conditioner having a refrigerant circuit in which a compressor (1), a condenser, an electric expansion valve (4), and an evaporator are connected in a ring shape, a temperature difference between an indoor temperature and a set temperature increases. When the temperature is larger than the threshold value, the degree of superheat of the suction pipe of the compressor (1) is controlled so that the operating capacity is maximized. On the other hand, when the temperature difference is smaller than the lower threshold value, the coefficient of performance (COP) is reduced. While controlling the degree of superheat of the suction pipe of the compressor (1) so as to be maximum, when the temperature difference is within the range from the upper threshold to the lower threshold, according to the temperature difference, A control device (10) for controlling the suction pipe superheat degree of the compressor (1) from the suction pipe superheat degree when the operating capacity is maximized to the suction pipe superheat degree when the coefficient of performance (COP) is maximized. An air conditioner comprising:
【請求項2】 請求項1に記載の空気調和機において、 上記制御装置(10)は、上記温度差が上記上しきい値か
ら上記下しきい値までの範囲内のとき、上記圧縮機(1)
の吸込管過熱度を上記温度差に略反比例するように制御
することを特徴とする空気調和機。
2. The air conditioner according to claim 1, wherein the controller (10) is configured to control the compressor (10) when the temperature difference is within a range from the upper threshold value to the lower threshold value. 1)
An air conditioner wherein the degree of superheat of the suction pipe is controlled so as to be substantially inversely proportional to the temperature difference.
【請求項3】 請求項1または2に記載の空気調和機に
おいて、 上記制御装置(10)は、上記圧縮機(1)の吸込管過熱度
に相当する吐出管温度を制御することを特徴とする空気
調和機。
3. The air conditioner according to claim 1, wherein the control device (10) controls a discharge pipe temperature corresponding to a suction pipe superheat degree of the compressor (1). Air conditioner.
【請求項4】 請求項1または2に記載の空気調和機に
おいて、 上記室内温度を検出する室内温度センサ(21)と、 上記圧縮機(1)の吐出管温度を検出する吐出管温度セン
サ(22)とを備えて、上記制御装置(10)は、 上記室内温度センサ(21)により検出された室内温度と
上記設定温度との温度差を算出する温度差算出部(11)
と、 上記温度差算出部(11)により算出された上記温度差に
基づいて、目標吸込管過熱度を算出する目標吸込管過熱
度算出部(12)と、 上記目標吸込管過熱度算出部(12)により算出された上
記目標吸込管過熱度に基づいて、目標吐出管温度を算出
する目標吐出管温度算出部(13)と、 上記吐出管温度センサ(22)により検出される吐出管温
度が上記目標吐出管温度算出部(13)により算出された
目標吐出管温度になるように、上記電動膨張弁(4)の開
度を制御する電動膨張弁制御部(14)とを有することを
特徴とする空気調和機。
4. The air conditioner according to claim 1, wherein an indoor temperature sensor for detecting the indoor temperature, and a discharge pipe temperature sensor for detecting a discharge pipe temperature of the compressor. 22), the control device (10) includes a temperature difference calculation unit (11) that calculates a temperature difference between the room temperature detected by the room temperature sensor (21) and the set temperature.
A target suction pipe superheat degree calculation unit (12) that calculates a target suction pipe superheat degree based on the temperature difference calculated by the temperature difference calculation unit (11); and a target suction pipe superheat degree calculation unit ( Based on the target suction pipe superheat degree calculated by (12), a target discharge pipe temperature calculating unit (13) for calculating a target discharge pipe temperature, and a discharge pipe temperature detected by the discharge pipe temperature sensor (22). An electric expansion valve control unit (14) for controlling an opening degree of the electric expansion valve (4) so as to reach the target discharge pipe temperature calculated by the target discharge pipe temperature calculation unit (13). And air conditioner.
JP5797597A 1997-03-12 1997-03-12 Air conditioner Pending JPH10253170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5797597A JPH10253170A (en) 1997-03-12 1997-03-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5797597A JPH10253170A (en) 1997-03-12 1997-03-12 Air conditioner

Publications (1)

Publication Number Publication Date
JPH10253170A true JPH10253170A (en) 1998-09-25

Family

ID=13071017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5797597A Pending JPH10253170A (en) 1997-03-12 1997-03-12 Air conditioner

Country Status (1)

Country Link
JP (1) JPH10253170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190486A1 (en) * 2022-03-30 2023-10-05 株式会社富士通ゼネラル Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190486A1 (en) * 2022-03-30 2023-10-05 株式会社富士通ゼネラル Air conditioner

Similar Documents

Publication Publication Date Title
JP2017067301A (en) Air conditioning device
JPH109683A (en) Air conditioner
JP2000046417A (en) Heat pump type warm water floor heating apparatus
JP2006118732A (en) Air conditioner
JPH023093Y2 (en)
KR101133617B1 (en) Inverter air-conditioner and its controlling method
JPH10253170A (en) Air conditioner
JP3789620B2 (en) Air conditioner
JP4224918B2 (en) Air conditioner
JPH04174B2 (en)
JP3526393B2 (en) Air conditioner
JPH01277160A (en) Airconditioner
JP2598080B2 (en) Air conditioner
JPH062918A (en) Controller for air conditioner
JPS5927145A (en) Air conditioner
JPH0623879Y2 (en) Air conditioner
JP2878727B2 (en) Air conditioner
JP2002048382A (en) Air conditioner
JPS6229853A (en) Air conditioner
JP2001065947A (en) Control method of air conditioner
KR100300581B1 (en) Cold and heat cycle controll method
JP3401873B2 (en) Control device for air conditioner
JP4404420B2 (en) Air conditioner control device
JP2001133016A (en) Controller for air conditioner
KR20030000422A (en) Auto-Switching Method for Cooling/ Heating of air conditioner