JPH1025173A - Joining unit of carbon material to metal, its production and plasma counter material - Google Patents

Joining unit of carbon material to metal, its production and plasma counter material

Info

Publication number
JPH1025173A
JPH1025173A JP8183241A JP18324196A JPH1025173A JP H1025173 A JPH1025173 A JP H1025173A JP 8183241 A JP8183241 A JP 8183241A JP 18324196 A JP18324196 A JP 18324196A JP H1025173 A JPH1025173 A JP H1025173A
Authority
JP
Japan
Prior art keywords
copper
carbon material
metal
titanium
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8183241A
Other languages
Japanese (ja)
Inventor
Yasuo Hyakki
康夫 百鬼
Yoshihiro Kikuchi
好洋 菊池
Takayuki Suzuki
孝幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP8183241A priority Critical patent/JPH1025173A/en
Publication of JPH1025173A publication Critical patent/JPH1025173A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Ceramic Products (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a joining unit of a carbon material to a metal, excellent in heat resistance, thermal conductivity and joining strength, provide a method for producing the joining unit and obtain a plasma counter material. SOLUTION: This joining unit of a carbon material to a metal is obtained by joining a carbon material 2 through a copper alloy-coated layer 1 comprising copper alloy coated carbon material containing copper and titanium to a metal body 3. This method for producing carbon material-metal joining unit comprises superposing a copper alloycoated carbon material having a copper alloy coating layer 1, formed by heating and melting a mixed layer containing copper and titanium or an alloy layer containing copper and titanium on a carbon material, through a copper alloy coated layer to a metal body 2 and then heating the superposed material. This plasma counter material of nuclear fusion device is obtained by using a carbon material-metal joining unit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に核融合装置の
プラズマ対向材に好適な、炭素材料金属接合体その製造
法及び前記炭素材料金属接合体を用いたプラズマ対向材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a carbon material-metal bonded body and a plasma facing material using the carbon material-metal bonded body, which are particularly suitable for a plasma facing material of a nuclear fusion device.

【0002】[0002]

【従来の技術】炭素材料は優れた耐熱性、熱伝導率及び
化学安定性を有することから、高温下で使用される各種
の部材として極めて有用である。この優れた特長を生か
し、かつ冷却効率の向上、機械的強度の補強等の目的か
ら、炭素材料と金属とを冶金的に接合した部材が、核融
合装置のプラズマ対向材、半導体製造装置用部材等で要
求されている。炭素材料と金属の冶金的な接合の方法と
しては、炭素材料と金属との間にろう材を介したろう付
けが一般的に行われている。
2. Description of the Related Art Since carbon materials have excellent heat resistance, thermal conductivity and chemical stability, they are extremely useful as various members used at high temperatures. In order to take advantage of these excellent features, and to improve cooling efficiency and reinforce mechanical strength, metallurgically bonded members of carbon materials and metals are used as plasma-facing materials for fusion devices and members for semiconductor manufacturing devices. Etc. are required. As a method of metallurgical joining between a carbon material and a metal, brazing between a carbon material and a metal via a brazing material is generally performed.

【0003】しかし、単なるろう付けの場合、炭素材料
と金属の熱膨張係数の相違から双方が剥離しやすく、接
合強度等の信頼性が低い等の問題がある。このような問
題を解決する手法として、例えば、特開平5−1862
76号公報では、表面が緻密で、内部が疎である炭素繊
維強化炭素複合材(C/C複合材)にHIP(Hot Isos
tatic Press(熱間等方圧プレス))により銅などの高
熱伝導率材料を含浸し、銅の組成がゆるやかに変化する
傾斜機能性を持たせ、熱膨張差を緩和した材料を提案し
ている。さらに、特開昭63−310778号公報で
は、炭素材料の接合面をメタライズした後、ニッケルな
どの応力緩和層を介して金属基材と接合する方法を提案
している。
However, in the case of mere brazing, there is a problem that both are easily peeled off due to a difference in thermal expansion coefficient between the carbon material and the metal, and reliability such as bonding strength is low. As a method for solving such a problem, for example, Japanese Patent Application Laid-Open No. 5-1862
No. 76 discloses that a carbon fiber reinforced carbon composite material (C / C composite material) having a dense surface and a sparse interior is HIP (Hot Isos).
We propose a material that impregnates a high thermal conductivity material such as copper with a tatic press (hot isostatic press), has a gradient function in which the composition of copper changes gradually, and reduces the difference in thermal expansion. . Further, Japanese Patent Application Laid-Open No. 63-310778 proposes a method of metallizing a bonding surface of a carbon material and then bonding the carbon material to a metal substrate via a stress relaxation layer such as nickel.

【0004】核融合装置のプラズマ対向材等において
は、炭素材料の有する耐熱性及び化学安定性を有効に利
用するためには、接合面の反対側の面(プラズマ対向
面)には金属が含有されないことが必要である。また、
接合の利点を生かすためにも熱伝導率を低下させないこ
とが必要となる。特開平5−186276号公報に示さ
れる方法では、加圧含浸による銅の侵入深さはC/C複
合材の気孔分布に依存する。このため、プラズマ対向面
に金属を全く含有せず、かつ接合面の銅含有量を充分な
ものとするためには、気孔分布の厳密な制御が必要であ
り、そのようなC/C複合材の量産は困難である。
[0004] In a plasma facing material or the like of a nuclear fusion device, in order to effectively utilize the heat resistance and chemical stability of a carbon material, a metal is contained on a surface opposite to a bonding surface (plasma facing surface). It is necessary not to be. Also,
In order to take advantage of the joining, it is necessary not to lower the thermal conductivity. In the method disclosed in JP-A-5-186276, the penetration depth of copper by pressure impregnation depends on the pore distribution of the C / C composite. For this reason, strict control of the pore distribution is required in order to make the plasma facing surface contain no metal at all and to have a sufficient copper content in the joint surface. Such a C / C composite material Is difficult to mass produce.

【0005】一方、特開昭63−310778号公報に
示される方法では、応力緩和層を介して接合を行うた
め、2面の接合となり、接合の工程が複雑になる。ま
た、メタライズ層と炭素材料では熱膨張係数が異なるた
め、熱応力により、その界面から剥離が発生するおそれ
もある。さらに、このような接合には銀ろう材が使用さ
れることが多いが、銀ろう材は融点が低いため、核融合
のように高温での使用の場合、耐熱性等が問題となり、
かつ中性子に曝された際の銀の放射化により、ろう材が
劣化し接合強度が低下するという大きな問題がある。
On the other hand, in the method disclosed in Japanese Patent Application Laid-Open No. 63-310778, bonding is performed via a stress relaxation layer, so that bonding is performed on two surfaces, and the bonding process is complicated. Further, since the metallized layer and the carbon material have different coefficients of thermal expansion, peeling may occur from the interface due to thermal stress. In addition, silver brazing material is often used for such joining, but since silver brazing material has a low melting point, when used at high temperatures such as nuclear fusion, heat resistance becomes a problem.
In addition, there is a major problem that the activation of silver when exposed to neutrons deteriorates the brazing material and lowers the bonding strength.

【0006】[0006]

【発明が解決しようとする課題】本発明は、これらの課
題を解決するものである。請求項1記載の発明は、金属
との接合性、耐熱性及び熱伝導率が優れた銅合金被覆炭
素材料を提供するものである。また、請求項2記載の発
明は、金属との接合性、耐熱性及び熱伝導率が優れた銅
合金被覆炭素材料を比較的簡易に製造できる製造法を提
供するものである。さらに請求項3記載の発明は、低放
射化で金属との接合性、耐熱性及び熱伝導率が優れたプ
ラズマ対向材を提供するものである。
The present invention solves these problems. The first aspect of the present invention is to provide a copper alloy-coated carbon material having excellent bonding property with metal, heat resistance and thermal conductivity. Further, the invention according to claim 2 provides a method for producing a copper alloy-coated carbon material excellent in bondability with metal, heat resistance and thermal conductivity relatively easily. The third aspect of the present invention is to provide a plasma facing material which is low in radiation and excellent in bonding property to metal, heat resistance and thermal conductivity.

【0007】[0007]

【課題を解決するための手段】本発明は、炭素材料と金
属体が銅とチタンを含む銅合金被覆炭素材料の、銅合金
被覆層を介して接合された炭素材料金属接合体に関す
る。また、本発明は、炭素材料上に銅とチタンを含む混
合物層又は銅とチタンを含む合金層を加熱溶融して銅合
金被覆層を形成した銅合金被覆炭素材料を、該銅合金被
覆層を介して金属体と重ね合わせて配置し、次いで加熱
することを特徴とする炭素材料金属接合体の製造法に関
する。さらに、本発明は、前記炭素材料金属接合体を用
いてなる核融合装置のプラズマ対向材に関する。
SUMMARY OF THE INVENTION The present invention relates to a carbon material-metal bonded body in which a carbon material and a metal body are bonded via a copper alloy coating layer of a copper alloy coated carbon material containing copper and titanium. The present invention also provides a copper alloy-coated carbon material formed by heating and melting a mixture layer containing copper and titanium or an alloy layer containing copper and titanium on a carbon material to form a copper alloy coating layer. The present invention relates to a method for producing a carbon material-metal bonded body, which is arranged so as to be superposed on a metal body via an interposition and then heated. Further, the present invention relates to a plasma facing material of a nuclear fusion device using the carbon material / metal bonded body.

【0008】[0008]

【発明の実施の形態】本発明に用いられる炭素材料は、
一般に知られている等方性や異方性の人造黒鉛材、炭素
繊維強化炭素複合材(C/C複合材)等であり、特に制
限はないが、炭素材料に開気孔が存在するものが銅合金
が炭素材料の開気孔に入り込み接着強度を向上させるの
で好ましく、3%以上の開気孔率を有する炭素材料を用
いることがより好ましい。なお、開気孔率P(体積%)
は、W1:乾燥重量(g)、W2:水中重量(g)、W
3:飽水重量(g)を測定し、次式より算出する(水中
置換法)。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon material used in the present invention is:
There are generally known isotropic and anisotropic artificial graphite materials, carbon fiber reinforced carbon composite materials (C / C composite materials), and the like, although there is no particular limitation. The copper alloy is preferable because it enters the open pores of the carbon material to improve the adhesive strength, and it is more preferable to use a carbon material having an open porosity of 3% or more. The open porosity P (volume%)
Are: W1: dry weight (g), W2: weight in water (g), W
3: The weight of saturated water (g) is measured and calculated by the following equation (underwater replacement method).

【0009】[0009]

【数1】 (Equation 1)

【0010】また、接着強度の向上及び熱膨張係数差の
緩和等のためには、炭素材料に穴、溝加工等を施した炭
素材料を用いることができる。この場合、穴又は溝の開
口部の面積の割合は、銅合金被覆を行う面積に対して2
0〜80%の範囲が好ましい。銅とチタンを含む混合粉
又は銅とチタンを含む合金粉(以下混合粉又は合金粉と
する)において、銅を使用するのは、高い熱伝導率、比
較的低温で溶融可能、低価格等の理由からであると同時
に、一般に冷却体には銅が使用されるため、冷却体との
接合が容易になる利点があるからである。しかし、銅単
体を溶融させたのでは炭素材料とは濡れず、また接着し
ないため、濡れ性及び接着性を改善する活性な金属を添
加する必要があり、そのため本発明では添加金属とし
て、その効果が大きく炭素材料と反応して炭化物を形成
するチタンを使用する。
Further, in order to improve the adhesive strength and reduce the difference in the coefficient of thermal expansion, etc., it is possible to use a carbon material obtained by subjecting a carbon material to holes or grooves. In this case, the ratio of the area of the opening of the hole or groove is 2 to the area of the copper alloy coating.
A range from 0 to 80% is preferred. In mixed powders containing copper and titanium or alloy powders containing copper and titanium (hereinafter referred to as mixed powders or alloy powders), copper is used because of its high thermal conductivity, melting at a relatively low temperature, low cost, etc. At the same time, because copper is generally used for the cooling body, there is an advantage that joining with the cooling body becomes easy. However, melting copper alone does not wet the carbon material and does not adhere to it, so it is necessary to add an active metal that improves wettability and adhesiveness. Uses titanium, which largely reacts with the carbon material to form carbide.

【0011】チタンの使用は、銅の濡れ性改善及び炭化
チタンによる銅と炭素材料の接着には寄与する。一方、
熱伝導率の点から見れば、銅の優れた熱伝導率を低下さ
せる傾向にある。従って、熱伝導率を高くするために、
前記の混合粉又は合金粉に含まれるチタン量を濡れ性改
善及び接着に必要な量のみとして熱伝導率の低下を極力
小さくするのが好ましい。具体的には、前記の混合粉又
は合金粉の重量組成は、濡れ性改善の効果、接着性、熱
伝導率、耐熱衝撃性等の点から、銅が98〜60重量
%、チタンが2〜40重量%の範囲であることが好まし
く、銅が96〜70重量%、チタンが4〜30重量%で
あることがさらに好ましい。前記の混合粉又は合金粉を
用いた混合物層又は合金層を形成する金属としては、銅
及びチタン以外の金属を本発明の効果を損なわない程度
含んでも良いが、前記特性が優れ、比較的低価格である
ことから、銅及びチタンからなるものが好ましい。
The use of titanium contributes to improvement of copper wettability and adhesion of copper and a carbon material by titanium carbide. on the other hand,
From the point of view of thermal conductivity, there is a tendency to lower the excellent thermal conductivity of copper. Therefore, to increase the thermal conductivity,
It is preferable that the amount of titanium contained in the mixed powder or the alloy powder is only the amount necessary for improving the wettability and bonding, so that the decrease in thermal conductivity is minimized. Specifically, the weight composition of the mixed powder or alloy powder is 98 to 60% by weight of copper and 2 to 2% of titanium in terms of the effect of improving the wettability, adhesion, thermal conductivity, thermal shock resistance, and the like. The content is preferably in the range of 40% by weight, more preferably 96 to 70% by weight of copper and 4 to 30% by weight of titanium. As the metal forming the mixture layer or the alloy layer using the mixed powder or the alloy powder, metals other than copper and titanium may be included to such an extent that the effects of the present invention are not impaired, but the characteristics are excellent and the characteristics are relatively low. From the viewpoint of cost, those made of copper and titanium are preferred.

【0012】本発明において、銅とチタンを含む混合物
層又は銅とチタンを含む合金層を加熱溶融した銅合金被
覆層は、冷却体である金属体との接合性に優れることか
ら、次の2つのいずれかの構造をとることが好ましい。
一つは、チタン濃度が炭素材料との界面から銅合金の表
面に向かい断続的又は連続的に減少している層構造であ
る。もう一つはチタン濃度が炭素材料との界面から銅合
金の表面に向かい断続的又は連続的に減少している層又
は均一なチタン濃度の銅合金被覆層上にさらに銅の層が
形成されている層構造である。これらの様子は、XMA
(X-ray Micro Analyser:X線表面微小部分析装置)等
を用いて分析することが出来る。
In the present invention, a copper alloy coating layer obtained by heating and melting a mixture layer containing copper and titanium or an alloy layer containing copper and titanium has excellent bonding properties with a metal body as a cooling body. It is preferable to adopt one of the two structures.
One is a layer structure in which the titanium concentration decreases intermittently or continuously from the interface with the carbon material toward the surface of the copper alloy. The other is that a layer of copper is formed on a layer in which the titanium concentration decreases intermittently or continuously from the interface with the carbon material toward the surface of the copper alloy or on a copper alloy coating layer having a uniform titanium concentration. Layer structure. These scenes are from XMA
(X-ray Micro Analyzer: X-ray surface minute part analyzer) or the like.

【0013】本発明における炭素材料金属接合体は、炭
素材料と金属体が銅とチタンを含む銅合金被覆炭素材料
の銅合金被覆層を介して接合されたものであるが、この
「介して」ということは銅合金被覆層が炭素材料と金属
体との間に介在していればよいということであり、銅合
金被覆層上に銅の層を形成したものを炭素材料と金属体
との間に介在させても差し支えない。本発明において
は、銅合金被覆層上にさらに銅の層が形成された層構造
であることが金属体との接合性が優れ好ましい。銅合金
被覆層及び銅の層の全体(以下金属複合層という)の厚
さは特に制限されないが、全体として0.05〜3mmで
あることが接合性の点で好ましく、0.1〜2mmである
ことが熱伝導率、加工性等の点でさらに好ましい。なお
金属複合層の厚さは接合後においても変わらない。
In the present invention, the carbon material-to-metal joint is formed by joining a carbon material and a metal body via a copper alloy coating layer of a copper alloy coating carbon material containing copper and titanium. This means that the copper alloy coating layer only needs to be interposed between the carbon material and the metal body, and a copper layer formed on the copper alloy coating layer is inserted between the carbon material and the metal body. Can be interposed. In the present invention, it is preferable to have a layer structure in which a copper layer is further formed on the copper alloy coating layer because the bondability with the metal body is excellent. The thickness of the entire copper alloy coating layer and the copper layer (hereinafter referred to as a metal composite layer) is not particularly limited, but is preferably 0.05 to 3 mm as a whole from the viewpoint of bondability, and 0.1 to 2 mm. It is more preferable in terms of thermal conductivity, workability and the like. The thickness of the metal composite layer does not change even after joining.

【0014】本発明における炭素材料金属接合体は、炭
素材料上に上記の銅合金被覆層又は金属複合層を形成し
た銅合金被覆炭素材料を得た後、該銅合金被覆層又は金
属複合層と金属体が接触するように配置し、加熱するこ
とにより得られる。また上記の銅合金被覆炭素材料を製
造する一つの方法としては、炭素材料上に、二層以上の
銅とチタンを含む混合物層若しくは銅とチタンを含む合
金層を配置するか又は前記の各層とその層上にさらに銅
の層を配置し、それらの配置の際、前記の各層が二層以
上となる場合は各層の混合物の金属総量中におけるチタ
ンの配合割合が上層になるほど少ないものとし、これら
を加熱溶融して一体の銅合金の被覆層を形成する方法が
ある。この場合、加熱溶融は全層を形成してから行って
もよいし一層毎に行ってもよい。最上層としてチタンを
含まない銅のみの層を配置するのが銅からなる金属体と
の接合性が良好なので好ましい。
[0014] The carbon material-metal bonded body according to the present invention is obtained by obtaining a copper alloy-coated carbon material having the above-mentioned copper alloy-coated layer or metal composite layer formed on a carbon material, and then forming the copper alloy-coated layer or the metal composite layer. It is obtained by arranging and heating a metal body so as to be in contact therewith. Further, as one method of producing the copper alloy-coated carbon material, on the carbon material, two or more layers of a mixture layer containing copper and titanium or an alloy layer containing copper and titanium, or each of the above layers A copper layer is further arranged on the layer, and in the case of the arrangement, when the above-mentioned each layer becomes two or more layers, the mixing ratio of titanium in the total amount of the metal of the mixture of each layer shall be smaller as the upper layer, and these Is heated and melted to form an integral copper alloy coating layer. In this case, the heating and melting may be performed after forming all the layers, or may be performed for each layer. It is preferable to dispose a layer containing only copper not containing titanium as the uppermost layer because the bonding property with the metal body made of copper is good.

【0015】前記の方法において、層状に配置する銅と
チタンを含む混合物又は銅とチタンを含む合金の種類に
より、各種の配置方法がある。その一法は、銅とチタン
を含む混合物又は銅とチタンを含む合金の代わりに銅合
金箔又は銅合金板を用いる方法である。この場合はこれ
を極薄く一層又は二層以上炭素材料上に配置し、この上
に場合により銅粉、銅箔又は銅板を配置して加熱、溶融
することができる。ここで二層以上銅合金箔又は銅合金
板を用いる場合、箔状又は板状の銅合金の金属総量中に
おけるチタンの配合割合が上層になるほど少ないものを
用いる。なお、配置する銅合金箔又は銅合金板全体の厚
さは、熱伝導率の点から0.1μm〜2mmが好ましく、
0.1μm〜1mmがより好ましく、0.1〜100μm
であることがさらに好ましい。また、さらに銅のみの層
を設ける場合、銅の層の厚さは特に制限されないが、接
合性等の点から0.05〜3mmが好ましい。
In the above method, there are various arrangement methods depending on the type of the mixture containing copper and titanium or the alloy containing copper and titanium arranged in layers. One method is to use a copper alloy foil or a copper alloy plate instead of a mixture containing copper and titanium or an alloy containing copper and titanium. In this case, it can be heated and melted by arranging it on a very thin layer or two or more layers of a carbon material, and optionally arranging a copper powder, a copper foil or a copper plate thereon. When two or more layers of copper alloy foil or copper alloy plate are used, the one in which the proportion of titanium in the total amount of metal in the foil or plate-like copper alloy is lower as the layer is higher is used. The thickness of the copper alloy foil or copper alloy plate as a whole is preferably 0.1 μm to 2 mm from the viewpoint of thermal conductivity,
0.1 μm to 1 mm is more preferable, and 0.1 to 100 μm
Is more preferable. In the case where a layer made of only copper is further provided, the thickness of the copper layer is not particularly limited, but is preferably 0.05 to 3 mm from the viewpoint of bonding properties and the like.

【0016】また別の一法として、銅とチタンを含む混
合物又は銅とチタンを含む合金として混合粉又は合金粉
を用いることができ、この場合は、この混合粉又は合金
粉を極薄く一層又は二層以上炭素材料上に配置し、この
上に場合により銅粉、銅箔又は銅板を配置して加熱溶融
することができる。また二層以上の混合粉又は合金粉の
層を用いる場合、混合粉又は合金粉の金属総量中におけ
るチタンの配合割合が上層になるほど少ない配合として
用いる。銅とチタンを粉体で用いる場合又は銅とチタン
を含む合金を粉体で用いる場合、これらを単に混合して
粉体として使用するか又は合金粉をそのまま使用しても
良いが、これらに有機バインダー、溶剤等を加えてペー
スト状にし、これを炭素材料上に塗布し乾燥して加熱溶
融する手法を用いると、より均一な被覆が可能となるの
で好ましい。
As another method, a mixed powder or an alloy powder can be used as a mixture containing copper and titanium or an alloy containing copper and titanium. Two or more layers may be arranged on a carbon material, and a copper powder, a copper foil or a copper plate may be arranged on the carbon material, and then heated and melted. When two or more layers of the mixed powder or the alloy powder are used, the mixing ratio of the titanium in the total amount of the metal of the mixed powder or the alloy powder is such that the lower the proportion, the higher the layer. When copper and titanium are used as a powder or when an alloy containing copper and titanium is used as a powder, these may be simply mixed and used as a powder, or the alloy powder may be used as it is. It is preferable to use a method in which a paste is formed by adding a binder, a solvent, and the like, and the paste is applied to a carbon material, dried, and then heated and melted, because more uniform coating can be performed.

【0017】前記ペースト状にしたものを用いる手法に
おいて、有機バインダーには、公知の熱硬化性樹脂、熱
可塑性樹脂等が用いられ、特に制限はないが、炭化率が
高いものほど熱処理後の銅合金中に残留する炭素が多く
なるため、アクリル樹脂、エポキシ樹脂、ポリビニルア
ルコール、メチルセルロース、エチルセルロース等の低
炭化率の有機バインダーを用いることが好ましい。ま
た、溶剤は、ペーストの安定性及び作業性から、沸点が
100〜200℃のものが好ましく、具体的には、エチ
レングリコール、ブタノール等の有機溶剤又は水を、有
機バインダーとの相溶性を考えて選択して用いることが
より好ましい。なお、この場合も、配置するチタンを含
む層の厚さは、熱伝導率の点から0.1μm〜2mmが好
ましく、0.1μm〜1mmがより好ましく、0.1〜1
00μmであれることがさらに好ましい。また、さらに
銅のみの層を設ける場合、銅の層の厚さは特に制限され
ないが、接合性等の点から0.05〜3mmが好ましい。
In the above-mentioned method of using the paste, a known thermosetting resin, thermoplastic resin or the like is used as an organic binder, and there is no particular limitation. Since carbon remaining in the alloy increases, it is preferable to use an organic binder having a low carbonization rate such as an acrylic resin, an epoxy resin, polyvinyl alcohol, methyl cellulose, and ethyl cellulose. Further, the solvent is preferably one having a boiling point of 100 to 200 ° C. from the viewpoint of the stability and workability of the paste. Specifically, an organic solvent such as ethylene glycol or butanol or water is considered in consideration of compatibility with an organic binder. It is more preferable to select and use them. Also in this case, the thickness of the titanium-containing layer to be disposed is preferably 0.1 μm to 2 mm, more preferably 0.1 μm to 1 mm, and more preferably 0.1 μm to 1 mm from the viewpoint of thermal conductivity.
More preferably, it is 00 μm. In the case where a layer made of only copper is further provided, the thickness of the copper layer is not particularly limited, but is preferably 0.05 to 3 mm from the viewpoint of bonding properties and the like.

【0018】混合粉又は合金粉、有機バインダー及び溶
剤の配合割合は、ペーストの作業性、被服層の緻密化等
の点で混合粉又は合金粉が50〜90重量%、有機バイ
ンダーが5〜40重量%及び溶剤が5〜40重量%の範
囲が好ましく、混合粉又は合金粉が60〜90重量%、
有機バインダーが5〜30重量%及び溶剤が5〜30重
量%の範囲がより好ましく、混合粉又は合金粉が70〜
90重量%、有機バインダーが5〜25重量%及び溶剤
が5〜25重量%の範囲であることがさらに好ましい。
これらの成分は、全組成物全体が100重量%となるよ
うに配合される。
The mixing ratio of the mixed powder or alloy powder, the organic binder and the solvent is such that the mixed powder or alloy powder is 50 to 90% by weight and the organic binder is 5 to 40% in terms of workability of the paste and densification of the coating layer. % By weight and the solvent is preferably in the range of 5 to 40% by weight, and the mixed powder or alloy powder is 60 to 90% by weight;
More preferably, the content of the organic binder is 5 to 30% by weight and the content of the solvent is 5 to 30% by weight.
More preferably, the content is 90% by weight, the organic binder is 5 to 25% by weight, and the solvent is 5 to 25% by weight.
These components are blended so that the total composition becomes 100% by weight.

【0019】また、被覆層を形成する別の方法として、
予め、銅合金箔又は銅合金板の成形体であってチタンの
割合が多い層から少ない層へ断続的又は連続的に減少し
ている成形体又は前記の層状構造若しくは均一なチタン
の割合の層上にさらに銅のみの層を含む成形体(傾斜
材)を製造し、これをチタンの割合が多い層を炭素材料
側として炭素材料上に配置し、加熱溶融して一体の被覆
層を形成する方法を行うこともできる。なお、この場合
も、この傾斜材のチタンを含む層の厚さは、熱伝導率の
点から0.1μm〜2mmが好ましく、0.1μm〜1mm
がより好ましく、0.1〜100μmであることがさら
に好ましい。また、さらに銅のみの層を設ける場合、銅
の層の厚さは特に制限されないが、接合性等の点から
0.05〜3mmが好ましい。
Further, as another method of forming the coating layer,
A molded body of a copper alloy foil or a copper alloy plate, which is previously or intermittently or continuously reduced from a layer having a large proportion of titanium to a layer having a small proportion of titanium or a layer having the above-mentioned layered structure or a uniform proportion of titanium A molded body (graded material) including a layer of only copper is further manufactured on the carbon material, and a layer having a large proportion of titanium is disposed on the carbon material with the layer having a large proportion of titanium as a carbon material side, and heated and melted to form an integral coating layer. The method can also be performed. Also in this case, the thickness of the titanium-containing layer of the inclined material is preferably 0.1 μm to 2 mm from the viewpoint of thermal conductivity, and 0.1 μm to 1 mm.
Is more preferable, and further preferably 0.1 to 100 μm. In the case where a layer made of only copper is further provided, the thickness of the copper layer is not particularly limited, but is preferably 0.05 to 3 mm from the viewpoint of bonding properties and the like.

【0020】この方法において、この傾斜材は、前記の
銅とチタンを含む混合物として銅合金箔又は銅合金板を
用いる方法又は銅とチタンを含む混合物として混合粉又
は合金粉を用いる方法で金属被覆層又は合金被覆層のみ
をまず作製し、これをチタンの割合が多い層を炭素材料
側として炭素材料上に配置し、加熱溶融して一体の被覆
層を形成することができる。
In this method, the gradient material is metal-coated by a method using a copper alloy foil or a copper alloy plate as the mixture containing copper and titanium or a method using a mixed powder or an alloy powder as a mixture containing copper and titanium. Only a layer or an alloy coating layer is first prepared, and this layer is arranged on a carbon material with the layer having a high proportion of titanium as the carbon material side, and heated and melted to form an integral coating layer.

【0021】各方法で行う加熱溶融においては、銅、チ
タン及び炭素材料は酸素と反応しやすいため、雰囲気に
は酸素がないことが好ましい。また、チタンは窒素とも
反応するので窒素も存在しない雰囲気とすることが好ま
しい。このような理由から、加熱溶融は真空中又は窒素
以外の不活性ガス雰囲気で行うのが好ましい。真空で加
熱溶融を行う場合には、酸化防止のため、その真空度は
1Pa以下の高真空であることが好ましく、0.1Pa以下
の高真空であることがより好ましい。
In the heat melting performed by each method, since the copper, titanium, and carbon materials easily react with oxygen, it is preferable that the atmosphere is free of oxygen. Since titanium also reacts with nitrogen, it is preferable that the atmosphere be free of nitrogen. For such a reason, it is preferable to perform the heating and melting in a vacuum or in an inert gas atmosphere other than nitrogen. When performing heat melting in a vacuum, the degree of vacuum is preferably 1 Pa or less, and more preferably 0.1 Pa or less, in order to prevent oxidation.

【0022】また、雰囲気が窒素以外の不活性ガスの場
合には、酸素・窒素等の含有量が少ない高純度のガスを
用い、酸素不純物及び窒素不純物が20ppm以下のガス
を用いることが好ましい。不活性ガスとしては、アルゴ
ン、ヘリウム等が好ましい。加熱溶融温度は、900〜
1600℃とするのが溶融性及び組成変化がない点から
好ましく、溶融性の点で950℃以上がより好ましく、
1050℃以上がさらに好ましい。以上の加熱溶融によ
り一体の被覆層が形成される。そしてこれにより、炭素
材料上にチタンを含む銅合金の被覆層が形成される。
When the atmosphere is an inert gas other than nitrogen, it is preferable to use a high-purity gas containing a small amount of oxygen, nitrogen and the like, and to use a gas containing 20 ppm or less of oxygen impurities and nitrogen impurities. As the inert gas, argon, helium and the like are preferable. Heat melting temperature is 900 ~
1600 ° C. is preferred because there is no change in the meltability and composition, and 950 ° C. or more is more preferred in view of the meltability,
1050 ° C. or higher is more preferable. An integral coating layer is formed by the above heating and melting. Thus, a coating layer of a copper alloy containing titanium is formed on the carbon material.

【0023】炭素材料と金属体は、銅とチタンを含む銅
合金被覆炭素材料の銅合金被覆層を介して接合される
が、接合する方法としては、銅合金被覆炭素材料の銅合
金被覆面を研磨して平面を出した後、洗浄を行い清浄に
したものと、金属体を研磨して平面を出した後、洗浄を
行い清浄にしたものとを、銅合金被覆面が金属体と接触
するように重ね合わせ、加熱処理を行う。なお、銅合金
被覆炭素材料の銅合金被覆層上に銅の層が形成されてい
る場合は、銅の層の表面を研磨して平面を出した後、洗
浄を行い清浄にしたものと、金属体を研磨して平面を出
した後、洗浄を行い清浄にしたものとを、銅の層が金属
体と接触するように重ね合わせ、加熱処理を行う。
The carbon material and the metal body are joined via a copper alloy coating layer of a copper alloy coating carbon material containing copper and titanium. As a joining method, a copper alloy coating surface of the copper alloy coating carbon material is used. After polishing and exposing a flat surface, the one cleaned and cleaned, and after polishing the metal body and exposing a flat surface, washed and cleaned, the copper alloy coated surface comes into contact with the metal body And heat treatment is performed. When a copper layer is formed on the copper alloy coating layer of the copper alloy-coated carbon material, the surface of the copper layer is polished to obtain a flat surface, and then cleaned and cleaned. After the body is polished to make a flat surface, the cleaned and cleaned one is overlaid so that the copper layer is in contact with the metal body, and a heat treatment is performed.

【0024】銅合金被覆炭素材料と金属体又は該銅の層
の平面度は良いものほど好ましい。また、加熱処理の
際、銅合金被覆炭素材料又は該銅の層は金属体と重ね合
わせるだけでも良いが、荷重を加えると銅合金被覆面又
は銅の層の面と金属体が密着するためさらに好ましい。
ただし、あまり大きな荷重をかけると銅合金被覆炭素材
料の炭素基材が破壊されたり、金属体が著しく変形して
しまうため、荷重は0.01MPa〜10MPaが好ましく、
1MPa〜10MPaがさらに好ましい。加熱処理の温度は、
金属体の溶融変形がないように、使用する金属体の融点
以下の温度であり、かつ銅合金被覆炭素材料の銅合金が
組成変化しない温度、すなわち金属体として銅を使用す
る場合は、銅の融点が1083℃である点から900℃
〜1080℃が好ましく、銅合金の軟化性の点から95
0℃〜1080℃がさらに好ましい。
The better the flatness of the copper alloy-coated carbon material and the metal body or the copper layer, the better. In addition, during the heat treatment, the copper alloy-coated carbon material or the copper layer may be merely overlapped with the metal body, but when a load is applied, the copper alloy-coated surface or the copper layer surface and the metal body are in close contact with each other. preferable.
However, if a too large load is applied, the carbon base material of the copper alloy-coated carbon material is broken, or the metal body is significantly deformed. Therefore, the load is preferably 0.01 MPa to 10 MPa,
1 MPa to 10 MPa is more preferable. The temperature of the heat treatment is
In order to avoid melting deformation of the metal body, the temperature is not higher than the melting point of the metal body used, and the temperature at which the composition of the copper alloy of the copper alloy-coated carbon material does not change, that is, when using copper as the metal body, 900 ° C from the melting point of 1083 ° C
-1080 ° C. is preferred, and 95% from the viewpoint of the softening property of the copper alloy.
0 ° C to 1080 ° C is more preferable.

【0025】本発明で使用する金属体は、特に制限はな
いが、融点、熱伝導率等の点から、銅、モリブデン、タ
ングステン、鉄、チタン等の金属又はこれらの合金を材
料とする金属体が好ましく、特に加工性、低価格等の点
から銅又は銅合金を材料とする金属体がさらに好まし
い。
The metal body used in the present invention is not particularly limited, but from the viewpoint of melting point, thermal conductivity and the like, metal body made of a metal such as copper, molybdenum, tungsten, iron, titanium or an alloy thereof. In particular, a metal body made of copper or a copper alloy is more preferable in terms of workability, low cost, and the like.

【0026】銅合金被覆炭素材料と金属体との接合の加
熱処理においても、銅、チタン及び炭素材料は酸素と反
応しやすいため、雰囲気には酸素がないことが好まし
い。また、チタンは窒素とも反応するので窒素も存在し
ない雰囲気とすることが好ましい。このような理由か
ら、加熱処理は真空中又は窒素以外の不活性ガス雰囲気
で行うのが好ましい。真空で加熱処理を行う場合には、
酸化防止のため真空度は1Pa以下の高真空であることが
好ましく、0.1Pa以下の高真空であるのがより好まし
い。
In the heat treatment for joining the copper alloy-coated carbon material and the metal body, the atmosphere is preferably free of oxygen because the copper, titanium and carbon materials are liable to react with oxygen. Since titanium also reacts with nitrogen, it is preferable that the atmosphere be free of nitrogen. For this reason, the heat treatment is preferably performed in a vacuum or in an inert gas atmosphere other than nitrogen. When performing heat treatment in vacuum,
To prevent oxidation, the degree of vacuum is preferably a high vacuum of 1 Pa or less, and more preferably a high vacuum of 0.1 Pa or less.

【0027】また、雰囲気が窒素以外の不活性ガスの場
合には、酸素・窒素等の含有量が少ない高純度のガスを
用い、酸素不純物及び窒素不純物が20ppm以下のガス
を用いることが好ましい。不活性ガスとしては、アルゴ
ン、ヘリウム等が好ましい。以上の加熱処理により炭素
材料金属接合体を製造できる。以上のようにして得られ
る炭素材料金属接合体は、耐熱衝撃性、接合強度及びそ
の信頼性が高く、かつ高熱伝導率なプラズマ対向材とす
ることができる。
When the atmosphere is an inert gas other than nitrogen, it is preferable to use a high-purity gas containing a small amount of oxygen, nitrogen or the like, and to use a gas containing 20 ppm or less of oxygen impurities and nitrogen impurities. As the inert gas, argon, helium and the like are preferable. By the above heat treatment, a carbon material / metal bonded body can be manufactured. The carbon material-metal bonded body obtained as described above can be used as a plasma facing material having high thermal shock resistance, high bonding strength, high reliability, and high thermal conductivity.

【0028】前記金属体は、接合した銅合金被覆炭素材
料を冷却する働きをするものをいう。その構造は、冷却
効率を高めるため、ガス、水等の液体により冷却を行う
ことが可能な構造を有するものが好ましく、例えばブロ
ック状または板状の金属体に冷媒を流通させるための貫
通穴が設けられている構造、金属体に冷媒の流通する管
を接合した構造等のものを用いることが好ましい。その
一例の断面図を図1に示す。炭素材料2と銅合金被覆層
1が接合されている。そして、銅合金被覆層1は加熱処
理により金属体3と接合している。金属体3には、冷媒
を流通する冷却管5が形成されている。
The above-mentioned metal body refers to a body that functions to cool the joined copper alloy-coated carbon material. The structure preferably has a structure capable of performing cooling with a liquid such as gas or water in order to increase cooling efficiency.For example, a through hole for flowing a coolant through a block-shaped or plate-shaped metal body is preferably provided. It is preferable to use a structure provided, a structure in which a pipe through which a refrigerant flows is joined to a metal body, or the like. A cross-sectional view of one example is shown in FIG. The carbon material 2 and the copper alloy coating layer 1 are joined. The copper alloy coating layer 1 is joined to the metal body 3 by a heat treatment. A cooling pipe 5 through which a coolant flows is formed in the metal body 3.

【0029】[0029]

【実施例】次に本発明の実施例を説明する。 実施例1〜4及び比較例1、2 25mm×25mm×25mmの寸法に加工した二次元C/C
複合材(日立化成工業(株)製、商品名PCC−2S、開
気孔率8%)を基材として使用した。また被覆層を形成
するための材料として銅粉(福田金属箔粉工業(株)製、
電解銅粉)とチタン粉(高純度化学研究所製、平均粒径
10μm)を使用し、これらの混合粉は表1に示す配合
割合で混合したものを使用し、この混合粉及び銅粉各6
0重量%にアルキド樹脂(日立化成工業(株)製、商品名
V901)を30重量%及びブタノールを10重量%添
加、混合してペースト化したものをそれぞれ基材上に実
施例1及び実施例3については混合粉ペーストを、また
実施例2及び実施例4については混合粉ペースト、銅粉
ペーストの順に表1に示した厚さになるように塗布した
後、0.1Paの真空雰囲気中で、1300℃に加熱溶融
し1時間保持して銅合金被覆炭素材料を得た。得られた
銅合金被覆炭素材料の銅合金被覆面を研磨、洗浄を行っ
たものを、研磨、洗浄を行った25mm×25mm×25mm
の寸法の銅ブロックと、銅合金被覆面で接するように重
ね合わせ、2MPaの荷重をかけた後、0.1Paの真空雰
囲気中で、表1に示した温度に加熱し30分保持して炭
素材料銅接合体を得た。
Next, embodiments of the present invention will be described. Examples 1 to 4 and Comparative Examples 1 and 2 Two-dimensional C / C processed to dimensions of 25 mm × 25 mm × 25 mm
A composite material (manufactured by Hitachi Chemical Co., Ltd., trade name PCC-2S, open porosity 8%) was used as a base material. Copper powder (Fukuda Metal Foil & Powder Co., Ltd.) is used as a material for forming the coating layer.
Electrolytic copper powder) and titanium powder (manufactured by Kojundo Chemical Laboratory, average particle size: 10 μm). These mixed powders were used in the mixing ratio shown in Table 1, and each of the mixed powder and copper powder was used. 6
30% by weight of an alkyd resin (trade name: V901, manufactured by Hitachi Chemical Co., Ltd.) and 10% by weight of butanol were added to 0% by weight and mixed to form a paste. 3 was applied with the mixed powder paste, and in Examples 2 and 4, the mixed powder paste and the copper powder paste were applied in this order so as to have the thickness shown in Table 1, and then in a vacuum atmosphere of 0.1 Pa. And heated and melted at 1300 ° C. and maintained for 1 hour to obtain a copper alloy-coated carbon material. The copper alloy-coated surface of the obtained copper alloy-coated carbon material was polished and cleaned, and the polished and cleaned 25 mm x 25 mm x 25 mm
Is placed on the copper block with the copper alloy coated surface so as to be in contact with the copper alloy, and after applying a load of 2 MPa, it is heated to the temperature shown in Table 1 in a vacuum atmosphere of 0.1 Pa and held for 30 minutes to obtain carbon. A material copper joined body was obtained.

【0030】得られた炭素材料銅接合体の接合面を含
み、厚さ5mmになるように切断して熱伝導率測定用の試
験片を得、真空理工(株)製、TC−7000を用いて熱
伝導率を測定した。その結果を表1に示す。但し上記試
験において、比較例1は銅合金を被覆しない炭素材料を
チタン入銀ろう材を用いて銅ブロックと接合したものに
ついて熱伝導率を測定し、また比較例2は基材単体の熱
伝導率を測定した。
A test piece for measuring thermal conductivity was obtained by cutting to a thickness of 5 mm including the bonding surface of the obtained carbon material copper bonded body, and using TC-7000 manufactured by Vacuum Riko Co., Ltd. The thermal conductivity was measured. Table 1 shows the results. However, in the above test, Comparative Example 1 measured the thermal conductivity of a carbon material not coated with a copper alloy and bonded to a copper block using a titanium-containing silver brazing material. The rate was measured.

【0031】さらに、上記の実施例及び比較例で得られ
た炭素材料銅接合体について、高温下(850℃)にお
いて引張り試験機により接合体破壊強度を測定した。な
おクロスヘッドの速度は0.5mm/分とした。得られた
破壊荷重から次式により接合体破壊強度を算出した。そ
の結果を併せて表1に示す。但し上記試験において、比
較例1は銅合金を破壊しない炭素材料を銅ブロックとチ
タン入銀ろうを用いて接合したものについて破壊強度を
測定し、また比較例2は基材単体の強度を測定した。こ
の結果、比較例1であるチタン入銀ろうを使用して接合
したものは、ろう材が溶融し、接合面で破断した。ま
た、本発明である銅合金被覆を行い、ろう材を使用せず
接合したものについては、実施例1〜4は基材内部で破
壊した。
Further, with respect to the carbon material copper bonded bodies obtained in the above Examples and Comparative Examples, the bonded body breaking strength was measured at a high temperature (850 ° C.) using a tensile tester. The speed of the crosshead was 0.5 mm / min. The joint breaking strength was calculated from the obtained breaking load by the following equation. Table 1 also shows the results. However, in the above test, Comparative Example 1 measured the breaking strength of a carbon material that did not destroy the copper alloy and was bonded using a copper block and a titanium-containing silver solder, and Comparative Example 2 measured the strength of the substrate alone. . As a result, in the case of joining using the titanium-containing silver brazing material of Comparative Example 1, the brazing material was melted and broken at the joining surface. Moreover, about what joined by using the copper alloy covering which is this invention, and did not use brazing material, Examples 1-4 destroyed inside the base material.

【0032】[0032]

【数2】 但し、Tは接合体破壊強度(MPa)、Pは破壊荷重
(N)、Aは試料の断面積(mm2)である。
(Equation 2) Here, T is the joint breaking strength (MPa), P is the breaking load (N), and A is the cross-sectional area of the sample (mm 2 ).

【0033】[0033]

【表1】 [Table 1]

【0034】実施例5〜8及び比較例3、4 25mm×25mm×25mmの寸法に加工した一次元C/C
複合材(日立化成工業(株)製、商品名HUD−1S)を
基材として使用した。また被覆層を形成する材料として
銅粉(福田金属箔粉工業(株)製、電解銅粉)とチタン粉
(高純度化学研究所製、平均粒径10μm)を使用し、
各層の混合粉は表2に示す配合割合で混合し、次いでこ
れらの混合粉及び銅粉をそれぞれ基材上に実施例5及び
実施例7については混合粉を、また実施例6及び実施例
8については混合粉、銅粉の順に表2に示す所定厚さに
なるように、層状に配置し、加圧成形して一体の成形体
とした。この成形体をチタンの割合が多い層をC/C複
合材側としてC/C複合体上に配置した後、アルゴンガ
ス(酸素及び窒素不純物を各々10ppm以下)雰囲気中
で、それぞれ1200℃に加熱溶融し1時間保持して銅
合金被覆炭素材料を得た。得られた銅合金被覆炭素材料
の銅合金被覆面を研磨、洗浄したものを、研磨、洗浄し
た25mm×25mm×25mmの寸法の銅ブロックと、銅合
金被覆面の面が接するように重ね合わせ、2MPaの荷重
をかけた後、アルゴンガス(酸素不純物及び窒素不純物
を各々10ppm以下)雰囲気中で、それぞれ表2に示す
温度に加熱し30分保持して炭素材料銅接合体を得た。
Examples 5 to 8 and Comparative Examples 3 and 4 One-dimensional C / C processed to dimensions of 225 mm × 25 mm × 25 mm
A composite material (HUD-1S, manufactured by Hitachi Chemical Co., Ltd.) was used as a base material. Copper powder (electrolytic copper powder, manufactured by Fukuda Metal Foil Powder Co., Ltd.) and titanium powder (manufactured by Kojundo Chemical Laboratory, average particle size: 10 μm) were used as materials for forming the coating layer.
The powder mixture of each layer was mixed at the compounding ratio shown in Table 2, and then the powder mixture and the copper powder were mixed on the base material, respectively, for Example 5 and Example 7, and Example 6 and Example 8 As for the mixed powder and the copper powder, they were arranged in layers so as to have a predetermined thickness shown in Table 2 in this order, and were pressed and formed into an integrated molded body. After arranging the molded body on the C / C composite with the layer having a large proportion of titanium as the C / C composite side, the molded body was heated to 1200 ° C. in an argon gas atmosphere (oxygen and nitrogen impurities are each 10 ppm or less). After melting and holding for one hour, a copper alloy-coated carbon material was obtained. The copper alloy-coated surface of the obtained copper alloy-coated carbon material was polished and washed, and the polished and washed copper block having a size of 25 mm × 25 mm × 25 mm was overlapped with the copper alloy-coated surface so that the surface of the copper alloy-coated surface was in contact with the copper block. After applying a load of 2 MPa, each was heated to a temperature shown in Table 2 and maintained for 30 minutes in an argon gas (oxygen impurity and nitrogen impurity each being 10 ppm or less) atmosphere to obtain a carbon material copper joined body.

【0035】得られた炭素材料銅接合体を接合面を含
み、厚さ5mmになるように切断して熱伝導率測定用の試
験片を得、熱伝導率を測定した。その結果を表2に示
す。但し上記試験において、比較例3は銅合金を被覆し
ない炭素材料をチタン入銀ろう材を用いて銅ブロックと
接合したものについて熱伝導率を測定し、また比較例4
は基材単体の熱伝導率を測定した。
[0035] The obtained carbon material copper joined body was cut so as to have a thickness of 5 mm including the joint surface to obtain a test piece for measuring thermal conductivity, and the thermal conductivity was measured. Table 2 shows the results. However, in the above test, Comparative Example 3 measured the thermal conductivity of a carbon material not coated with a copper alloy and joined to a copper block using a titanium-containing silver brazing material.
Measured the thermal conductivity of the substrate alone.

【0036】さらに、上記の実施例及び比較例で得られ
た炭素材料銅接合体について、実施例1と同様の方法で
接合体破壊強度を測定した。但し、比較例3は銅合金を
被覆しない炭素材料を銅ブロックとチタン入銀ろうを用
いて接合したものについて破壊強度を測定し、また比較
例4は基材単体の強度を測定した。この結果、比較例3
であるチタン入銀ろうを使用して接合したものは、ろう
材が溶融し、接合面で簡単に破断した。また本発明であ
る銅合金被覆を行い、ろう材を使用せずに接合したもの
については、実施例5〜8は銅合金被覆層が軟化して接
合面で破断した。
Further, with respect to the carbon material copper joints obtained in the above Examples and Comparative Examples, the joint breaking strength was measured in the same manner as in Example 1. However, Comparative Example 3 measured the breaking strength of a carbon material not coated with a copper alloy and joined using a copper block and titanium-containing silver solder, and Comparative Example 4 measured the strength of a single substrate. As a result, Comparative Example 3
When the brazing material was joined using the titanium-containing silver brazing material, the brazing material was melted and easily broken at the joining surface. In the copper alloy coating according to the present invention, which was joined without using a brazing material, the copper alloy coating layers of Examples 5 to 8 were softened and fractured at the joint surface.

【0037】[0037]

【表2】 [Table 2]

【0038】表1及び表2に示されるように、本発明の
実施例になる炭素材料金属接合体は、比較例のものに比
較して耐熱性に優れ、熱伝導率及び接合強度が優れるこ
とが示される。
As shown in Tables 1 and 2, the carbon material-metal bonded body according to the embodiment of the present invention has better heat resistance, better thermal conductivity and better bonding strength than those of the comparative example. Is shown.

【0039】[0039]

【発明の効果】請求項1記載の炭素材料金属接合体は、
耐熱性、熱伝導率及び接合強度に優れ、核融合装置等の
プラズマ対向材に有用である。請求項2記載の炭素材料
金属接合体の製造法によれば、耐熱性、熱伝導率及び接
合強度に優れた炭素材料金属接合体が得られる。請求項
3記載のプラズマ対向材は、耐熱性、熱伝導率及び接合
強度に優れ、かつ、低放射化であるため、特に核融合装
置のプラズマ対向材として有用である。
According to the first aspect of the present invention, there is provided a carbon material-metal bonded body.
It has excellent heat resistance, thermal conductivity and bonding strength, and is useful for plasma facing materials such as nuclear fusion devices. According to the method for manufacturing a carbon material / metal bonded body of the second aspect, a carbon material / metal bonded body excellent in heat resistance, thermal conductivity, and bonding strength can be obtained. The plasma facing material according to claim 3 is excellent in heat resistance, thermal conductivity and bonding strength, and has low radiation. Therefore, it is particularly useful as a plasma facing material for a nuclear fusion device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のプラズマ対向材の一例を示す断面図で
ある。
FIG. 1 is a sectional view showing an example of a plasma facing material of the present invention.

【符号の説明】[Explanation of symbols]

1 銅合金被覆層 2 炭素材料 3 金属体 4 接合面 5 冷却管 DESCRIPTION OF SYMBOLS 1 Copper alloy coating layer 2 Carbon material 3 Metal body 4 Joining surface 5 Cooling tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料と金属体が銅とチタンを含む銅
合金被覆炭素材料の、銅合金被覆層を介して接合された
炭素材料金属接合体。
1. A carbon material-metal bonded body comprising a carbon material and a metal body, wherein the carbon material is a copper alloy-coated carbon material containing copper and titanium, which is bonded via a copper alloy coating layer.
【請求項2】 炭素材料上に銅とチタンを含む混合物層
又は銅とチタンを含む合金層を加熱溶融して銅合金被覆
層を形成した銅合金被覆炭素材料を、該銅合金被覆層を
介して金属体と重ね合わせて配置し、次いで加熱するこ
とを特徴とする炭素材料金属接合体の製造法。
2. A copper alloy-coated carbon material formed by heating and melting a mixture layer containing copper and titanium or an alloy layer containing copper and titanium on a carbon material to form a copper alloy coating layer, through the copper alloy coating layer. A method for producing a carbon material-metal bonded body, comprising: placing a metal body on a metal body;
【請求項3】 請求項1記載の炭素材料金属接合体を用
いてなる核融合装置のプラズマ対向材。
3. A plasma facing material for a nuclear fusion device using the carbon-metal bonded article according to claim 1.
JP8183241A 1996-07-12 1996-07-12 Joining unit of carbon material to metal, its production and plasma counter material Pending JPH1025173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8183241A JPH1025173A (en) 1996-07-12 1996-07-12 Joining unit of carbon material to metal, its production and plasma counter material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8183241A JPH1025173A (en) 1996-07-12 1996-07-12 Joining unit of carbon material to metal, its production and plasma counter material

Publications (1)

Publication Number Publication Date
JPH1025173A true JPH1025173A (en) 1998-01-27

Family

ID=16132254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8183241A Pending JPH1025173A (en) 1996-07-12 1996-07-12 Joining unit of carbon material to metal, its production and plasma counter material

Country Status (1)

Country Link
JP (1) JPH1025173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081362A (en) * 2006-09-27 2008-04-10 Kwansei Gakuin Method for producing bonded material of tantalum and carbon, gradient composition structure of tantalum and carbon, method for producing tantalum tube and pit carbon core, tantalum tube and pit carbon core, method for producing tantalum carbide wire, and tantalum carbide wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081362A (en) * 2006-09-27 2008-04-10 Kwansei Gakuin Method for producing bonded material of tantalum and carbon, gradient composition structure of tantalum and carbon, method for producing tantalum tube and pit carbon core, tantalum tube and pit carbon core, method for producing tantalum carbide wire, and tantalum carbide wire

Similar Documents

Publication Publication Date Title
US11390054B2 (en) Composite and multilayered silver films for joining electrical and mechanical components
US20080272180A1 (en) Method of manufacturing heat spreader module
US9984951B2 (en) Sintered multilayer heat sinks for microelectronic packages and methods for the production thereof
WO2006100769A1 (en) Metal substrate/metal impregnated carbon composite material structure and method for manufacturing said structure
JPS60131874A (en) Method of bonding ceramic and metal
CN108774699A (en) Aluminium silicon/aluminium gold hard rock gradient composites and preparation method thereof
JP2008044009A (en) Method of joining members having different thermal expansion coefficients
JP5764506B2 (en) Ceramic porous body-metal heat insulating material and manufacturing method thereof
CN112447634A (en) Thermal interface material with low Young modulus and high thermal conductivity as well as preparation method and application thereof
TWI283463B (en) Members for semiconductor device
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JPH08186204A (en) Heat sink and its manufacture
JP7072051B2 (en) Anisotropic graphite, anisotropic graphite complex and its manufacturing method
JP2010278171A (en) Power semiconductor and manufacturing method of the same
JPH1025173A (en) Joining unit of carbon material to metal, its production and plasma counter material
JPH09118575A (en) Carbon material coated with copper alloy, its production and counter plasma material
JP2005095944A (en) Metallic substrate-metal impregnated carbon composite structure, and method of producing the structure
KR20120078270A (en) Susceptor using low thermal expansion composite materials and method for manufacturing esc component
JPH0881290A (en) Copper alloy-coated carbon material and its production and plasma counter material using copper alloy-coated carbon material
US3853582A (en) Metallized isotropic boron nitride body and method for making same
CN113084176A (en) Self-supporting diamond film/Cu composite heat sink material and preparation method thereof
EP0162700B1 (en) Nitride ceramic-metal complex material and method of producing the same
CN113614266B (en) Composite material
JP2006120973A (en) Circuit board and manufacturing method thereof
JP2005247662A (en) Joined body, wafer holding member using the same, and method for manufacturing the same