JPH0881290A - Copper alloy-coated carbon material and its production and plasma counter material using copper alloy-coated carbon material - Google Patents

Copper alloy-coated carbon material and its production and plasma counter material using copper alloy-coated carbon material

Info

Publication number
JPH0881290A
JPH0881290A JP6215775A JP21577594A JPH0881290A JP H0881290 A JPH0881290 A JP H0881290A JP 6215775 A JP6215775 A JP 6215775A JP 21577594 A JP21577594 A JP 21577594A JP H0881290 A JPH0881290 A JP H0881290A
Authority
JP
Japan
Prior art keywords
copper alloy
carbon material
copper
grooves
coated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6215775A
Other languages
Japanese (ja)
Inventor
Yasuo Hyakki
康夫 百鬼
Yoshihiro Kikuchi
好洋 菊池
Takayuki Suzuki
孝幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP6215775A priority Critical patent/JPH0881290A/en
Publication of JPH0881290A publication Critical patent/JPH0881290A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To improve the surface strength of a plasma counter surface, prevent the complication of its mass-production process, prevent the release from the surface, and improve thermal impact resistance by melt-coating holes or grooves formed on a carbon material with a copper alloy. CONSTITUTION: The foil or plate-like article of a copper alloy comprising 98-60wt.% of copper and 2-40wt.% of titanium is arranged on circular grooves (c) 3, oval or polygonal holes or U-shaped grooves (a) 1 or V-shaped grooves 2 having a depth of >=0.5mm from the surface and a distance of >=2.0mm to the opposite side surface and formed in a carbon material such as an isotropic or anisotropic artificial graphite material or carbon/carbon composite material. A paste produced by adding an organic binder, a solvent, etc., to the powdery mixture of the above composition is coated on the grooves. The foil, plate-like article or the coating layer to the carbon material is heated at 900-1600 deg.C in vacuo or in an inert gas atmosphere to obtain the copper alloy-coated carbon material whose holes or grooves are covered with the copper alloy. The copper alloy-coated carbon material is subjected to a metallurgic adhesion to a cooling material comprising the metal or alloy of copper, molybdenum or tungsten on the surface of the copper alloy to obtain the plasma counter material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、穴または溝加工を施し
た面に、銅合金が被覆された炭素材料、特に核融合炉の
プラズマ対向材に好適な銅合金被覆炭素材料及びその製
造法並びに銅合金被覆材料を用いたプラズマ対向材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon material having a hole or groove processed surface coated with a copper alloy, particularly a copper alloy-coated carbon material suitable for a plasma facing material of a fusion reactor and a method for producing the same. And a plasma facing material using a copper alloy coating material.

【0002】[0002]

【従来の技術】炭素材料は優れた耐熱性及び化学安定性
を有することから、高温下で使用される各種の部材とし
て極めて有用である。この優れた特長を生かし、かつ冷
却効率の向上、機械的強度の補強等の目的から、炭素材
料と金属とを冶金的に接合した部材が、核融合装置のプ
ラズマ対向材、半導体製造装置等で要求されている。炭
素材料と金属の冶金的な接合の方法としては、炭素材料
と金属との間にろう材を介したろう付けが一般的に行わ
れている。
2. Description of the Related Art Carbon materials have excellent heat resistance and chemical stability and are therefore extremely useful as various members used at high temperatures. The metallurgically bonded member of carbon material and metal is used for the plasma facing material of the fusion device, the semiconductor manufacturing device, etc. for the purpose of utilizing this excellent feature, improving cooling efficiency, reinforcing mechanical strength, etc. Is required. As a method of metallurgically joining the carbon material and the metal, brazing with a brazing material between the carbon material and the metal is generally performed.

【0003】しかし、単なるろう付けの場合、炭素材料
と金属の熱膨張係数の相違から双方が剥離しやすい、炭
素材料表面に気孔が存在するため、接合の強度、信頼性
が低い等の問題がある。また、ろう材にチタン、クロム
等の活性金属を添加し、炭素材料と金属との界面に活性
金属の炭化物層を形成することが必要であるが、この金
属炭化物層の厚さを均一に制御する事が困難であること
から、接合強度の信頼性に問題があった。
However, in the case of mere brazing, there are problems that the carbon material and the metal are easily separated from each other due to the difference in thermal expansion coefficient, and the pores are present on the surface of the carbon material, so that the bonding strength and reliability are low. is there. In addition, it is necessary to add an active metal such as titanium or chromium to the brazing filler metal to form a carbide layer of the active metal at the interface between the carbon material and the metal. The thickness of this metal carbide layer should be controlled uniformly. Since it is difficult to do so, there was a problem in the reliability of the bonding strength.

【0004】このような問題を解決する手法として、例
えば特開昭62−130383号公報では、高融点低ス
パッタリング率材料(黒鉛等)と高熱伝導率金属(銅
等)とを、接合面の金属含有率がプラズマ面よりも高く
なるように加圧一体化し、熱膨張係数差を緩和して冷却
管と接合する方法を提案している。また特開平5−18
6276号公報では、表面が緻密で、内部が疎である炭
素繊維強化炭素複合材(C/C複合材)にHIP(ホッ
ト・アイソスタティック・プレス(熱間等方圧プレ
ス))により銅などの高熱伝導率材料を含浸し、銅組成
に傾斜機能性を持たせた接合用材料を提案している。さ
らに、特開昭63−310778号公報では、炭素材料
の接合面をメタライズした後、ニッケルなどの応力緩和
層を介して金属基材と接合する方法を提案している。
As a method for solving such a problem, for example, in Japanese Unexamined Patent Publication No. 62-130383, a high melting point, low sputtering rate material (graphite etc.) and a high thermal conductivity metal (copper etc.) are used. A method is proposed in which the content is integrated under pressure so that the content is higher than that of the plasma surface, and the difference in coefficient of thermal expansion is relaxed to join the cooling pipe. In addition, JP-A-5-18
In the 6276 publication, a carbon fiber reinforced carbon composite material (C / C composite material) having a dense surface and a sparse inside is made of copper or the like by HIP (hot isostatic press (hot isostatic press)). We have proposed a bonding material that is impregnated with a high thermal conductivity material and has a copper composition with gradient functionality. Further, Japanese Patent Laid-Open No. 63-310778 proposes a method of metalizing a bonding surface of a carbon material and then bonding the metal material to a metal base material via a stress relaxation layer such as nickel.

【0005】[0005]

【発明が解決しようとする課題】炭素材料の有する耐熱
性及び化学安定性を有効に利用する為には、接合面の反
対側の面には金属が含有されないことが必要である。特
開昭62−130383号公報に示される方法では、黒
鉛と金属とを加圧一体化するため、プラズマに対向する
面を黒鉛のみにした場合、黒鉛粒子同士の結合は弱いた
め、強固な表面を形成する事は出来ない。
In order to effectively utilize the heat resistance and chemical stability of the carbon material, it is necessary that the surface opposite to the joining surface contains no metal. In the method disclosed in Japanese Unexamined Patent Publication No. 62-130383, graphite and metal are pressure-integrated, so that when only the surface facing the plasma is made of graphite, the graphite particles are weakly bonded to each other, so that a strong surface is obtained. Cannot be formed.

【0006】また、特開平5−186276号公報に示
される方法では、加圧含浸による銅の浸入深さはC/C
複合材の気孔分布に依存する。このため、プラズマ対向
面に金属を全く含有せず、かつ接合面の銅含有量を充分
なものとするためには、気孔分布の厳密な制御が必要で
あり、そのようなC/C複合材の量産は困難であると考
えられる。
Further, in the method disclosed in Japanese Patent Laid-Open No. 5-186276, the depth of penetration of copper by pressure impregnation is C / C.
It depends on the pore distribution of the composite. Therefore, strict control of the pore distribution is necessary in order to make the plasma facing surface contain no metal at all and to make the copper content of the bonding surface sufficient. Mass production is considered to be difficult.

【0007】さらに、特開昭63−310778号公報
に示される方法では、応力緩和層を介して接合を行うた
め、2面の接合となり、接合の工程が複雑になる。ま
た、メタライズ層と炭素材料では熱膨張係数が異なるた
め、熱応力により、その界面から剥離が発生するおそれ
もある。
Further, in the method disclosed in Japanese Patent Laid-Open No. 63-310778, since the joining is performed via the stress relaxation layer, the joining is performed on two sides, which complicates the joining process. Further, since the metallized layer and the carbon material have different coefficients of thermal expansion, thermal stress may cause peeling from the interface.

【0008】[0008]

【課題を解決するための手段】本発明は、炭素材料に形
成された0.5mm以上の深さを有する穴または溝に、
900℃を越え、1600℃未満の温度で銅合金を溶融
させて被覆した銅合金被覆炭素材料及び銅合金又は溶融
後銅合金となる銅粉とチタン粉との混合物を炭素材料に
形成された穴または溝上に配置した後、真空中又は不活
性ガス雰囲気中で加熱、溶融して銅合金を被覆する銅合
金被覆炭素材料の製造法並びに上記の銅合金被覆炭素材
料を、銅合金の面で冷却体と冶金的に接合した核融合装
置のプラズマ対向材に関する。
The present invention provides a hole or groove formed in a carbon material, the hole or groove having a depth of 0.5 mm or more,
Copper alloy-coated carbon material obtained by melting and coating a copper alloy at a temperature higher than 900 ° C. and lower than 1600 ° C. and a hole formed in the carbon material with a mixture of copper powder and titanium powder to be a copper alloy or a copper alloy after melting. Alternatively, the method for producing a copper alloy-coated carbon material in which a copper alloy is coated by heating and melting in a vacuum or an inert gas atmosphere after placing on a groove, and cooling the above copper alloy-coated carbon material on the surface of the copper alloy The present invention relates to a plasma facing material of a fusion device which is metallurgically bonded to a body.

【0009】本発明において用いられる炭素材料は、一
般に知られている等方性や異方性の人造黒鉛材、C/C
複合材等であり、特に制限はないが、銅合金は炭素材料
に形成された穴、溝以外に、炭素材料の開気孔にも入り
込み接着強度を向上させるので、3%以上の開気孔率を
有する炭素材料を用いることが好ましい。
The carbon material used in the present invention is a generally known isotropic or anisotropic artificial graphite material, C / C.
Although it is a composite material and the like, there is no particular limitation, but since the copper alloy enters into the open pores of the carbon material in addition to the holes and grooves formed in the carbon material to improve the adhesive strength, an open porosity of 3% or more is required. It is preferable to use a carbon material having the same.

【0010】炭素材料の表面の穴または溝の深さ、形状
及び配置は接着強度、熱伝導率の向上、熱膨張係数差の
緩和等に大きく影響を及ぼす。表面からの穴または溝の
深さは0.5mm以上とされ、0.5mm未満であると、こ
れらの効果があまり得られない。なお穴または溝の深さ
は、1.0〜2.0mmの範囲であれば効果は大きくなる
ためより好ましく、2.0mm以上の深さであればこれら
の特性が大幅に改善されるため、特に好ましい。なお、
穴または溝の深さは最大でも、銅合金で被覆した際に反
対側の面にしみ出さない深さまでであることが好まし
い。より好ましくは、銅合金が浸入した位置と反対側面
までの間隔が2.0mm以上あることが望ましい。なお、
本発明でいう銅合金の浸入深さは軟X線透過写真、断面
のEPMA(エレクトロン・プローブ・マイクロ・アナ
リシス)分析等の手法により銅合金の存在が確認される
深さをいう。
The depth, shape and arrangement of the holes or grooves on the surface of the carbon material have a great influence on the adhesion strength, the improvement of the thermal conductivity and the relaxation of the difference in the coefficient of thermal expansion. The depth of the hole or groove from the surface is set to 0.5 mm or more, and if it is less than 0.5 mm, these effects cannot be obtained so much. The depth of the hole or groove is more preferable if the depth is in the range of 1.0 to 2.0 mm because the effect is large, and if the depth is 2.0 mm or more, these characteristics are significantly improved. Particularly preferred. In addition,
It is preferable that the depth of the hole or groove is at most the depth that does not exude to the opposite surface when coated with the copper alloy. More preferably, the distance between the position where the copper alloy has penetrated and the opposite side surface is 2.0 mm or more. In addition,
The penetration depth of the copper alloy in the present invention refers to the depth at which the presence of the copper alloy is confirmed by a technique such as a soft X-ray transmission photograph and an EPMA (electron probe micro analysis) analysis of a cross section.

【0011】穴または溝の形状及び配置は特に制限はな
く、穴の形状は円形、楕円形、三角形、四角形、多角形
等いずれでもよく、溝の形状も丸底溝(U字型等)、角
底溝、V字型等のいずれでも良い。穴または溝の配置
は、一方向に平行に並べる配置、ます目状の配置、多方
向を向いた配置等のいずれでもよく、また、直線状だけ
ではなく、折れ線、円、らせん状、曲線状等の配置でも
良い。穴または溝の数は多くなるに従い熱伝導率の向上
の効果は大きくなるが、あまり多くなりすぎると接着強
度の向上及び熱膨張率差の緩和の効果が小さくなる。こ
のためバランス良く効果を上げるためには、穴または溝
の面積の割合は、炭素材料に対して20〜80%の範囲
が好ましい。
The shape and arrangement of the holes or grooves are not particularly limited, and the shape of the holes may be any of circle, ellipse, triangle, quadrangle, polygon, etc. The shape of the groove is a round bottom groove (U-shaped etc.), Either a square bottom groove or a V-shape may be used. The holes or grooves may be arranged in parallel in one direction, in a grid pattern, in multiple directions, etc. Also, not only straight lines but also polygonal lines, circles, spirals, and curved lines It may be arranged such as. As the number of holes or grooves increases, the effect of improving the thermal conductivity increases, but if the number of holes or grooves increases too much, the effects of improving the adhesive strength and relaxing the difference in thermal expansion coefficient decrease. Therefore, in order to improve the effect in a well-balanced manner, the area ratio of the holes or grooves is preferably in the range of 20 to 80% with respect to the carbon material.

【0012】本発明でいう銅合金とは、銅とチタンから
成る合金をいう。銅を使用するのは、高い熱伝導率、比
較的低温で溶融可能、低価格性等の理由からであると同
時に、一般に冷却体には銅が使用されるため、冷却体と
の接合が容易になる利点もある。ただし、銅単体を溶融
させても、炭素材料とは濡れないため、濡れ性を改善す
る活性な金属を添加する必要がある。そのため本発明で
は添加金属に、炭素材料と反応して炭化物を形成するチ
タンを使用する。
The copper alloy in the present invention means an alloy composed of copper and titanium. Copper is used because it has high thermal conductivity, can be melted at a relatively low temperature, and is low in price. At the same time, copper is generally used for the cooling body, so it can be easily joined to the cooling body. There is also an advantage. However, even if the simple substance of copper is melted, it does not wet with the carbon material, so it is necessary to add an active metal that improves wettability. Therefore, in the present invention, titanium that reacts with the carbon material to form a carbide is used as the additive metal.

【0013】銅合金の重量組成は濡れ性改善の効果、合
金の浸入の容易さ、銅の熱伝導率、耐熱衝撃性等の点で
銅が98〜60重量%及びチタンが2〜40重量%の範
囲であることが好ましい。さらに好ましい組成の範囲
は、銅が96〜70重量%、チタンが4〜30重量%で
ある。
The weight composition of the copper alloy is 98-60% by weight of copper and 2-40% by weight of titanium in terms of the effect of improving the wettability, the ease of infiltration of the alloy, the thermal conductivity of copper, the thermal shock resistance and the like. It is preferably in the range of. A more preferable composition range is 96 to 70% by weight of copper and 4 to 30% by weight of titanium.

【0014】銅合金の炭素材料への被覆は、上述した組
成を有する箔または板状の銅合金を炭素材料上に配置し
加熱、溶融するかあるいは上述した組成となるよう配合
した溶融後銅合金となる銅粉とチタン粉との混合物を炭
素材料上に配置し加熱、溶融する、といういずれかの方
法で行う。なお、混合物を用いる方法では、混合物の形
態は単に銅粉とチタン粉との混合粉でも良いが、これら
の混合粉に有機バインダー、溶剤等を加えてペースト状
にし、これを炭素材料上に塗布して加熱、溶融する手法
を用いると、より均一な被覆が可能となるので好まし
い。
The coating of the copper alloy with the carbon material is carried out by arranging a foil or plate-shaped copper alloy having the above-mentioned composition on the carbon material and heating or melting it, or mixing the copper alloy after the melting so as to have the above-mentioned composition. A mixture of copper powder and titanium powder to be placed on the carbon material is heated and melted. In the method using the mixture, the form of the mixture may simply be a mixed powder of copper powder and titanium powder, but an organic binder, a solvent or the like is added to these mixed powders to form a paste, which is applied onto a carbon material. It is preferable to use a method of heating and melting after that, because more uniform coating is possible.

【0015】ペースト状にしたものを用いる手法におい
て、有機バインダーには、公知の熱硬化性樹脂、熱可塑
性樹脂等が用いられ、特に制限はないが、炭化率が高い
ものほど、熱処理後の銅合金中に残留する炭素が多くな
るため、アクリル樹脂、エポキシ樹脂、ポリビニルアル
コール、メチルセルロース等の低炭化率のバインダーを
用いることが好ましい。
In the method using a paste, a known thermosetting resin, thermoplastic resin, or the like is used as the organic binder, and there is no particular limitation, but the higher the carbonization rate, the higher the copper after heat treatment. Since a large amount of carbon remains in the alloy, it is preferable to use a binder having a low carbonization rate such as acrylic resin, epoxy resin, polyvinyl alcohol, and methyl cellulose.

【0016】また溶剤は、ペーストの安定性及び作業性
から好ましい沸点の範囲は100〜200℃程度であ
り、エチレングリコール、ブタノール等の有機溶剤また
は水を有機バインダーとの相溶性を考えて選択して用い
ることが好ましい。
The solvent preferably has a boiling point range of about 100 to 200 ° C. from the stability and workability of the paste, and an organic solvent such as ethylene glycol or butanol or water is selected in consideration of the compatibility with the organic binder. It is preferable to use.

【0017】銅合金または銅粉とチタン粉との混合物を
炭素材料上に配置し、加熱、溶融して、炭素材料を被覆
するための加熱温度(溶融温度)は、900℃を越え、
1600℃未満の温度とされ、900℃未満であると銅
合金が溶融しない、このため950℃以上が好ましく、
1050℃以上であればより好ましい。一方1600℃
以上であると蒸発により組成が変化するおそれがある。
The heating temperature (melting temperature) for coating the carbon material by placing a copper alloy or a mixture of copper powder and titanium powder on the carbon material, heating and melting, exceeds 900 ° C.,
The temperature is lower than 1600 ° C, and the temperature lower than 900 ° C does not melt the copper alloy. Therefore, 950 ° C or higher is preferable,
More preferably, it is 1050 ° C or higher. Meanwhile, 1600 ° C
If it is above, the composition may change due to evaporation.

【0018】銅、チタン及び炭素材料は酸素と反応しや
すいため、加熱、溶融の雰囲気には酸素がないことが必
要である。また、チタンは窒素とも反応する。このよう
な理由から、加熱、溶融は真空中又は不活性ガス雰囲気
で行う。真空で加熱、溶融を行う場合には、酸化防止の
ため、その真空度は最低でも1Paよりも高真空である
ことが好ましく、1×10-1Paより高真空であればよ
り好ましい。
Since copper, titanium and carbon materials easily react with oxygen, it is necessary that the atmosphere for heating and melting is free of oxygen. Titanium also reacts with nitrogen. For this reason, heating and melting are performed in vacuum or in an inert gas atmosphere. When heating and melting in a vacuum, the degree of vacuum is preferably at least higher than 1 Pa, and more preferably higher than 1 × 10 −1 Pa, in order to prevent oxidation.

【0019】雰囲気が不活性ガスの場合には、酸素の含
有量の少ない高純度のガスを用い、例えば酸素不純物が
20ppm以下のガスを用いることが好ましい。ただし、
窒素ガスはチタンと反応するため、アルゴン、ヘリウム
等窒素ガス以外の不活性ガスを用いることが必要であ
る。
When the atmosphere is an inert gas, it is preferable to use a high-purity gas having a low oxygen content, for example, a gas having oxygen impurities of 20 ppm or less. However,
Since nitrogen gas reacts with titanium, it is necessary to use an inert gas other than nitrogen gas, such as argon and helium.

【0020】炭素材料に形成された穴または溝に銅合金
を被覆した銅合金被覆炭素材料を、銅合金の面で冷却体
と冶金的に接合することにより、接合強度及びその信頼
性が高い核融合装置のプラズマ対向材料とすることがで
きる。
A copper alloy-coated carbon material in which a hole or groove formed in the carbon material is coated with a copper alloy is metallurgically bonded to the cooling body on the copper alloy surface, thereby providing a nucleus having high bonding strength and reliability. It can be the plasma facing material of the fusion device.

【0021】本発明において冷却体とは、銅、モリブデ
ン、タングステン、鉄、チタン等の金属又はこれらの合
金のことを指し、表面に接合した銅合金溶浸炭素材料を
冷却する働きをするものをいう。その構造は、冷却効率
を高めるため、ガス、水等の液体により冷却を行うこと
が可能な構造を有するものが望ましく、例えばブロック
状又は板状の冷却体に冷媒を流通させるための貫通孔が
設けられている構造、冷却体に冷媒の流通する管を接合
した構造等のものを用いることが好ましい。
In the present invention, the cooling body means a metal such as copper, molybdenum, tungsten, iron or titanium or an alloy thereof, which has a function of cooling the copper alloy infiltrated carbon material bonded to the surface. Say. The structure preferably has a structure capable of cooling with a liquid such as gas or water in order to enhance cooling efficiency, and for example, a through hole for circulating a refrigerant in a block-shaped or plate-shaped cooling body is provided. It is preferable to use a structure provided, a structure in which a pipe through which a refrigerant flows is joined to a cooling body, or the like.

【0022】また冶金的な接合とは、ろう付けによる接
合、拡散接合等を意味し、本発明においては比較的低温
で接合が可能な、ろう付けによる接合が好ましい。ろう
付けにはAg、Ag−Cu、Pd、Pd−Ag、Pd−
Ag−Cu、Ni、Mn、Ni−Cu、Cu−Mn、A
g−Cu−In、Ag−Cu−Sn等のろう材が用いら
れる。なお上記のろう材にTi、Zr、Hf、Be、
W、V、Nb、Ta等の活性金属を添加したものを用い
ればろう材の濡れ性が向上するので好ましい。ろう付の
条件は、用いるろう材により適宜選定する。
The metallurgical joining means joining by brazing, diffusion joining and the like, and in the present invention, joining by brazing, which enables joining at a relatively low temperature, is preferable. For brazing, Ag, Ag-Cu, Pd, Pd-Ag, Pd-
Ag-Cu, Ni, Mn, Ni-Cu, Cu-Mn, A
A brazing material such as g-Cu-In or Ag-Cu-Sn is used. In addition, Ti, Zr, Hf, Be,
It is preferable to use a material to which an active metal such as W, V, Nb or Ta is added, since the wettability of the brazing material is improved. The brazing conditions are appropriately selected according to the brazing material used.

【0023】[0023]

【作用】本発明になる銅合金被覆炭素材料は、炭素材料
の表面に銅合金が被覆される以外に該炭素材料に形成さ
れた穴または溝に銅合金が浸入するため、接着面積が増
加し、かつ銅合金が炭素材料中に根を生やしたような構
造となる。この構造により接着強度は向上する。また、
このような構造により熱応力が緩和され、さらに熱伝導
率も向上するため耐熱衝撃性に優れる。なお、金属冷却
体との接合は、金属面どうしの接合となるため、従来の
炭素−金属の接合に比べ、接合強度、信頼性が高い。
The function of the copper alloy-coated carbon material according to the present invention is that the surface of the carbon material is coated with the copper alloy and the copper alloy penetrates into the holes or grooves formed in the carbon material. In addition, the structure is such that the copper alloy grows roots in the carbon material. This structure improves the adhesive strength. Also,
With such a structure, thermal stress is relieved and thermal conductivity is also improved, so that thermal shock resistance is excellent. Since the joining with the metal cooling body is joining between the metal surfaces, the joining strength and reliability are higher than those of the conventional carbon-metal joining.

【0024】[0024]

【実施例】次に本発明の実施例を説明する。 実施例1〜9及び比較例1〜6 25×25×25mmの寸法に加工したC/C複合材(日
立化成工業製、商品名PCC−2S、開気孔率8%)を
基材として使用し、また溶融後銅合金となる銅粉(日鉱
シーエスケミカル製、電解銅粉)とチタン粉(和光純薬
製、平均粒径250μm)との混合粉は、表1に示す配
合割合で混合したものを使用した。穴または溝加工は、
図1の(a)に示すようにU字型の溝(幅1.5mm)1
を加工したものをタイプA、図1の(b)に示すように
V字型の溝(幅1.5mm)2を加工したものをタイプB
及び図1の(c)に示すように穴加工として円穴(直径
1.5mm)3を加工したものをタイプCとした。
EXAMPLES Examples of the present invention will be described below. Examples 1 to 9 and Comparative Examples 1 to 6 C / C composite material (manufactured by Hitachi Chemical Co., Ltd., trade name PCC-2S, open porosity 8%) processed into dimensions of 25 × 25 × 25 mm was used as a base material. Further, the mixed powder of copper powder (Nikko CCS Chemical, electrolytic copper powder) and titanium powder (Wako Pure Chemical Industries, average particle size 250 μm), which become a copper alloy after melting, is mixed in the mixing ratio shown in Table 1. It was used. For hole or groove processing,
U-shaped groove (width 1.5mm) 1 as shown in Fig. 1 (a)
Is processed into type A, and as shown in FIG. 1 (b), a V-shaped groove (width 1.5 mm) 2 is processed into type B
Further, as shown in FIG. 1 (c), a hole having a circular hole (diameter of 1.5 mm) 3 was machined as a type C.

【0025】次に上記の混合粉60重量%にアルキド樹
脂(日立化成工業製、商品名V901)を30重量%及
びブタノール(和光純薬製、試薬一級)を10重量%添
加、混合してペースト化したものをそれぞれ基材上に配
置(塗布)した後、1×10-1Paの真空雰囲気中で、
それぞれ表1に示す温度に加熱し、1時間保持して銅合
金被覆炭素材料を得た。
Next, to 60% by weight of the above mixed powder, 30% by weight of alkyd resin (Hitachi Chemical Co., Ltd., trade name V901) and 10% by weight of butanol (Wako Pure Chemical Industries, reagent first grade) were added and mixed to form a paste. After arranging (applying) the converted products on the substrate, respectively, in a vacuum atmosphere of 1 × 10 −1 Pa,
Each was heated to the temperature shown in Table 1 and held for 1 hour to obtain a copper alloy-coated carbon material.

【0026】得られた銅合金被覆炭素材料に銅のブロッ
クを銀ろう付し、引張り試験による接合強度を求めた。
その結果を表1に示す。但し上記試験において、比較例
5は銅合金を被覆しないで銅のブロックを銀ろう付した
ものについて接合強度を測定し、また比較例6は基材単
体の強度を測定した。
A copper block was silver-brazed to the obtained copper alloy-coated carbon material, and the joint strength was determined by a tensile test.
The results are shown in Table 1. However, in the above test, in Comparative Example 5, the bonding strength was measured for a copper block which was not brazed with a copper alloy and was brazed with silver, and in Comparative Example 6, the strength of a single substrate was measured.

【0027】さらに、上記の実施例及び比較例で得られ
た銅合金被覆炭素材料の代表的なもの並びに比較例5の
銅合金を被覆しない炭素材料について真空中で電子ビー
ムを照射する耐熱衝撃試験を行った。電子ビームの照射
エネルギーは(1)10MW/m2及び(2)15MW/m2であ
り、照射時間はそれぞれ1秒間、照射は最大5回まで行
った。それぞれの照射を行ったときの、剥離するまでの
照射回数を表3に示す。
Further, a thermal shock test of irradiating an electron beam in a vacuum on the typical copper alloy-coated carbon materials obtained in the above-mentioned Examples and Comparative Examples and the carbon material not coated with the copper alloy of Comparative Example 5 I went. The irradiation energy of the electron beam was (1) 10 MW / m 2 and (2) 15 MW / m 2 , the irradiation time was 1 second, and the irradiation was performed up to 5 times. Table 3 shows the number of irradiations until peeling after each irradiation.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例10〜16及び比較例7〜10 25×25×25mmの寸法に加工した等方性黒鉛材(日
立化成工業製、商品名PD−600、開気孔率12%)
を基材として使用し、また溶融後銅合金となる銅粉とチ
タン粉との混合粉(いずれも実施例1〜9で用いたもの
と同様の粉末使用)は、表2に示す配合割合で混合した
ものを使用した。溝加工は、図2の(a)に示すように
U字型の溝(幅1mm)を3本加工したものをタイプD、
図2の(b)に示すようにU字型の溝(幅1mm)を6本
加工したものをタイプE及び図2の(c)に示すように
U字型の溝(幅1mm)を縦、横に10本加工したものを
タイプFとした。
Examples 10 to 16 and Comparative Examples 7 to 10 Isotropic graphite material processed to a size of 25 × 25 × 25 mm (Hitachi Chemical Co., Ltd., trade name PD-600, open porosity 12%).
Is used as a base material, and a mixed powder of copper powder and titanium powder that becomes a copper alloy after melting (all using the same powder as that used in Examples 1 to 9) has a mixing ratio shown in Table 2. A mixture was used. Grooving is performed by machining three U-shaped grooves (width 1 mm) as shown in FIG.
As shown in Fig. 2 (b), 6 pieces of U-shaped groove (width 1mm) were machined to form type E and U-shaped groove (width 1mm) as shown in Fig. 2 (c). , Type 10 was processed laterally.

【0030】次に上記の混合粉65重量%にポリビニル
アルコール(和光純薬製、重合度1500)を20重量
%及び水を15重量%添加、混合してペースト化したも
のをそれぞれ基材上に配置(塗布)した後、アルゴンガ
ス(酸素及び窒素不純物を各々10ppm以下)雰囲気中
で、それぞれ表2に示す温度に加熱し、1時間保持して
銅合金被覆炭素材料を得た。
Next, 20% by weight of polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, degree of polymerization 1500) and 15% by weight of water were added to 65% by weight of the above mixed powder and mixed to form a paste. After the arrangement (coating), each was heated to a temperature shown in Table 2 in an argon gas atmosphere (oxygen and nitrogen impurities were 10 ppm or less) and held for 1 hour to obtain a copper alloy-coated carbon material.

【0031】得られた銅合金被覆炭素材料に銅のブロッ
クを銀ろう付し、実施例1〜9と同様の方法で接合強度
を求めた。その結果を表2に示す。但し上記試験におい
て、比較例9は銅合金を被覆しないで銅のブロックを銀
ろう付したものについて接合強度を測定し、また比較例
10は基材単体の強度を測定した。
A copper block was silver brazed to the obtained copper alloy-coated carbon material, and the bonding strength was determined by the same method as in Examples 1-9. The results are shown in Table 2. However, in the above test, in Comparative Example 9, the joint strength was measured for a copper block which was not brazed with a copper alloy and was brazed with silver, and in Comparative Example 10, the strength of a single substrate was measured.

【0032】さらに、上記の実施例及び比較例で得られ
た銅合金被覆炭素材料の代表的なもの並びに比較例9の
銅合金を被覆しない炭素材料について真空中で電子ビー
ムを照射する耐熱衝撃試験を行った。電子ビームの照射
エネルギーは(1)5MW/m2及び(2)10MW/m2(実施
例13のみ15MW/m2まで追加)であり、照射時間はそ
れぞれ1秒間、照射は最大5回まで行った。それぞれの
照射を行ったときの、剥離するまでの照射回数を表3に
示す。
Further, the typical copper alloy-coated carbon materials obtained in the above-mentioned Examples and Comparative Examples and the carbon material of Comparative Example 9 not coated with the copper alloy were subjected to a thermal shock test of irradiating them with an electron beam in a vacuum. I went. The irradiation energy of the electron beam was (1) 5 MW / m 2 and (2) 10 MW / m 2 (only Example 13 was added up to 15 MW / m 2 ), irradiation time was 1 second, and irradiation was performed up to 5 times. It was Table 3 shows the number of irradiations until peeling after each irradiation.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】表1、表2及び表3に示されるように本発
明の実施例になる銅合金被覆炭素材料は、比較例になる
銅合金被覆炭素材料及び銅合金を被覆しない炭素材料に
比較し、接合強度及び耐熱衝撃性に優れることが示され
る。
As shown in Table 1, Table 2 and Table 3, the copper alloy-coated carbon materials according to the examples of the present invention were compared with the copper alloy-coated carbon materials according to the comparative examples and the carbon materials without copper alloy coating. It is shown that the bonding strength and thermal shock resistance are excellent.

【0036】[0036]

【発明の効果】本発明によれば、金属との接合強度及び
耐熱衝撃性に優れた銅合金被覆炭素材料及びその製造法
並びに該銅合金被覆炭素材料を用いたプラズマ対向材を
提供することができる。
According to the present invention, it is possible to provide a copper alloy-coated carbon material having excellent bonding strength with metal and thermal shock resistance, a method for producing the same, and a plasma facing material using the copper alloy-coated carbon material. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)、(b)及び(c)は本発明の一実施例
になる炭素材料に溝及び穴加工した状態を示す斜視図で
ある。
1A, 1B and 1C are perspective views showing a state in which a groove and a hole are formed in a carbon material according to an embodiment of the present invention.

【図2】(a)、(b)及び(c)は本発明の他の実施
例になる炭素材料に溝加工した状態を示す斜視図であ
る。
2 (a), (b) and (c) are perspective views showing a state in which a carbon material according to another embodiment of the present invention is grooved.

【符号の説明】[Explanation of symbols]

1 U字型の溝 2 V字型の溝 3 円穴 1 U-shaped groove 2 V-shaped groove 3 Circular hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料に形成された0.5mm以上の
深さを有する穴または溝に、900℃を越え、1600
℃未満の温度で銅合金を溶融させて被覆した銅合金被覆
炭素材料。
1. A hole or groove formed in a carbon material and having a depth of 0.5 mm or more exceeds 900 ° C. and 1600.
A copper alloy-coated carbon material obtained by melting and coating a copper alloy at a temperature of less than ℃.
【請求項2】 銅合金または溶融後銅合金となる銅粉と
チタン粉との混合物を炭素材料に形成された穴または溝
上に配置した後、真空中または不活性ガス雰囲気中で加
熱、溶融して銅合金を被覆することを特徴とする銅合金
被覆炭素材料の製造法。
2. A copper alloy or a mixture of copper powder and titanium powder to be a copper alloy after melting is placed on a hole or groove formed in a carbon material, and then heated and melted in a vacuum or in an inert gas atmosphere. A method for producing a copper alloy-coated carbon material, which comprises coating a copper alloy with a copper alloy.
【請求項3】 請求項1記載の銅合金被覆炭素材料を、
銅合金の面で冷却体と冶金的に接合した核融合装置のプ
ラズマ対向材。
3. The copper alloy-coated carbon material according to claim 1,
A plasma facing material for a fusion device that is metallurgically bonded to a cooling body on the surface of a copper alloy.
JP6215775A 1994-09-09 1994-09-09 Copper alloy-coated carbon material and its production and plasma counter material using copper alloy-coated carbon material Pending JPH0881290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6215775A JPH0881290A (en) 1994-09-09 1994-09-09 Copper alloy-coated carbon material and its production and plasma counter material using copper alloy-coated carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6215775A JPH0881290A (en) 1994-09-09 1994-09-09 Copper alloy-coated carbon material and its production and plasma counter material using copper alloy-coated carbon material

Publications (1)

Publication Number Publication Date
JPH0881290A true JPH0881290A (en) 1996-03-26

Family

ID=16678029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6215775A Pending JPH0881290A (en) 1994-09-09 1994-09-09 Copper alloy-coated carbon material and its production and plasma counter material using copper alloy-coated carbon material

Country Status (1)

Country Link
JP (1) JPH0881290A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338378A (en) * 2001-05-10 2002-11-27 Mitsuba Corp Carbon base material and method of manufacturing for the same
JP2005187315A (en) * 2003-10-17 2005-07-14 Eads Space Transportation Gmbh Method for brazing ceramic surface
JP2008507465A (en) * 2004-07-20 2008-03-13 エンテ ペル レ ヌオベ テクノロジィ、レネルジア エ ラムビエンテ(エネア) Joining process for ceramic and metallic materials with transition materials
JP2008533492A (en) * 2005-03-22 2008-08-21 プランゼー エスエー First wall component for fusion reactors
JP2009148833A (en) * 2001-05-03 2009-07-09 Alfa Laval Corporate Ab Method of brazing thin heat exchanging plates and brazed plate heat exchanger produced by the method
CN115070045A (en) * 2022-08-22 2022-09-20 有研工程技术研究院有限公司 Ultrahigh-thermal-conductivity graphite-copper composite material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148833A (en) * 2001-05-03 2009-07-09 Alfa Laval Corporate Ab Method of brazing thin heat exchanging plates and brazed plate heat exchanger produced by the method
JP2002338378A (en) * 2001-05-10 2002-11-27 Mitsuba Corp Carbon base material and method of manufacturing for the same
JP4718718B2 (en) * 2001-05-10 2011-07-06 株式会社ミツバ Carbon substrate manufacturing method
JP2005187315A (en) * 2003-10-17 2005-07-14 Eads Space Transportation Gmbh Method for brazing ceramic surface
JP2008507465A (en) * 2004-07-20 2008-03-13 エンテ ペル レ ヌオベ テクノロジィ、レネルジア エ ラムビエンテ(エネア) Joining process for ceramic and metallic materials with transition materials
JP2008533492A (en) * 2005-03-22 2008-08-21 プランゼー エスエー First wall component for fusion reactors
CN115070045A (en) * 2022-08-22 2022-09-20 有研工程技术研究院有限公司 Ultrahigh-thermal-conductivity graphite-copper composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
US5874175A (en) Ceramic composite
US6413589B1 (en) Ceramic coating method
JP5082845B2 (en) High thermal conductivity graphite particle dispersed composite and method for producing the same
US5392982A (en) Ceramic bonding method
US7128980B2 (en) Composite component for fusion reactors
KR101534478B1 (en) Highly thermally conductive composite material
US5230924A (en) Metallized coatings on ceramics for high-temperature uses
Halbig et al. Diffusion bonding of SiC fiber-bonded ceramics using Ti/Mo and Ti/Cu interlayers
KR19990028330A (en) Coating methods, methods of making ceramic metal structures, bonding methods and structures formed therefrom
EP3052266A1 (en) Brazing joining method of cnt assemblies on substrates using an at least ternary brazing alloy; corresponding brazing material and device comprising such assembly
JPS60131874A (en) Method of bonding ceramic and metal
CN104884411A (en) Bonded material and method for producing same
JP5764506B2 (en) Ceramic porous body-metal heat insulating material and manufacturing method thereof
Li et al. Microstructure characteristic and its influence on the strength of SiC ceramic joints diffusion bonded by spark plasma sintering
JP2000203973A (en) Carbon-base metal composite material and its production
EP3557955A1 (en) Process for preparing a target for the generation of radioactive isotope
JP3987201B2 (en) Manufacturing method of joined body
JP5295129B2 (en) Method for refractory assembly of carbon material and copper alloy
JPH0881290A (en) Copper alloy-coated carbon material and its production and plasma counter material using copper alloy-coated carbon material
EP0160301B1 (en) Method of bonding ceramic article
CN114029573A (en) Preparation method of ultrathin soft soldering modified layer on surface of graphene film
JP2011067915A (en) Composite material, method for manufacturing composite material, and joint product using composite material
JPH09118575A (en) Carbon material coated with copper alloy, its production and counter plasma material
CN113614266B (en) Composite material
JPH0859376A (en) Copper alloy infiltrated carbon material, its production and confronting plasma material using the same