JP2000203973A - Carbon-base metal composite material and its production - Google Patents

Carbon-base metal composite material and its production

Info

Publication number
JP2000203973A
JP2000203973A JP11321828A JP32182899A JP2000203973A JP 2000203973 A JP2000203973 A JP 2000203973A JP 11321828 A JP11321828 A JP 11321828A JP 32182899 A JP32182899 A JP 32182899A JP 2000203973 A JP2000203973 A JP 2000203973A
Authority
JP
Japan
Prior art keywords
carbon
metal
composite
metal composite
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11321828A
Other languages
Japanese (ja)
Other versions
JP3673436B2 (en
Inventor
Noriaki Kawamura
憲明 川村
Eiki Tsushima
栄樹 津島
Nobuyuki Suzuki
信幸 鈴木
Original Assignee
Sentan Zairyo:Kk
株式会社先端材料
Am Technology:Kk
株式会社エー・エム・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP32102198 priority Critical
Priority to JP10-321021 priority
Application filed by Sentan Zairyo:Kk, 株式会社先端材料, Am Technology:Kk, 株式会社エー・エム・テクノロジー filed Critical Sentan Zairyo:Kk
Priority to JP32182899A priority patent/JP3673436B2/en
Publication of JP2000203973A publication Critical patent/JP2000203973A/en
Application granted granted Critical
Publication of JP3673436B2 publication Critical patent/JP3673436B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve defects of a carbon material such as brittleness, insufficient strength, easy oxidizability, inferior scuffing resistance and low surface workability and to obtain a carbon material having an enhanced heat conductivity and a coefficient of thermal expansion adjusted according to the purpose of use. SOLUTION: A molten metal is pressurized and impregnated into a carbon molding with the pressing member of a pressure device to produce the objective carbon-base metal composite material. The temperature of the molten metal is higher than the melting point of the metal by 50-250 deg.C and pressure applied to the molten metal is >=200 kg/cm2 per unit cross-sectional area of the pressing member. The carbon-base metal composite material consists of a carbonaceous matrix and the metal dispersed in the matrix, >=90 vol.% of the pores in the matrix have been substituted by the metal and the metal content of the composite material is <=35% of the total volume.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、炭素基金属複合材
料およびその製造方法に関するものであり、更に詳しく
は、半導体のパッケージ用の高熱伝導率で低熱膨張率の
基板、比強度・比剛性の高い宇宙航空機器用構造材料、
一般産業用構造材料、ガスタービン等の耐熱材料、また
は摺動特性の良い電気接点材料等、特に、電子機器用基
板状成形体の提供に有用な炭素質金属複合材料および炭
素成形体への金属成分の加圧含浸による炭素基金属複合
材料の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-based metal composite material and a method for producing the same, and more particularly, to a substrate having a high thermal conductivity and a low thermal expansion coefficient for a semiconductor package, and a substrate having a specific strength and a specific rigidity. High structural materials for aerospace equipment,
Structural materials for general industry, heat-resistant materials such as gas turbines, or electrical contact materials with good sliding properties, especially carbonaceous metal composite materials useful for providing substrate-like molded products for electronic equipment and metals for carbon molded products The present invention relates to a method for producing a carbon-based metal composite material by pressure impregnation of components.
【0002】[0002]
【従来の技術】従来、炭素材料を含む金属複合材料は、
金属成分マトリックスに炭素粒子または炭素繊維を強化
材料として分散、配列することにより製造されている。
また、黒鉛粉と金属粉から粉末治金法による製造方法も
採用されている。これらは、いずれも母材となる金属成
分の特性を炭素材料により改善する目的で製造されてい
る金属基炭素複合材料と呼ばれるものであり、炭素材料
の体積比率が金属成分のそれを大きく上回るものは実現
されていないためその性能には自ずから限界があった。
2. Description of the Related Art Conventionally, a metal composite material containing a carbon material has been
It is manufactured by dispersing and arranging carbon particles or carbon fibers as a reinforcing material in a metal component matrix.
In addition, a production method by a powder metallurgy method from graphite powder and metal powder is also employed. All of these are called metal-based carbon composite materials that are manufactured for the purpose of improving the properties of the metal component serving as the base material with the carbon material, and the volume ratio of the carbon material greatly exceeds that of the metal component. Has not been realized, so its performance was naturally limited.
【0003】一方、炭素材料は、耐熱性に優れ、加工し
やすいため広く用いられているが、脆い、強度が低い、
傷つきやすい、耐酸化性がない、メッキがし難い、熱伝
導率が低い等改善すべき点も多い、この理由のひとつ
に、特殊な炭素材料を除き、炭素材料には気孔が存在す
るため、炭素材料が本来持っている電気・熱・化学的な
機能性を十分発揮できないという点が挙げられる。
On the other hand, carbon materials are widely used because they have excellent heat resistance and are easy to process, but are brittle, have low strength,
There are many points that need to be improved, such as being easily damaged, not having oxidation resistance, being difficult to plate, and having low thermal conductivity.One of the reasons is that, except for special carbon materials, carbon materials have pores, The point is that the electrical, thermal and chemical functions inherent to carbon materials cannot be fully exhibited.
【0004】そこで、炭素材料の気孔に金属材料を充填
することにより炭素材料と金属材料とを複合化し、その
特性を改善することが試みられてきた。例えば、炭素材
料の電気的特性を改善するために気孔の一部を溶融状態
の銅または銅合金、銀で置換したものが提案されてい
る。しかしながら、気孔の大部分をそれらの金属で置換
できたものが得られず、性能としては不十分なものであ
った。
[0004] Therefore, attempts have been made to improve the characteristics of the carbon material by filling the pores of the carbon material with a metal material to form a composite of the carbon material and the metal material. For example, it has been proposed to replace some of the pores with molten copper, copper alloy, or silver in order to improve the electrical characteristics of carbon materials. However, a material in which most of the pores could be replaced with these metals was not obtained, and the performance was insufficient.
【0005】一般に、炭素材料と溶融金属は濡れ性が悪
く、従来からの検討においては炭素材料の気孔に溶融金
属成分を含浸させることはほとんど不可能であった。特
にアルミニウム含浸においては、高温では濡れ性が改善
されるものの高温条件下で鋳込み含浸をすると炭素成分
と金属成分とが反応し、その結果、炭素材料が劣化し金
属基炭素複合材料が得られないという問題があった。
In general, the wettability between a carbon material and a molten metal is poor, and it has been almost impossible to impregnate pores of the carbon material with a molten metal component in conventional studies. In particular, in the case of aluminum impregnation, the wettability is improved at high temperatures, but when cast and impregnated under high temperature conditions, the carbon component and the metal component react with each other, and as a result, the carbon material deteriorates and a metal-based carbon composite material cannot be obtained. There was a problem.
【0006】すなわち、炭素材料への金属成分の含浸に
よる複合化には従来から提案されている条件および操作
による製造方法では、炭素成分と金属成分との界面にお
いて反応が生じ、潮解性のある炭化アルミニウムが生成
することにより炭素基アルミニウム複合材料は現実に開
発されていなかった。
[0006] That is, in a composite method of impregnating a carbon material with a metal component, a reaction is generated at the interface between the carbon component and the metal component by the conventionally proposed manufacturing method under conditions and operations, and carbonization with deliquescent occurs. Due to the formation of aluminum, carbon-based aluminum composite materials have not been actually developed.
【0007】このような金属・炭素複合材料の技術開発
の状況下において、電子装置の高機能化、大容量化に伴
ない熱の発生が増加しており、熱除去に有効な高熱伝導
性で熱膨張率の小さい材料として炭素成分量が高割合で
強度にも優れた炭素基金属複合材料が着目され、その開
発が切望されるに至っている。
[0007] Under the circumstances of the technical development of such a metal / carbon composite material, the generation of heat is increasing as the functions and the capacity of the electronic device are increased, and the high heat conductivity effective for heat removal is obtained. As a material having a small coefficient of thermal expansion, attention has been paid to a carbon-based metal composite material having a high carbon component content and excellent strength, and its development has been eagerly desired.
【0008】[0008]
【発明が解決しようとする課題】従って、本発明の課題
は、炭素材料の気孔に溶融金属を、炭素材料と金属との
反応を抑えながら低温で含浸させることにより、機能性
を改善した炭素材料を提供することにある。ここに、機
能性の改善とは、炭素材料の熱膨張率を用途に応じて制
御可能とすること、熱伝導率を向上すること、強度をあ
げ脆さを改善すること、高温での耐酸化性を向上するこ
と、メッキ等による表面処理を容易にすること等、特に
熱膨張率を制御可能とし、かつ熱伝導率を向上させるこ
とにある。
Accordingly, an object of the present invention is to provide a carbon material having improved functionality by impregnating the pores of the carbon material with a molten metal at a low temperature while suppressing the reaction between the carbon material and the metal. Is to provide. Here, the improvement of the functionality means that the coefficient of thermal expansion of the carbon material can be controlled according to the application, that the thermal conductivity is improved, that the strength is improved and the brittleness is improved, and that oxidation resistance at high temperatures is improved. Another object of the present invention is to make it possible to control the thermal expansion coefficient and to improve the thermal conductivity, for example, to improve the heat resistance, to facilitate the surface treatment by plating or the like.
【0009】[0009]
【課題を解決するための手段】そこで、本発明者らは、
前記の如き従来の開発状況に鑑み、本発明の課題を解決
するため鋭意検討を重ねた結果、コークスなどのフィラ
ーとコールタールピッチなどのバインダーの混合物を、
成形、焼成することで製造された板状、ブロック状の一
般炭素材料、炭素繊維強化炭素複合材料の板状、ブロッ
ク状の成形体、容器内に加圧成形された人造黒鉛粉また
は炭素繊維等の炭素材料を、融点より50℃〜250℃
高い温度で溶融した金属に浸漬し、その溶融金属に20
0kg/cm2 以上の圧力をかけることで炭素材料に存
在する気孔に強制的に金属を圧入・含浸し、その後冷却
することにより炭素材料が骨格である炭素基金属複合材
料を得られることに想到し、これらの知見に基づいて本
発明を完成した。
Means for Solving the Problems Accordingly, the present inventors have:
In view of the conventional development situation as described above, as a result of intensive studies to solve the problems of the present invention, a mixture of a filler such as coke and a binder such as coal tar pitch,
Plate-like, block-like general carbon materials produced by molding and firing, plate-like and block-like molded products of carbon fiber reinforced carbon composite material, artificial graphite powder or carbon fiber pressed in a container, etc. From 50 to 250 ° C. from the melting point
Immerse in the molten metal at high temperature and apply 20
By applying a pressure of 0 kg / cm 2 or more, the metal is forcibly injected and impregnated into the pores existing in the carbon material, and then cooled to obtain a carbon-based metal composite material in which the carbon material is a skeleton. The present invention has been completed based on these findings.
【0010】すなわち、本発明の第一は、炭素質マトリ
ックスと該炭素質マトリックスに分散された金属成分と
からなる炭素基金属複合材料であって、(1)前記炭素
質マトリックスの気孔の90体積%以上が前記金属成分
により置換され、(2)前記金属成分の含有量が、前記
炭素基金属複合材料全体積基準で35%以下であること
を特徴とする炭素基金属複合材料に関するものである。
That is, a first aspect of the present invention is a carbon-based metal composite material comprising a carbonaceous matrix and a metal component dispersed in the carbonaceous matrix, and (1) 90 volumes of pores of the carbonaceous matrix. % Or more of the carbon-based metal composite material, wherein (2) the content of the metal component is 35% or less based on the total volume of the carbon-based metal composite material. .
【0011】また、本発明の第二は、炭素成形体に溶融
金属を加圧装置の押し子により加圧含浸させることから
なる炭素基金属複合材料の製造方法であって、 該溶融金属の温度がその融点の50℃〜250℃高い
温度であり、 該溶融金属の圧力が押し子断面積当たり200kg/
cm2 以上であることを特徴とする炭素基金属複合材料
の製造方法に関するものである。
[0011] A second aspect of the present invention is a method for producing a carbon-based metal composite material, comprising impregnating a carbon compact with a molten metal by a presser of a pressurizing device. Is 50 ° C. to 250 ° C. higher than the melting point, and the pressure of the molten metal is 200 kg /
The present invention relates to a method for producing a carbon-based metal composite material, which has a size of at least 2 cm 2 .
【0012】[0012]
【発明の実施の形態】炭素質マトリックス 本発明の炭素基金属複合材料を構成する炭素質マトリッ
クスとして用いられる炭素材料としては、(a)一般炭
素材料、(b)炭素繊維で強化された炭素複合材料およ
び(c)炭素粉、人造黒鉛粉および炭素繊維の少なくと
も一種の炭素材料を含む加圧成形体等を挙げることがで
きる。これらの炭素材料を本明細書においては、必要に
応じて「炭素成形体」と総称する。炭素成形体の形状
は、炭素基金属複合材料の用途に応じて適宜選択するこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION Carbonaceous matrix The carbonaceous material used as the carbonaceous matrix constituting the carbon-based metal composite material of the present invention includes (a) a general carbon material and (b) a carbon composite reinforced with carbon fibers. A press-formed body containing the material and (c) at least one carbon material of carbon powder, artificial graphite powder and carbon fiber can be used. In the present specification, these carbon materials are collectively referred to as “carbon molded body” as necessary. The shape of the carbon molded body can be appropriately selected according to the use of the carbon-based metal composite material.
【0013】(a)一般炭素材料 本発明の炭素基金属複合材料の炭素質マトリックスとし
て用いられる炭素成形体は、非晶質炭素、黒鉛系結晶炭
素またはこれらの混合物を有するものが用いられるが、
特に、黒鉛系結晶を含有するものが、その気孔特性の均
一性、金属成分との反応抑制の観点から好ましい。黒鉛
系結晶としては、X線回折により測定される平均面間隔
dが0.340nm以下であるものを選択することが肝
要である。また、炭素材料組織として微細な気孔が均一
に存在したものが好ましいが、気孔径がサブミクロンか
ら数百ミクロンに広範囲に分布したものでもよい。平均
気孔径は直径として0.1μm〜10μm、好ましくは
0.1μm〜3μmである。気孔径がこのように特定の
範囲である場合、製造条件の特定により金属成分の含浸
が容易となり金属充填率が90体積%以上、さらに95
体積%に向上し実質的に充填率100%を達成すること
ができる。ここで充填率とは、気孔内に含浸された金属
の気孔全体積に対し占める体積割合である。
(A) General carbon material As the carbon molded body used as the carbonaceous matrix of the carbon-based metal composite material of the present invention, amorphous carbon, graphite-based crystalline carbon or a mixture thereof is used.
In particular, those containing graphite-based crystals are preferable from the viewpoint of uniformity of the pore characteristics and suppression of reaction with a metal component. It is important to select a graphite-based crystal having an average spacing d of 0.340 nm or less as measured by X-ray diffraction. Further, the carbon material structure preferably has fine pores uniformly present, but may have a pore diameter distributed over a wide range from submicron to several hundred microns. The average pore diameter is 0.1 μm to 10 μm as a diameter, preferably 0.1 μm to 3 μm. When the pore diameter is in the specific range as described above, the impregnation of the metal component is facilitated by specifying the production conditions, and the metal filling rate is 90% by volume or more, and moreover 95% by volume.
It is possible to increase the volume percentage to substantially achieve a filling rate of 100%. Here, the filling rate is a volume ratio of the metal impregnated in the pores to the total pore volume.
【0014】また、炭素成形体の気孔率は40体積%未
満、好ましくは5体積%〜35体積%、さらに好ましく
は5体積%〜25体積%である。すなわち、炭素質部分
の体積比率を60体積%以上、特に75体積%を超える
ものを実現したものである。これにより、従来困難であ
った炭素材料本来の特性を生かすことができ、特に電子
機器用基板に要求される熱伝導度および熱膨張率を十分
具有することが可能となる。
The porosity of the carbon molded body is less than 40% by volume, preferably 5% by volume to 35% by volume, and more preferably 5% by volume to 25% by volume. That is, a carbonaceous portion having a volume ratio of 60% by volume or more, particularly exceeding 75% by volume is realized. This makes it possible to make full use of the inherent properties of carbon materials, which have been difficult in the past, and in particular makes it possible to sufficiently provide the thermal conductivity and coefficient of thermal expansion required for electronic device substrates.
【0015】また、炭素成形体の密度は、1.4g/c
3 〜2g/cm3 、好ましくは1.6g/cm3 〜2
g/cm3 であり、特に1.7g/cm3 〜1.9g/
cm 3 が好ましい。密度が1.4g/cm3 に満たない
と金属の比率が高くなり、熱膨張率が過大になるという
弊害が生じ、一方、2g/cm3 を超えると金属含浸率
が低下するという問題がある。また、ほぼ完全に充填で
きたとしても金属比率が小さくなるため電子機器用基板
として有用な熱膨張率4×10-6/℃以上が得られない
という問題がある。
[0015] The density of the carbon molded body is 1.4 g / c.
mThree ~ 2g / cmThree , Preferably 1.6 g / cmThree ~ 2
g / cmThree And especially 1.7 g / cmThree ~ 1.9g /
cm Three Is preferred. The density is 1.4 g / cmThree Less than
And the ratio of metal increases, and the coefficient of thermal expansion becomes excessive
Adverse effects, while 2 g / cmThree Exceeds the metal impregnation rate
Is reduced. Also, almost completely filled
Substrate for electronic equipment because the metal ratio is small
Coefficient of thermal expansion 4 × 10 useful as-6/ ° C or higher cannot be obtained
There is a problem.
【0016】前記炭素質マトリックスに適用することが
できる炭素成形体として具体的には電気製鋼用、アルミ
精練用、その他電解炉用電極、放電加工用電極、シリコ
ン半導体または光ファイバー等の製造用治具、耐熱構造
材用の炭素成形体を用いることができる。
Specific examples of the carbon molded body applicable to the carbonaceous matrix include electric steelmaking, aluminum refining, an electrode for an electrolytic furnace, an electrode for electric discharge machining, and a jig for producing a silicon semiconductor or an optical fiber. Alternatively, a carbon molded body for a heat-resistant structural material can be used.
【0017】このような炭素成形体は、原料としてフィ
ラーとバインダーを用い、主として混合、成形、焼成お
よび黒鉛化等の工程を経て製造することができる。フィ
ラーとしてはか焼石油コークス、か焼ピッチコークス、
天然黒鉛、か焼無鉛炭、カーボンブラック等を、また、
バインダーとしてはコールタールピッチ、コールター
ル、合成樹脂等を任意に使用することができる。混合、
成形、焼成および黒鉛化の各工程の操作および条件は従
来採用されているとおりのものでよく、前記の所望性状
が得られるように適宜決定することができるが、前記黒
鉛系結晶は、2500℃以上、特に、2800℃以上の
温度での焼成処理により得ることができる。この温度条
件での焼成処理により平均面間隔d002 =0.340n
m以下のものを調製することが可能である。炭素成形体
の成形法として、押出法、型込法およびCIP法等が挙
げられるが押出法および型込法が好ましい。
Such a carbon molded article can be produced by using a filler and a binder as raw materials, and mainly through steps such as mixing, molding, firing and graphitization. Calcined petroleum coke, calcined pitch coke,
Natural graphite, calcined unleaded coal, carbon black, etc.
As the binder, coal tar pitch, coal tar, synthetic resin and the like can be used arbitrarily. mixture,
The operations and conditions of each of the steps of molding, firing and graphitization may be the same as those conventionally employed, and may be appropriately determined so as to obtain the desired properties described above. As described above, in particular, it can be obtained by a baking treatment at a temperature of 2800 ° C. or more. The average spacing d 002 = 0.340 n by the firing treatment under this temperature condition
m or less can be prepared. Examples of the method for forming the carbon molded body include an extrusion method, a molding method, and a CIP method, and the extrusion method and the molding method are preferred.
【0018】(b)炭素繊維強化炭素複合材料 炭素繊維強化炭素複合材料は、炭素繊維と炭素を含む化
合物から構成される炭素/炭素複合材料(以下、必要に
応じ、「c/c複合材料」という。)である。炭素繊維
はフィラーとして用いられ、繊維の配列方式により一方
向に揃えた繊維(1D)を用いる複合材料をはじめ、平
織(2D)の繊維から、3D織を用いる複合材料の一次
元、二次元および三次元の各種形態のものが提供され、
用途により任意に選択することができる。
(B) Carbon fiber reinforced carbon composite material The carbon fiber reinforced carbon composite material is a carbon / carbon composite material (hereinafter referred to as “c / c composite material” as required) composed of carbon fiber and a compound containing carbon. It is.) Carbon fibers are used as fillers, including composite materials using fibers (1D) aligned in one direction by a fiber arrangement method, as well as one-dimensional, two-dimensional, and composite materials using 3D woven from plain woven (2D) fibers. Various three-dimensional forms are provided,
It can be arbitrarily selected depending on the application.
【0019】本発明の炭素基金属複合材料の炭素質マト
リックスとして用いられるc/c複合材料としては、非
晶質系炭素からなるものでもよいが、炭素繊維または炭
素マトリックスまたは両者が黒鉛系結晶を有するものが
好ましい。また、密度としては1.6g/cm3 〜2g
/cm3 、好ましくは1.7g/cm3 〜1.9g/c
3 のものを採用することができる。
The c / c composite material used as the carbonaceous matrix of the carbon-based metal composite material of the present invention may be composed of amorphous carbon. Are preferred. The density is 1.6 g / cm 3 to 2 g.
/ Cm 3 , preferably 1.7 g / cm 3 to 1.9 g / c
m 3 can be adopted.
【0020】c/c複合材料の気孔構造は、前記一般炭
素材料と同様でよいが、平均気孔径は0.5μm〜5μ
m、好ましくは1μm〜3μmの範囲である。また、気
孔率としては10%〜30%に制御したものが好まし
い。
The pore structure of the c / c composite material may be the same as that of the general carbon material, but the average pore diameter is 0.5 μm to 5 μm.
m, preferably in the range of 1 μm to 3 μm. Further, the porosity is preferably controlled to 10% to 30%.
【0021】前記の如きc/c複合材料は如何なる方法
で製造してもよいが、炭素繊維の間にフェノール樹脂、
石油ピッチ等の炭素マトリックス前駆体を含浸させ、成
形した後、不活性ガス中で、通常、1000℃以上の温
度で焼成することにより製造することができ、さらに、
焼成温度を2500℃以上、特に2800℃以上の温度
に制御することにより黒鉛化結晶含有炭素材料を得るこ
とができる。
The c / c composite material as described above may be produced by any method.
After impregnated with a carbon matrix precursor such as petroleum pitch and molded, it can be manufactured by baking at a temperature of usually 1000 ° C. or higher in an inert gas.
By controlling the firing temperature to 2500 ° C. or higher, particularly 2800 ° C. or higher, a graphitized crystal-containing carbon material can be obtained.
【0022】また、従来の製造方法で必要としたマトリ
ックス前駆体の再含浸を回避する方法として、生コーク
ス粉末を50重量%以上含有する炭素粉末を分散させた
分散液を熱処理温度500℃以上の炭素繊維に含浸さ
せ、次いで溶媒を揮発させて炭素質マトリックス前駆体
含有炭素繊維を加圧下に成形、焼成する方法(特開平3
−247563号公報参照。)を採用し、本発明の炭素
基金属複合材料の炭素質マトリックスとして好適な性状
を有する炭素材料を提供することができる。
As a method for avoiding the re-impregnation of the matrix precursor required in the conventional production method, a dispersion in which a carbon powder containing 50% by weight or more of raw coke powder is dispersed is heated at a heat treatment temperature of 500 ° C. or more. A method in which carbon fibers are impregnated, then the solvent is volatilized, and the carbon fibers containing the carbonaceous matrix precursor are molded and fired under pressure (Japanese Unexamined Patent Application Publication No.
See -247563. ), It is possible to provide a carbon material having properties suitable as a carbonaceous matrix of the carbon-based metal composite material of the present invention.
【0023】(c)炭素粉・人造黒鉛粉または炭素繊維
からなる加圧成形体としては、例えば、鉄製の容器に黒
鉛粉、炭素繊維等を充填し加圧することにより得られる
炭素複合体であり、気孔率を10体積%〜30体積%に
制御したものであり、本発明の炭素質マトリックス用原
料として有用である。具体的には炭素成形体として長径
1.0mm〜3mmの黒鉛粒子を体積基準で10%以
上、または繊維長さ0.02mm〜5mmのピッチ系炭
素繊維を体積基準で10%以上、または長径0.1mm
〜3mmの黒鉛粒子と繊維長さ0.02mm〜5mmの
ピッチ系炭素繊維を体積基準で10%以上含有するもの
を挙げることができる。この炭素成形体は特に後記の電
子機器用基板状成形体の炭素質マトリックスとして有用
である。
(C) The press-formed body made of carbon powder, artificial graphite powder or carbon fiber is, for example, a carbon composite obtained by filling an iron container with graphite powder, carbon fiber, and the like and pressing. The porosity is controlled to 10% by volume to 30% by volume, and is useful as a raw material for a carbonaceous matrix of the present invention. Specifically, graphite particles having a major axis of 1.0 mm to 3 mm are 10% or more on a volume basis, or pitch-based carbon fibers having a fiber length of 0.02 mm to 5 mm are 10% or more on a volume basis, or a major axis is 0 as a carbon molded body. .1mm
Examples thereof include those containing 10% or more by volume of graphite particles of up to 3 mm and pitch-based carbon fibers having a fiber length of 0.02 mm to 5 mm. This carbon molded product is particularly useful as a carbonaceous matrix of a substrate-like molded product for electronic equipment described later.
【0024】金属成分 本発明の炭素質金属複合材料を構成する金属成分として
は、その用途に応じて任意に選択することができるが、
マグネシウム、アルミニウム、チタン、鉄、コバルト、
ニッケル、銅、亜鉛、銀、スズおよび各金属の合金等を
挙げることができる。
Metal Component The metal component constituting the carbonaceous metal composite material of the present invention can be arbitrarily selected according to its use.
Magnesium, aluminum, titanium, iron, cobalt,
Examples thereof include nickel, copper, zinc, silver, tin, and alloys of the respective metals.
【0025】好ましい金属成分は、アルミニウム、銅、
銀および該金属の合金等であり、特に、アルミニウムま
たは銅の純金属成分が好ましい。これらの金属成分は、
本発明の炭素質金属複合材料の特異性の一つとされる特
定の熱伝導率および熱膨張率を充足する上で好適であ
る。
Preferred metal components are aluminum, copper,
It is an alloy of silver and the metal, etc., and a pure metal component of aluminum or copper is particularly preferable. These metal components are
The carbonaceous metal composite material of the present invention is suitable for satisfying specific thermal conductivity and thermal expansion coefficient, which are considered to be one of the specificities.
【0026】炭素基金属複合材料 本発明の炭素基金属複合材料は、前記の如く炭素質マト
リックスおよび該炭素質マトリックスに分散された金属
成分とから構成されるものであり、 1)前記金属成分が前記炭素質マトリックスの気孔の9
0体積%以上に充填されたものであり、 2)その含有量が、前記炭素質金属複合材料全体積基準
で35%以下のものである。
Carbon-based metal composite material The carbon-based metal composite material of the present invention comprises a carbonaceous matrix and a metal component dispersed in the carbonaceous matrix as described above. 9 of the pores of the carbonaceous matrix
0% by volume or more; 2) The content is 35% or less based on the total volume of the carbonaceous metal composite material.
【0027】前記の如く金属成分は炭素質マトリックス
の気孔内に充填され、全開気孔の少なくとも90体積%
以上、特に95体積%以上を占めるものが好ましい。さ
らに好ましくは実質的には100体積%充填されたもの
である。充填率が90体積%に達することにより熱伝導
性等の要求性能を容易に満足させることができる。従
来、提案された溶融金属の含浸方法ではせいぜい70体
積%であり、高充填率のものは開示されていない。ま
た、炭素質マトリックスは、非晶質炭素または黒鉛系結
晶性炭素およびこれらの混合物であるが、特に黒鉛系炭
素が好ましい。金属成分の炭素質マトリックス中での存
在形態は、走査型電子顕微鏡を用いて観察することがで
きる。
As described above, the metal component is filled in the pores of the carbonaceous matrix, and at least 90% by volume of the fully open pores
Above, those which account for at least 95% by volume are preferred. More preferably, it is substantially 100% by volume filled. When the filling rate reaches 90% by volume, required performance such as thermal conductivity can be easily satisfied. Heretofore, the proposed impregnation method of molten metal has a volume of at most 70% by volume, and no high filling rate is disclosed. Further, the carbonaceous matrix is amorphous carbon or graphite-based crystalline carbon and a mixture thereof, and graphite-based carbon is particularly preferable. The form of the metal component in the carbonaceous matrix can be observed using a scanning electron microscope.
【0028】次に、本発明の炭素基金属複合材料におい
て、金属成分の含有量は35体積%以下、好ましくは3
0体積%以下、さらに好ましくは5体積%〜25体積%
である。含有量が35体積%を超えると、高熱伝導率で
低熱膨張率の性能を充足することが困難となる。
Next, in the carbon-based metal composite material of the present invention, the content of the metal component is 35% by volume or less, preferably 3% by volume.
0% by volume or less, more preferably 5% by volume to 25% by volume
It is. When the content exceeds 35% by volume, it becomes difficult to satisfy the performance of high thermal conductivity and low thermal expansion coefficient.
【0029】前記の如くして本発明の炭素基金属複合材
料としては金属成分の種類により異なるが、アルミニウ
ムを含浸した場合、密度:2g/cm3 〜2.4g/c
3、好ましくは、2.1g/cm3 〜2.2g/cm3
の範囲であり、熱伝導率200W/(m・K)以上、
熱膨張係数12×10-6/℃以下、特に、4×10-6
℃〜12×10-6/℃のものを提供することができる。
As described above, the carbon-based metal composite material of the present invention varies depending on the type of the metal component, but when impregnated with aluminum, has a density of 2 g / cm 3 to 2.4 g / c.
m 3 , preferably 2.1 g / cm 3 to 2.2 g / cm 3
And a thermal conductivity of 200 W / (m · K) or more,
Thermal expansion coefficient of 12 × 10 −6 / ° C. or less, especially 4 × 10 −6 / ° C
C. to 12 * 10 < -6 > / [deg.] C. can be provided.
【0030】本発明の炭素基金属複合材料の形状として
は特に限定されるものではなく、各種用途により任意に
選択することができ、例えば、板、ブロック、シート、
フィルム、顆粒、粉、繊維、織物、不織布、機械加工さ
れた部品等の成形品を挙げることができる。
The shape of the carbon-based metal composite material of the present invention is not particularly limited, and can be arbitrarily selected depending on various uses. For example, a plate, a block, a sheet,
Molded articles such as films, granules, powders, fibers, woven fabrics, non-woven fabrics, machined parts and the like can be mentioned.
【0031】本発明の炭素基金属複合材料は、前記の如
き熱伝導率および熱膨張率を有することから電子機器用
基板状成形体として有用である。半導体素子、抵抗体、
トランス、コンデンサーまたは配線から構成される電子
回路の回路指示基板および回路指示基板の支持体である
ベース基板を包む電子機器においては、電子回路から発
生する熱の大部分は回路支持基板およびベース基板から
冷却装置に伝熱され最終的に大気または冷却液体に放熱
される。従来、ベース基板材料としてアルミニウム、銅
またはそれらの合金からなる金属が使用されているが電
子回路との間に熱膨張差があり、反りまたは剥がれの問
題がある。
The carbon-based metal composite material of the present invention has a thermal conductivity and a thermal expansion coefficient as described above, and thus is useful as a substrate-like molded article for electronic equipment. Semiconductor elements, resistors,
In electronic equipment that encloses a circuit instruction board for an electronic circuit composed of a transformer, a capacitor, or wiring and a base substrate that is a support for the circuit instruction board, most of the heat generated from the electronic circuit is generated from the circuit support board and the base substrate. The heat is transferred to the cooling device and finally released to the atmosphere or a cooling liquid. Conventionally, a metal made of aluminum, copper, or an alloy thereof is used as a base substrate material, but there is a difference in thermal expansion between the electronic circuit and an electronic circuit, and there is a problem of warpage or peeling.
【0032】本発明の炭素基金属複合材料は、熱伝導率
150W/(m・K)以上であり、熱膨張係数12×1
-6/℃以下を有するものであり、前記金属ベース基板
より基板特性が優れ、これを用いることにより前記問題
点を解消することができる。
The carbon-based metal composite material of the present invention has a thermal conductivity of 150 W / (m · K) or more and a thermal expansion coefficient of 12 × 1.
0 -6 / ° C. are those having the following, the metal base substrate excellent substrate properties than can solve the above problems by using it.
【0033】炭素基金属複合材料の製造方法 次に、本発明の炭素基金属複合材料の製造方法について
説明する。本発明によれば、炭素成形体に溶融金属を押
し子で封入し加圧装置で加圧し含浸させることからなる
炭素基金属複合材料の製造方法であって、 該溶融金属の温度がその融点の50℃〜250℃高い
温度であり、 該溶融金属の圧力が押し子断面積当たり200kg/
cm2 以上であることを特徴とする炭素基金属複合材料
の製造方法に関するものである。
Next, a method for producing the carbon-based metal composite material of the present invention will be described. According to the present invention, there is provided a method for producing a carbon-based metal composite material comprising sealing a molten metal in a carbon molded body with a pusher, and impregnating the molded body with a pressurizing device, wherein the temperature of the molten metal is the melting point of the molten metal. The temperature is 50 ° C. to 250 ° C. higher, and the pressure of the molten metal is 200 kg /
The present invention relates to a method for producing a carbon-based metal composite material, which has a size of at least 2 cm 2 .
【0034】炭素成形体としては、前記の炭素質マトリ
ックスに転化可能な炭素材料のいずれのものをも用いる
ことができる。具体的には好ましい炭素成形体としては
密度が1.4g/cm3 〜2g/cm3 であり、気孔率
が40体積%未満、好ましくは35体積%以下、さらに
好ましくは、一般炭素材料は5体積%〜25体積%のも
の、炭素繊維強化複合材料または前記加圧成形体として
は10体積%〜30体積%のものを使用することができ
る。
As the carbon molded body, any of the above-mentioned carbon materials which can be converted into a carbonaceous matrix can be used. Specific Preferred carbon molded body the density is 1.4g / cm 3 ~2g / cm 3 , less than a porosity of 40 vol%, preferably 35 vol% or less, more preferably, is generally a carbon material 5 Those having a volume percentage of 25% by volume, those having a carbon fiber reinforced composite material or those having a volume of 10% by volume to 30% by volume can be used as the pressed body.
【0035】前記金属成分の含浸において、具体的には
炭素成形体は金型内に設置され、金属成分を顆粒等の形
態で金型内に供給し加熱し押し子で封入し加圧装置、例
えばプレス機で加圧する方法を採るかまたは金型内に予
熱した炭素成形体を置き溶融金属を注入し押し子で封入
し、加圧する方法を採ることができる。炭素成形体は予
熱することが好ましく、温度としては溶融金属の融点よ
り100℃以上、特に100℃〜250℃が好ましい。
また、高融点の金属の場合においては炭素成形体に穴を
開けそのなかに溶融金属を注入することにより金属成分
の含浸を行なわせることもできる。
In the impregnation of the metal component, specifically, the carbon molded body is placed in a mold, and the metal component is supplied into the mold in the form of granules and the like, heated, sealed with a pusher, and pressed. For example, a method of pressurizing with a press machine or a method of placing a preheated carbon molded body in a mold, injecting a molten metal, enclosing the molten metal with a presser, and pressurizing can be employed. The carbon compact is preferably preheated, and the temperature is preferably 100 ° C or more, more preferably 100 ° C to 250 ° C, from the melting point of the molten metal.
Further, in the case of a metal having a high melting point, a metal component can be impregnated by making a hole in the carbon molded body and injecting a molten metal into the hole.
【0036】溶融金属の加圧含浸は、該金属の融点より
50℃以上、特に、50℃〜250℃で行なうことが好
ましい。温度が50℃に達しないと金属充填率が低いた
め、金属含有量が少なく要求性能を有する複合材料を得
ることができない一方、高温、例えば250℃を超える
と炭素と金属との反応を抑制することが困難となる。例
えばアルミニウムの場合には250℃を超えると潮解性
のある炭化アルミニウムを生成しやすくなり、実用的な
複合材料が得られない。
The pressure impregnation of the molten metal is preferably performed at a temperature of 50 ° C. or more, more preferably 50 ° C. to 250 ° C., than the melting point of the metal. If the temperature does not reach 50 ° C., the metal filling rate is low, so that it is impossible to obtain a composite material having a low metal content and the required performance, whereas if the temperature exceeds a high temperature, for example, 250 ° C., the reaction between carbon and the metal is suppressed. It becomes difficult. For example, in the case of aluminum, if it exceeds 250 ° C., deliquescent aluminum carbide is easily generated, and a practical composite material cannot be obtained.
【0037】また、溶融金属の加圧含浸において、炭素
成形体を溶融金属と接触させる際に、押し子の押し断面
積当たり200kg/cm2 以上、好ましくは500k
g/cm2 以上、特に好ましくは1000kg/cm2
以上の圧力で溶融金属に加圧し、前記炭素成形体に含浸
させる。なお、含浸圧力が200kg/cm2 に達しな
いと金属充填率が低く所望性能の複合材料は得られな
い。溶融金属の炭素成形体への加圧含浸は、炭素成形体
に溶融金属を注入し押し子で直接加圧することに特異性
があり、従来、提案されている耐圧容器内でのガス加圧
方式とは別異のものである。
In the pressure impregnation of the molten metal, when the carbon compact is brought into contact with the molten metal, the pressure is not less than 200 kg / cm 2 , preferably 500 k / cm 2 , per sectional area of the pusher.
g / cm 2 or more, particularly preferably 1000 kg / cm 2
The molten metal is pressurized with the above pressure to impregnate the carbon compact. If the impregnation pressure does not reach 200 kg / cm 2 , the metal filling rate is low and a composite material having desired performance cannot be obtained. The pressure impregnation of the molten metal into the carbon compact is unique in that the molten metal is injected into the carbon compact and pressed directly with a pusher. Is different from
【0038】溶融金属の含浸において提案されている加
圧方式は高圧ガスを使用するガス加圧方式であり、含浸
関連装置の大型化が必要である。このため装置上の問題
から金属の十分な含浸に必要な圧力においては実用に供
する大きさの複合材料の製造は不可能であった。これに
対して本発明の加圧含浸の特異性は通常のプレス機を使
用し溶融金属を注入し押し子で封入し加圧するものであ
り、従来からの問題点はすべて解消することができる。
これにより高度の金属充填率が得られ、高性能の複合材
料を実現することができる。
The pressurization method proposed for impregnation of molten metal is a gas pressurization method using a high-pressure gas, and it is necessary to increase the size of the impregnation-related apparatus. For this reason, it was impossible to produce a composite material having a practical size at a pressure necessary for sufficient impregnation of a metal due to equipment problems. On the other hand, the peculiarity of the pressure impregnation of the present invention is to inject a molten metal by using a normal press machine, enclose with a presser and pressurize, and all the conventional problems can be solved.
As a result, a high metal filling rate is obtained, and a high-performance composite material can be realized.
【0039】前記炭素成形体の気孔径は、サブミクロン
から数百ミクロンに分布しているため、1ミクロン以下
の気孔に溶融金属を圧入・充填するためには溶融温度が
融点より100℃程度高いアルミニウムの場合約1トン
/cm2 の高圧が必要と計算される。平均気孔径が5μ
mより大きい被含浸体の場合には溶融金属の状態にもよ
るが圧力を押し子断面積あたり200kg/cm2 以上
とすれば気孔のほぼ90%以上に含浸することができ
る。圧力は、1000kg/cm2 以上が望ましいが、
上限は、ラムの押し圧、金型の経済的な耐圧性能から決
定される。なお、本発明の炭素成形体としては気孔が外
部と通じている開気孔を多く含むものが、溶融金属を圧
入の観点から重要である。
Since the pore diameter of the carbon molded body is distributed from submicron to several hundred microns, the melting temperature is higher by about 100 ° C. than the melting point in order to inject and fill the molten metal into pores of 1 micron or less. It is calculated that a high pressure of about 1 ton / cm 2 is required for aluminum. Average pore size is 5μ
In the case of an impregnated body larger than m, if the pressure is set to 200 kg / cm 2 or more per presser cross-sectional area, it is possible to impregnate almost 90% or more of the pores depending on the state of the molten metal. The pressure is desirably 1000 kg / cm 2 or more,
The upper limit is determined by the ram pressing pressure and the economical pressure resistance of the mold. It is important that the carbon molded article of the present invention contains many open pores whose pores communicate with the outside from the viewpoint of press-in of the molten metal.
【0040】加圧含浸処理の終了後、切削加工等の工程
を経て炭素基金属複合材料を得ることができる。従来、
炭素繊維を強化材料として用いた金属基炭素複合材料に
おいて、金属と炭素繊維が反応し脆化するため強度が得
られないことが問題となってきたが、これに対して、本
発明の炭素基金属複合材料においては、炭素が主体で金
属が気孔の充填物であるため、炭素材料と金属間の反応
による複合材機能に対する影響は金属基炭素複合材に比
べて極めて小さい。前記、温度範囲内では炭素材料と溶
融金属で起こる反応を十分抑制することができ、所望の
複合材料を得ることができる。
After completion of the pressure impregnation, a carbon-based metal composite material can be obtained through steps such as cutting. Conventionally,
In a metal-based carbon composite material using carbon fiber as a reinforcing material, there has been a problem that the metal and the carbon fiber react and become brittle, so that strength cannot be obtained. In the metal composite material, since carbon is the main component and the metal is a filling material of pores, the effect of the reaction between the carbon material and the metal on the composite material function is extremely small as compared with the metal-based carbon composite material. Within the above temperature range, the reaction occurring between the carbon material and the molten metal can be sufficiently suppressed, and a desired composite material can be obtained.
【0041】本発明の炭素基金属複合材料の製造方法に
ついて図面に従って具体的に説明する。第1図におい
て、1はホットプレス加熱部または試料室である。2は
鋼製または炭素製金型である。3はラムを示す。
The method for producing a carbon-based metal composite material of the present invention will be specifically described with reference to the drawings. In FIG. 1, reference numeral 1 denotes a hot press heating unit or a sample chamber. Reference numeral 2 denotes a steel or carbon mold. 3 indicates a ram.
【0042】金属を溶融することおよび溶融金属に圧力
をかける必要があるため、ホットプレスを使用する。ホ
ットプレスの試料室に耐圧性のある金属製あるいは炭素
製の金型を据える。同金型内に炭素材と金型粒子を入れ
押し子をのせる。雰囲気を真空、あるいは不活性ガスと
し所定の温度まで上げ、押し子をホットプレスのラムで
押し、金型内部の溶融金属を加圧する。高温の金属の場
合には、被含浸体であるカーボン自身に穴をあけその中
に溶融金属を入れ、直接試供体に含浸することで試供体
を得る。なお、加圧時に押し子部分をガスで冷却する。
この条件を30分保持しその後200℃程度に冷却した
後金型を取り出す。金属試料から炭素基金属複合材を切
り出す。
A hot press is used because of the need to melt the metal and to apply pressure to the molten metal. A metal or carbon mold with pressure resistance is placed in the sample chamber of the hot press. The carbon material and the mold particles are placed in the mold and a presser is placed. The atmosphere is raised to a predetermined temperature with a vacuum or an inert gas, and the presser is pressed by a hot press ram to pressurize the molten metal inside the mold. In the case of a high-temperature metal, a sample is obtained by making a hole in the carbon to be impregnated itself, putting a molten metal therein, and directly impregnating the sample. In addition, the presser part is cooled by gas at the time of pressurization.
After maintaining this condition for 30 minutes, the mold is taken out after cooling to about 200 ° C. Cut out a carbon-based metal composite from a metal sample.
【0043】[0043]
【実施例】 以下、実施例および比較例により本発明を
さらに具体的に説明する。もっとも本発明は実施例等に
より限定されるものではない。なお、実施例および比較
例により調製した炭素基金属複合材料の品質・性能評価
について測定方法および試験方法を利用した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited by the examples and the like. In addition, the measurement method and the test method were used for quality / performance evaluation of the carbon-based metal composite materials prepared in the examples and the comparative examples.
【0044】1)金属成分含浸性 株式会社日立製作所製走査型電子顕微鏡S2300を用
い、金属成分の分布状態を500倍の倍率で観察した。
1) Impregnation of Metal Components The distribution of metal components was observed at a magnification of 500 times using a scanning electron microscope S2300 manufactured by Hitachi, Ltd.
【0045】2)気孔率 金属成分の含浸前の炭素成形体の気孔率は、その見かけ
密度から炭素の密度を2.1g/cm3 と仮定して算出
した計算値である。
2) Porosity The porosity of the carbon compact before impregnation with the metal component is a calculated value calculated from its apparent density assuming that the density of carbon is 2.1 g / cm 3 .
【0046】3)金属充填率 [(金属充填前の気孔率−金属充填後の気孔率) /金属充
填前の気孔率] ×100
3) Metal filling rate [(porosity before metal filling−porosity after metal filling) / porosity before metal filling] × 100
【0047】4)比熱 パーキンエルマーDSC−2を用いDSC法(DSC:
示差走査熱量計)により、昇温温度10℃/分、乾燥窒
素気流中室温で測定した。比較校正にはサファイアを用
いた。
4) Specific heat DSC method using Perkin Elmer DSC-2 (DSC:
(Differential scanning calorimeter) at a heating temperature of 10 ° C./min and in a dry nitrogen stream at room temperature. Sapphire was used for comparative calibration.
【0048】5)密度 株式会社島津製作所製電子分析天びんAEL−200を
用いてアルキメデス法により室温(25℃)で測定し
た。
5) Density The density was measured at room temperature (25 ° C.) by Archimedes method using an electronic analytical balance AEL-200 manufactured by Shimadzu Corporation.
【0049】6)曲げ強度 株式会社島津製作所製精密万能試験器AG−500を用
い、サイズ4mm×4mm×80mmの強度試験片につ
いてスパン間距離60mm、クロスヘッド降下速度0.
5mm/分の条件にて曲げ強度を測定した。
6) Bending strength Using a precision universal tester AG-500 manufactured by Shimadzu Corporation, a distance between spans of 60 mm and a crosshead descent speed of 0.4 mm for a 4 mm × 4 mm × 80 mm strength test piece.
The bending strength was measured under the condition of 5 mm / min.
【0050】7)熱伝導率 熱伝導率は、熱拡散率と比熱および密度の積として求め
た。熱拡散率は、レーザーフラッシュ法による真空理工
(株)製TC−7000を用い25℃で測定した。ま
た、照射光としてルビーレーザー光(励起電圧2.5k
v、均一フィルターおよび滅光フィルター1枚)を使用
した。
7) Thermal conductivity The thermal conductivity was determined as the product of the thermal diffusivity, specific heat and density. The thermal diffusivity was measured at 25 ° C. by using TC-7000 manufactured by Vacuum Riko Co., Ltd. by a laser flash method. Ruby laser light (excitation voltage 2.5 k
v, uniform filter and one extinction filter).
【0051】8)熱膨張率 マックスサイエンス社製熱分析装置001、TD−50
20を用いて室温から300℃までの熱膨張率を測定し
た。
8) Thermal expansion coefficient Thermal analyzer 001, TD-50 manufactured by Max Science
20 was used to measure the coefficient of thermal expansion from room temperature to 300 ° C.
【0052】実施例1 市販人造黒鉛材I(密度;1.85g/cm3 、気孔
率;12体積%、曲げ強度;3.5kg/cm2 、熱伝
導度;100W/(m・K)、熱膨張率;3.8×10
-6/℃)から長さ30mm、幅30mm、厚さ10mm
のブロックを切り出し、これを純アルミニウムの顆粒と
共に鉄製金型内にいれ、アルゴンガス中で750℃まで
加熱した。ラムの断面積あたりの圧力500kg/cm
2 で加圧し、その状態で30分間維持することで人造黒
鉛材Iの気孔内にアルミニウムを含浸させ複合化した。
冷却後アルミニウムの塊ごと取り出し切削加工し、炭素
基アルミニウム複合材料を得た。
Example 1 Commercially available artificial graphite material I (density: 1.85 g / cm 3 , porosity: 12% by volume, bending strength: 3.5 kg / cm 2 , thermal conductivity: 100 W / (m · K), Thermal expansion coefficient: 3.8 × 10
-6 / ° C) to length 30mm, width 30mm, thickness 10mm
Was cut out in an iron mold together with pure aluminum granules, and heated to 750 ° C. in argon gas. 500kg / cm pressure per ram cross section
By pressurizing at 2 and maintaining the state for 30 minutes, aluminum was impregnated into the pores of the artificial graphite material I to form a composite.
After cooling, the aluminum mass was taken out and cut to obtain a carbon-based aluminum composite material.
【0053】ここで得られた炭素基アルミニウム複合材
料におけるアルミニウムの含浸性を前記の方法にて観察
した。気孔はアルミニウムにより100%置換され、ア
ルミニウムが炭素質マトリックスに均一に分散している
ことが確認できた。炭素基アルミニウム複合材料中のア
ルミニウムの含有量は12体積%であった。
The impregnation of aluminum in the obtained carbon-based aluminum composite material was observed by the above-mentioned method. It was confirmed that the pores were 100% replaced by aluminum and aluminum was uniformly dispersed in the carbonaceous matrix. The aluminum content in the carbon-based aluminum composite material was 12% by volume.
【0054】強度試験片を作製し曲げ試験を行なったと
ころ、曲げ強度8kg/mm2 の結果を得た。その結果
を表1に表示する。これによれば、曲げ強度はアルミニ
ウムを含浸していない人造黒鉛材Iの4kg/mm2
2倍に向上したことがわかる。
When a strength test piece was prepared and subjected to a bending test, a result of a bending strength of 8 kg / mm 2 was obtained. The results are shown in Table 1. According to this, it can be seen that the bending strength has been improved to twice the 4 kg / mm 2 of the artificial graphite material I not impregnated with aluminum.
【0055】また、熱伝導率および熱膨張率を前記方法
にてそれぞれ測定した。これらの結果を表1に表示す
る。熱伝導率が人造黒鉛材Iの100W/(m・K)の
2倍である200W/(m・K)に向上し、熱膨張率
が、3.8×10-6/℃から11×10-6/℃に上昇し
た。
Further, the thermal conductivity and the coefficient of thermal expansion were measured by the methods described above. The results are shown in Table 1. The thermal conductivity is improved to 200 W / (m · K) which is twice the 100 W / (m · K) of the artificial graphite material I, and the coefficient of thermal expansion is increased from 3.8 × 10 −6 / ° C. to 11 × 10 -6 / ° C.
【0056】実施例2 市販人造黒鉛材Iから長さ30mm、幅30mm、厚さ
10mmのブロックを切り出し、これを純銅の顆粒と共
に、カーボン製金型内にいれ、アルゴンガス中で120
0℃まで加熱した。ラムの断面積あたりの圧力1000
kg/cm2 で加圧し、その状態で30分間維持するこ
とで人造黒鉛材Iの気孔内に銅を含浸させ複合化した。
冷却後銅の塊ごと取出し切削加工し、炭素銅複合材料を
得た。
Example 2 A block having a length of 30 mm, a width of 30 mm, and a thickness of 10 mm was cut out from a commercially available artificial graphite material I, placed in a carbon mold together with pure copper granules, and placed in an argon gas atmosphere.
Heated to 0 ° C. Pressure 1000 per ram cross section
By pressurizing at kg / cm 2 and maintaining the state for 30 minutes, copper was impregnated into the pores of the artificial graphite material I to form a composite.
After cooling, the copper lump was taken out and cut to obtain a carbon-copper composite material.
【0057】このようにして得られた炭素基銅複合材料
における銅の含浸性を前記の方法にて観察した。気孔は
銅により100%置換され、銅が炭素質マトリックスに
均一に分散していることが確認できた。炭素基銅複合材
料中の銅含有量は12体積%であった。
The carbon impregnation in the carbon-based copper composite material thus obtained was observed by the above-mentioned method. It was confirmed that the pores were 100% replaced by copper, and that copper was uniformly dispersed in the carbonaceous matrix. The copper content in the carbon-based copper composite material was 12% by volume.
【0058】強度試験片を作製し曲げ試験を行なった。
試験結果を表1に表示する。これによれば曲げ強度は、
銅を含浸していない人造黒鉛材Iの4kg/mm2 の2
倍である8kg/mm2 に向上したことがわかる。
A strength test piece was prepared and subjected to a bending test.
The test results are shown in Table 1. According to this, the bending strength is
4 kg / mm 2 of artificial graphite material I not impregnated with copper
It can be seen that it was improved to 8 kg / mm 2 , which is twice as large.
【0059】また、熱伝導率および熱膨張率を前記方法
にてそれぞれ測定し、これらの結果を表1に表示する。
熱伝導率が人造黒鉛材Iの100W/(m・K)の2倍
以上である220W/(m・K)に、熱膨張率が3.8
×10-6/℃から9.9×10-6/℃に上昇した。
The thermal conductivity and the coefficient of thermal expansion were measured by the above-described methods, respectively, and the results are shown in Table 1.
The coefficient of thermal expansion is 3.8 at 220 W / (m · K), whose thermal conductivity is at least twice the 100 W / (m · K) of the artificial graphite material I.
It increased from × 10 −6 / ° C. to 9.9 × 10 −6 / ° C.
【0060】実施例3 市販人造黒鉛材Iのブロックに直径5mm、奥行き10
0mmの穴をあけ、その内部に純ニッケルの顆粒をいれ
た。押し子を穴に挿入し、真空脱気後、アルゴンガス中
で1550℃まで加熱した。押し子の断面積あたりの圧
力1000kg/cm2 で加圧し、その状態で30分間
維持することで人造黒鉛材Iの気孔にニッケルを含浸さ
せた。冷却後ブロックにおいて、ニッケルを含浸した部
分を取出し切削加工し炭素基ニッケル複合材料を得た。
Example 3 A block of commercially available artificial graphite material I having a diameter of 5 mm and a depth of 10
A hole of 0 mm was made, and granules of pure nickel were put in the hole. The pusher was inserted into the hole, and after degassing under vacuum, heated to 1550 ° C. in argon gas. The pressure was applied at a pressure of 1000 kg / cm 2 per sectional area of the presser, and the pressure was maintained for 30 minutes to impregnate the pores of the artificial graphite material I with nickel. After cooling, the nickel-impregnated portion of the block was taken out and cut to obtain a carbon-based nickel composite material.
【0061】このようにして得られた炭素基ニッケル複
合材料のニッケルの含浸性を観察した。また、曲げ強
度、熱伝導率および熱膨張率をそれぞれ測定した。ニッ
ケルの含浸性の観察の結果、気孔はニッケルにより10
0%置換され、ニッケルが炭素質マトリックスに均一に
分散していることが確認できた。炭素基ニッケル複合材
料のニッケル含有量は12体積%であった。
The impregnation of nickel of the carbon-based nickel composite material thus obtained was observed. Further, the bending strength, the thermal conductivity, and the thermal expansion coefficient were measured. As a result of observation of the impregnation of nickel, the pores were
It was confirmed that 0% was substituted and nickel was uniformly dispersed in the carbonaceous matrix. The nickel content of the carbon-based nickel composite material was 12% by volume.
【0062】曲げ強度は、人造黒鉛材Iの4kg/mm
2 の約3倍の11kg/mm2 に、熱伝導率は、人造黒
鉛材Iの100W/(m・K)から170W/(m・
K)に向上し、また熱膨張率は、人造黒鉛材Iの3.8
×10-6/℃に対し7.5×10-6/℃となった。これ
らの結果を表1に示す。
The bending strength of the artificial graphite material I was 4 kg / mm.
2 to 11 kg / mm 2 , the thermal conductivity is from 100 W / (m · K) of the artificial graphite material I to 170 W / (m ·
K), and the coefficient of thermal expansion is 3.8 for the artificial graphite material I.
× became 7.5 × 10 -6 / ° C. to 10 -6 / ° C.. Table 1 shows the results.
【0063】実施例4 特開平3−247563号公報および同8−15727
3号公報に基づき製造した繊維方向を0°、90°に配
向させ、積層したピッチ系炭素繊維強化炭素複合材料
(以下、「2D炭素複合材料」という(第2図参
照)。)から長さ(xy方向)100mm、幅100m
m、厚さ(z方向)250mmのブロックを製作した。
2D炭素複合材料の気孔率は25体積%であり、曲げ強
度、熱伝導率、熱膨張率はxy方向、z方向についてそ
れぞれ表1に示す。
Example 4 JP-A-3-247563 and JP-A-8-15727
No. 3, the fiber direction is oriented at 0 ° and 90 °, and the length is obtained from the laminated pitch-based carbon fiber reinforced carbon composite material (hereinafter referred to as “2D carbon composite material” (see FIG. 2)). (Xy direction) 100mm, width 100m
m, a block having a thickness (z direction) of 250 mm was produced.
The porosity of the 2D carbon composite material is 25% by volume, and the bending strength, thermal conductivity, and thermal expansion coefficient are shown in Table 1 in the xy direction and the z direction.
【0064】2D炭素複合材料のブロックに直径5m
m、奥行き100mmの穴をあけ、内部に純ニッケルの
顆粒をいれた。押し子を穴に挿入し、真空脱気後アルゴ
ンガス中で1550℃まで加熱した後、押し子の断面積
あたりの圧力500kg/cm 2 で加圧し、その状態で
30分間維持することで2D炭素複合材のブロックの気
孔にニッケルを含浸させた。冷却後ブロックのニッケル
で含浸された部分を取出し切削加工し炭素基ニッケル複
合材料を得た。
The block of 2D carbon composite material has a diameter of 5 m.
m, 100mm deep hole, pure nickel inside
Add the granules. Insert the pusher into the hole, remove
After heating to 1550 ° C in a gas, the cross-sectional area of the pusher
Pressure per unit 500kg / cm Two And pressurized in that state
By maintaining for 30 minutes, the energy of the 2D carbon composite block
The holes were impregnated with nickel. Nickel in block after cooling
Take out the part impregnated with
A mixture was obtained.
【0065】ニッケルの含浸性を観察したが、気孔はニ
ッケルで100%置換され、ニッケルが炭素質マトリッ
クスに均一に分散していることが確認できた。ニッケル
含有量は25体積%であった。
When the impregnation of nickel was observed, it was confirmed that the pores were replaced by 100% with nickel, and that nickel was uniformly dispersed in the carbonaceous matrix. The nickel content was 25% by volume.
【0066】強度試験片を作製し曲げ試験を行なった。
この結果を表1に表示する。これによれば、曲げ強度
は、xy面において含浸前20kg/mm2 が2.5倍
の50kg/mm2 に、またz面において1kg/mm
2 未満であったものが5kg/mm2 に向上した。
A strength test piece was prepared and subjected to a bending test.
The results are shown in Table 1. According to this, the bending strength is 20 kg / mm 2 before impregnation on the xy plane, which is 2.5 times 50 kg / mm 2 , and 1 kg / mm 2 on the z plane.
What was less than 2 was improved to 5 kg / mm 2.
【0067】熱伝導率の測定結果はxy面の上下方向、
即ちz軸方向において、含浸前8W/(m・K)から4
5W/(m・K)に、またz面の上下方向、すなわちx
またはy軸方向について含浸前200W/(m・K)か
ら250W/(m・K)にそれぞれ向上した。
The measurement results of the thermal conductivity are shown in the vertical direction of the xy plane,
That is, in the z-axis direction, 8 W / (m · K)
5W / (m · K), and the vertical direction of the z plane, ie, x
Alternatively, in the y-axis direction, the power was increased from 200 W / (m · K) before impregnation to 250 W / (m · K).
【0068】ニッケルで含浸した試験片を縦横3mm、
長さ10mmに切り出し、その表面に電解メッキおよび
無電解メッキ法で合計約約10μm厚さのニッケルを被
覆した。このサンプルを大気炉に置き、1000℃、1
時間放置し、冷却後取り出して目視にて観察したが、ニ
ッケルが黒ずんだほかに変化はなかった。一方、含浸し
ない2D炭素複合材のサンプルはもとの重量の38%ま
でに減量した。
A test piece impregnated with nickel was 3 mm in length and width.
The sheet was cut into a length of 10 mm, and its surface was coated with nickel having a total thickness of about 10 μm by electrolytic plating and electroless plating. Place this sample in an atmospheric furnace at 1000 ° C, 1
It was left for a while, taken out after cooling, and visually observed. There was no change other than the darkening of nickel. On the other hand, the sample of the 2D carbon composite without impregnation lost weight to 38% of its original weight.
【0069】比較例1 溶融アルミニウムの温度を700℃としたこと以外すべ
て実施例1と同様にしてアルミニウム含有量2体積%の
炭素基アルミニウム複合材料を得た。アルミニウムの含
浸性を観察したところ開気孔に充填されていない空隙部
分があり、人造黒鉛材の気孔の17体積%がアルミニウ
ムで置換されたにすぎなかった。また、熱伝導度113
W/(m・K)、熱膨張率3.9×10-6/℃の結果を
得た。性能評価の結果を表1に示す。
Comparative Example 1 A carbon-based aluminum composite material having an aluminum content of 2% by volume was obtained in the same manner as in Example 1 except that the temperature of the molten aluminum was 700 ° C. Observation of the impregnation property of aluminum revealed that there were voids not filled in the open pores, and only 17% by volume of the pores of the artificial graphite material was replaced by aluminum. In addition, thermal conductivity 113
W / (m · K) and a coefficient of thermal expansion of 3.9 × 10 −6 / ° C. were obtained. Table 1 shows the results of the performance evaluation.
【0070】比較例2 押し子の断面積当たりの圧力を150kg/cm2 とし
たこと以外すべて実施例1と同様にしてアルミニウムの
含浸処理を行なったが、アルミニウム充填率47体積%
であり溶融アルミニウムをほどんど含浸させることがで
きず、十分な性能を有する炭素基アルミニウム複合材料
は得られなかった。性能評価の結果を表1に示す。
Comparative Example 2 Aluminum impregnation was carried out in the same manner as in Example 1 except that the pressure per sectional area of the pusher was 150 kg / cm 2 , but the aluminum filling rate was 47% by volume.
However, almost no molten aluminum could be impregnated, and a carbon-based aluminum composite material having sufficient performance could not be obtained. Table 1 shows the results of the performance evaluation.
【0071】比較例3 アルミニウムの含有量が40体積%になるような人造黒
鉛材を使用したこと以外はすべて実施例1と同様にして
アルミニウムで含浸された炭素基アルミニウム複合材料
を調製した。曲げ強度、熱伝導率および熱膨張率を測定
したところ表1に示す結果を得た。アルミニウム充填率
は100%となったが、熱膨張率が13.2×10-6
℃と過大であり要求性能を満たすことはできなかった。
Comparative Example 3 A carbon-based aluminum composite material impregnated with aluminum was prepared in the same manner as in Example 1 except that an artificial graphite material having an aluminum content of 40% by volume was used. When the bending strength, the thermal conductivity and the coefficient of thermal expansion were measured, the results shown in Table 1 were obtained. The aluminum filling rate was 100%, but the coefficient of thermal expansion was 13.2 × 10 −6 /
° C, which was too high to meet the required performance.
【0072】比較例4 市販人造黒鉛材Iの代わりに、針状コークスとピッチお
よびフェノール樹脂を最終的に2000℃で焼成した炭
素成形体(平均面間隔d002 =0.343nm)を使用
したこと以外実施例1と同様にして炭素基アルミニウム
複合材料を調製した。性状等を表1に示す。アルミニウ
ム充填率、熱伝導率、熱膨張率は比較的好結果を得た
が、この成形体(30mm立方体)を水に浸漬したとこ
ろ発泡し、崩壊した。また、空気中に放置したところ徐
々に粉化し約2週間で完全に原型を失ない粉状体となり
実用的価値のあるものは得られなかった。これはアルミ
ニウムと炭素が反応し炭化アルミニウムが生成したもの
と推定される。
Comparative Example 4 Instead of the commercial artificial graphite material I, a carbon molded product (average interplanar spacing d 002 = 0.343 nm) obtained by finally firing acicular coke, pitch and a phenol resin at 2000 ° C. was used. Except for the above, a carbon-based aluminum composite material was prepared in the same manner as in Example 1. Table 1 shows properties and the like. Although the aluminum filling rate, the thermal conductivity, and the coefficient of thermal expansion obtained relatively good results, when this molded product (30 mm cube) was immersed in water, it foamed and collapsed. Further, when left in the air, the powder gradually turned into a powder which did not lose its original shape in about 2 weeks, and a powder having practical value was not obtained. This is presumed to be due to the reaction between aluminum and carbon to produce aluminum carbide.
【0073】[0073]
【表1】 [Table 1]
【0074】[0074]
【発明の効果】本発明の炭素基金属複合材料は、炭素と
金属との反応を抑制した条件下に炭素成形体に溶融金属
を加圧含浸させることにより複合化したものであり、気
孔に対し金属充填率が実質的に100体積%、金属含有
量35体積%以下のものである。炭素、金属の成分組成
が特定され、強度が高く、熱伝導度および熱膨張率が電
子機器用基板、例えば半導体パッケージ材料の要求品
質、それぞれ150W/(m・K)および4〜12×1
-6/℃を容易に満たすことができる。特に、熱伝導度
は、気孔の全部が金属に単に含浸されたと仮定して計算
される以上に高い結果を得ることができる。
Industrial Applicability The carbon-based metal composite material of the present invention is a composite obtained by impregnating a carbon compact with a molten metal under pressure under conditions in which the reaction between carbon and metal is suppressed. The metal filling rate is substantially 100% by volume and the metal content is 35% by volume or less. The component composition of carbon and metal is specified, the strength is high, and the thermal conductivity and thermal expansion coefficient are 150 W / (m · K) and 4 to 12 × 1, respectively, the required quality of electronic device substrates, for example, semiconductor package materials.
0 −6 / ° C. can be easily satisfied. In particular, thermal conductivity can be higher than would be calculated assuming that all of the pores were simply impregnated with metal.
【0075】炭素材料の気孔への金属の充填により機密
性のあるメッキが容易となる。また、気孔の減少により
酸素の拡散が阻止され耐酸化性の向上した炭素材料を得
ることができ、従来、不可能であった炭素繊維強化炭素
複合材料を母材とする耐酸化性のある高温強度材料、例
えばタービン部品を製造することも可能となる。
Filling the pores of the carbon material with metal facilitates plating with airtightness. In addition, the diffusion of oxygen is prevented by the reduction of the pores, so that a carbon material having improved oxidation resistance can be obtained. It also makes it possible to produce high-strength materials, for example turbine components.
【0076】さらに、炭素材料の脆性を改善することが
でき、特に機械的な加工において、材料の割れ、欠けが
生じにくくなり、加工作業が容易で精度も向上できる。
Furthermore, the brittleness of the carbon material can be improved, and the material is less likely to be cracked or chipped, particularly in mechanical working, and the working operation is easy and the accuracy can be improved.
【0077】また、複合材料の表面に金属が存在するこ
とにより、複合材料とセラミックスまたはガラス質のコ
ーティングの密着性を強固とすることができる。例え
ば、シリコンを含む金属の場合炭素材料表面は炭化珪素
に転化しており珪酸等からなるガラス質に濡れやすく、
密着性のよいコーティングができる。
In addition, the presence of the metal on the surface of the composite material can enhance the adhesion between the composite material and the ceramic or glassy coating. For example, in the case of a metal containing silicon, the carbon material surface has been converted to silicon carbide, and is easily wetted by vitreous material such as silicic acid.
A coating with good adhesion can be obtained.
【0078】以上のように炭素材料の網目状の気孔内に
金属を充填することにより、炭素材料の機械的強度、例
えば、引っ張り強度、曲げ強度、弾性率、靱性値、表面
硬度等が2倍以上に向上させることができる。炭素繊維
複合材料においては、層間強度が大幅に強化されるため
Z方向の強度において5倍以上改善されその効果が著し
い。
As described above, by filling the metal into the mesh-like pores of the carbon material, the mechanical strength of the carbon material, for example, tensile strength, bending strength, elastic modulus, toughness, surface hardness, etc., is doubled. The above can be improved. In the carbon fiber composite material, since the interlayer strength is greatly enhanced, the strength in the Z direction is improved more than 5 times, and the effect is remarkable.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の炭素基金属複合材料の製造装置の基本
構造を示す概略図である。
FIG. 1 is a schematic diagram showing a basic structure of a carbon-based metal composite material manufacturing apparatus of the present invention.
【図2】実施例4で使用した2D炭素繊維強化炭素複合
材料の概念図である。
FIG. 2 is a conceptual diagram of a 2D carbon fiber reinforced carbon composite material used in Example 4.
【符号の説明】[Explanation of symbols]
1 ホットプレス加熱部 2 金型と押し子 3 ラム 4 繊維方向90度配向シート 5 繊維方向0度配向シート DESCRIPTION OF SYMBOLS 1 Hot press heating part 2 Die and presser 3 Ram 4 Fiber orientation 90 degree orientation sheet 5 Fiber orientation 0 degree orientation sheet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 津島 栄樹 静岡県富士市五貫島747−1 株式会社先 端材料内 (72)発明者 鈴木 信幸 静岡県駿東郡長泉町下土狩140−15 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Eiki Tsushima 747-1 Onukijima, Fuji City, Shizuoka Prefecture Inside Advanced Materials (72) Inventor Nobuyuki Suzuki 140-15 Shimotsukari, Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture

Claims (12)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 炭素質マトリックスと該炭素質マト
    リックス中に分散された金属成分とからなる炭素基金属
    複合材料であって、 (1)炭素質マトリックスの気孔の90体積%以上が、
    前記金属成分により置換され、 (2)前記金属成分の含有量が、前記炭素基金属複合材
    料全体積基準で35%以下であることを特徴とする炭素
    基金属複合材料。
    1. A carbon-based metal composite material comprising a carbonaceous matrix and a metal component dispersed in the carbonaceous matrix, wherein (1) 90% by volume or more of pores of the carbonaceous matrix are:
    (2) The carbon-based metal composite material, wherein the content of the metal component is 35% or less based on the total volume of the carbon-based metal composite material.
  2. 【請求項2】 前記金属成分が、アルミニウム、マ
    グネシウム、錫、亜鉛、銅、銀、鉄およびニッケルから
    なる群より選択される少なくとも一種の金属または該金
    属を一種以上含む合金である請求項1に記載の炭素基金
    属複合材料。
    2. The method according to claim 1, wherein the metal component is at least one metal selected from the group consisting of aluminum, magnesium, tin, zinc, copper, silver, iron and nickel, or an alloy containing at least one metal. A carbon-based metal composite material as described in the above.
  3. 【請求項3】 前記金属成分がアルミニウム、銅お
    よび銀からなる群より選択される純金属成分である請求
    項2に記載の炭素基金属複合材料。
    3. The carbon-based metal composite material according to claim 2, wherein the metal component is a pure metal component selected from the group consisting of aluminum, copper and silver.
  4. 【請求項4】 前記炭素質マトリックスが、(a)
    黒鉛結晶系炭素材料、(b)炭素繊維で強化された炭素
    複合材料、ならびに(c)炭素粉、人造黒鉛粉および炭
    素繊維少なくとも一種の炭素材料を含む加圧成形体から
    なる群より選択される少なくとも一種の炭素材料である
    請求項1に記載の炭素基金属複合材料。
    4. The method according to claim 1, wherein the carbonaceous matrix comprises:
    It is selected from the group consisting of a graphite crystalline carbon material, (b) a carbon composite material reinforced with carbon fibers, and (c) a carbon powder, artificial graphite powder, and a press-formed body containing at least one carbon material. The carbon-based metal composite material according to claim 1, which is at least one carbon material.
  5. 【請求項5】 前記黒鉛結晶系炭素材料の黒鉛結晶
    の平均面間隔d002 が0.340nm以下である請求項
    4に記載の炭素基金属複合材料。
    5. The carbon-based metal composite material according to claim 4, wherein an average interplanar spacing d 002 of graphite crystals of the graphite crystal-based carbon material is 0.340 nm or less.
  6. 【請求項6】 前記炭素質マトリックスの気孔の9
    5体積%以上が前記金属成分で置換されたものである請
    求項1に記載の炭素基金属複合材料。
    6. The carbonaceous matrix having pores 9
    The carbon-based metal composite material according to claim 1, wherein 5% by volume or more is substituted with the metal component.
  7. 【請求項7】 前記金属成分の含有量が前記炭素基
    金属複合材料全体積基準で5%〜30%である請求項1
    ないし3のいずれか1項に記載の炭素基金属複合材料。
    7. The content of the metal component is 5% to 30% based on the total volume of the carbon-based metal composite material.
    4. The carbon-based metal composite material according to any one of items 3 to 3.
  8. 【請求項8】 前記炭素基金属複合材料の熱伝導率
    が150W/(m・K)以上であり、かつ熱膨張率が1
    2×10-6/℃以下である請求項1ないし7のいずれか
    の1項に記載の炭素基金属複合材料。
    8. The carbon-based metal composite material has a thermal conductivity of 150 W / (m · K) or more and a thermal expansion coefficient of 1
    The carbon-based metal composite material according to claim 1, wherein the temperature is 2 × 10 −6 / ° C. or less.
  9. 【請求項9】 炭素成形体に溶融金属を加圧装置の
    押し子により加圧含浸させることからなる炭素基金属複
    合材料の製造方法であって、 該溶融金属の温度がその融点の50℃〜250℃高い
    温度であり、 該溶融金属の圧力が押し子断面積当たり200kg/
    cm2 以上であることを特徴とする炭素基金属複合材料
    の製造方法。
    9. A method for producing a carbon-based metal composite material, comprising impregnating a carbon compact with a molten metal by a presser of a pressing device, wherein the temperature of the molten metal is 50 ° C. or less of its melting point. 250 ° C. higher temperature, and the pressure of the molten metal is 200 kg /
    cm 2 or more, a method for producing a carbon-based metal composite material.
  10. 【請求項10】 前記炭素成形体が2500℃以上の
    温度にて焼成された平均面間隔d002 が0.340nm
    以下である黒鉛結晶系炭素材料である請求項9に記載の
    炭素基金属複合材料の製造方法。
    10. An average plane distance d 002 obtained by firing the carbon compact at a temperature of 2500 ° C. or more is 0.340 nm.
    The method for producing a carbon-based metal composite material according to claim 9, which is a graphite crystalline carbon material that is as follows.
  11. 【請求項11】 前記炭素成形体の気孔率が、40体
    積%未満である請求項9または10に記載の炭素基金属
    複合材料の製造方法。
    11. The method for producing a carbon-based metal composite material according to claim 9, wherein the porosity of the carbon molded body is less than 40% by volume.
  12. 【請求項12】 前記炭素成形体の気孔率が、5体積
    %〜30体積%である請求項9ないし11のいずれかの
    1項に記載の炭素基金属複合材料の製造方法。
    12. The method for producing a carbon-based metal composite material according to claim 9, wherein the porosity of the carbon molded body is 5% by volume to 30% by volume.
JP32182899A 1998-11-11 1999-11-11 Carbon-based metal composite material and manufacturing method thereof Expired - Lifetime JP3673436B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32102198 1998-11-11
JP10-321021 1998-11-11
JP32182899A JP3673436B2 (en) 1998-11-11 1999-11-11 Carbon-based metal composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32182899A JP3673436B2 (en) 1998-11-11 1999-11-11 Carbon-based metal composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000203973A true JP2000203973A (en) 2000-07-25
JP3673436B2 JP3673436B2 (en) 2005-07-20

Family

ID=26570323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32182899A Expired - Lifetime JP3673436B2 (en) 1998-11-11 1999-11-11 Carbon-based metal composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3673436B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254464A (en) * 2001-02-28 2002-09-11 Ibiden Co Ltd Mold for press molding and its production method
JP2003034587A (en) * 2001-07-25 2003-02-07 Ryoka Macs Corp Carbon-based composite material and method of improving its plastic workability
US6927421B2 (en) 2001-10-26 2005-08-09 Ngk Insulators, Ltd. Heat sink material
US6933531B1 (en) 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
WO2006103798A1 (en) * 2005-03-29 2006-10-05 Hitachi Metals, Ltd. High-heat-conduction composite with graphite grain dispersed and process for producing the same
US7282265B2 (en) 2003-05-16 2007-10-16 Hitachi Metals, Ltd. Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate, and their production methods
CN100443726C (en) * 2000-10-27 2008-12-17 日立空调·家用电器株式会社 Coolant compressor, air conditioner therewith, and refrigerator and parts thereof
WO2009038048A1 (en) 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
JP2009283764A (en) * 2008-05-23 2009-12-03 Taiheiyo Cement Corp High-heat-radiation carbon material, and electronic component using the same
JPWO2008053639A1 (en) * 2006-10-31 2010-02-25 デンゲン株式会社 Sheet metal repair jig, sheet metal repair apparatus using the same, and sheet metal repair method
JP2010098057A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink and substrate for power module with buffer layer
JP2010098060A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Substrate for power module with heat sink and power module with heat sink
JP2010098059A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink, substrate for power module with buffer layer, and method of manufacturing substrate for power module with heat sink
JP2010098058A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink and method of manufacturing substrate for power module with heat sink
JP2011503872A (en) * 2007-11-08 2011-01-27 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Heat transfer composite, related devices and methods
JP2013138267A (en) * 2013-04-08 2013-07-11 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink, and substrate for power module with buffer layer
JP2015220239A (en) * 2014-05-14 2015-12-07 日産自動車株式会社 Power semiconductor module and manufacturing method of the same
WO2018074179A1 (en) * 2016-10-17 2018-04-26 株式会社ベイシティ Aluminum-graphite-carbide composite

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397455B1 (en) 2009-02-12 2018-10-31 Denka Company Limited Substrate comprising aluminum/graphite composite, heat dissipation part comprising same, and led luminescent member
JP6064886B2 (en) 2012-12-26 2017-01-25 株式会社豊田中央研究所 Thermally conductive stress relaxation structure
JP6164632B2 (en) * 2013-01-11 2017-07-19 株式会社アカネ Method for producing carbon-based metal composite material

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933531B1 (en) 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material
CN100443726C (en) * 2000-10-27 2008-12-17 日立空调·家用电器株式会社 Coolant compressor, air conditioner therewith, and refrigerator and parts thereof
JP2002254464A (en) * 2001-02-28 2002-09-11 Ibiden Co Ltd Mold for press molding and its production method
JP2003034587A (en) * 2001-07-25 2003-02-07 Ryoka Macs Corp Carbon-based composite material and method of improving its plastic workability
US6927421B2 (en) 2001-10-26 2005-08-09 Ngk Insulators, Ltd. Heat sink material
US7282265B2 (en) 2003-05-16 2007-10-16 Hitachi Metals, Ltd. Composite material having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate, and their production methods
US7708050B2 (en) 2003-05-16 2010-05-04 Hitachi Metals, Ltd. Composite material, having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate, and their production methods
US7923103B2 (en) 2003-05-16 2011-04-12 Hitachi Metals, Ltd. Composite material, having high thermal conductivity and low thermal expansion coefficient, and heat-dissipating substrate, and their production methods
US7851055B2 (en) 2005-03-29 2010-12-14 Hitachi Metals, Ltd. High-thermal-conductivity graphite-particles-dispersed-composite and its production method
WO2006103798A1 (en) * 2005-03-29 2006-10-05 Hitachi Metals, Ltd. High-heat-conduction composite with graphite grain dispersed and process for producing the same
JP5082845B2 (en) * 2005-03-29 2012-11-28 日立金属株式会社 High thermal conductivity graphite particle dispersed composite and method for producing the same
JPWO2008053639A1 (en) * 2006-10-31 2010-02-25 デンゲン株式会社 Sheet metal repair jig, sheet metal repair apparatus using the same, and sheet metal repair method
JP5101517B2 (en) * 2006-10-31 2012-12-19 デンゲン株式会社 Sheet metal repair method
WO2009038048A1 (en) 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
JP2011503872A (en) * 2007-11-08 2011-01-27 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド Heat transfer composite, related devices and methods
JP2009283764A (en) * 2008-05-23 2009-12-03 Taiheiyo Cement Corp High-heat-radiation carbon material, and electronic component using the same
JP2010098060A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Substrate for power module with heat sink and power module with heat sink
JP2010098058A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink and method of manufacturing substrate for power module with heat sink
JP2010098059A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink, substrate for power module with buffer layer, and method of manufacturing substrate for power module with heat sink
JP2010098057A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink and substrate for power module with buffer layer
JP2013138267A (en) * 2013-04-08 2013-07-11 Mitsubishi Materials Corp Substrate for power module with heat sink, power module with heat sink, and substrate for power module with buffer layer
JP2015220239A (en) * 2014-05-14 2015-12-07 日産自動車株式会社 Power semiconductor module and manufacturing method of the same
WO2018074179A1 (en) * 2016-10-17 2018-04-26 株式会社ベイシティ Aluminum-graphite-carbide composite

Also Published As

Publication number Publication date
JP3673436B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
JP3673436B2 (en) Carbon-based metal composite material and manufacturing method thereof
EP1055650B1 (en) Carbon-based metal composite material, method for preparation thereof and use thereof
US8863816B2 (en) Metal-infiltrated titanium—silicon-carbide and titanium—aluminum-carbide bodies
KR100839613B1 (en) Composite Sintering Materials Using Carbon Nanotube And Manufacturing Method Thereof
CN108179302B (en) preparation method of high-thermal-conductivity diamond/copper composite material
EP2130932B1 (en) Three phase composite material with high thermal conductivity and its production
JP3351778B2 (en) Carbon-based metal composite material plate-shaped body and manufacturing method
US7563502B2 (en) Fine carbon fiber-metal composite material and method for production thereof
US20090288952A1 (en) Hybrid slip casting-electrophoretic deposition (epd) process
FI91724B (en) Process for manufacturing a metal matrix composite using a negative form of an alloy
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
CN111992708A (en) Method for preparing high-performance diamond/copper composite material
KR20070029456A (en) Surface composite and fabrication method of the same
JP2012144767A (en) Composite member, heat radiation member, semiconductor device, and method of manufacturing composite member
KR20010049523A (en) Carbon-based metal composite board-shaped material and method for producing the same
Opálek et al. Microstructure and thermal stability of the Cu-ZrB2 and CuCr1Zr-ZrB2 composites prepared by gas pressure infiltration
Geffroy et al. Elaboration and properties of carbon fibre reinforced copper matrix composites
RU2754225C1 (en) Method for producing a highly heat-conductive aluminium-graphite composite
CN109576528B (en) Copper-based composite material with SiC-CDCs @ TiC as reinforcing phase and preparation method thereof
JP5308296B2 (en) Method for producing titanium silicon carbide ceramics
JP6679101B2 (en) Method of joining ceramics and metal and joined body of ceramics and metal
CN111876625B (en) AlNMg composite material and preparation method thereof
JP2010235417A (en) Porous body, metal-ceramic composite material and method of manufacturing them
JP2021091933A (en) Aluminum porous sintered body and method for producing the aluminum porous sintered body
JP2020012194A (en) Metal-silicon carbide composite and production method of the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

R150 Certificate of patent or registration of utility model

Ref document number: 3673436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term