JPH10251635A - Production of fluorescent substance - Google Patents

Production of fluorescent substance

Info

Publication number
JPH10251635A
JPH10251635A JP6312397A JP6312397A JPH10251635A JP H10251635 A JPH10251635 A JP H10251635A JP 6312397 A JP6312397 A JP 6312397A JP 6312397 A JP6312397 A JP 6312397A JP H10251635 A JPH10251635 A JP H10251635A
Authority
JP
Japan
Prior art keywords
phosphor
particles
bafx
fluorescent substance
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6312397A
Other languages
Japanese (ja)
Other versions
JP3657729B2 (en
Inventor
Masaaki Tamaya
正昭 玉谷
Keiko Arubesaaru
恵子 アルベサール
Naohisa Matsuda
直寿 松田
Yoshikazu Okumura
美和 奥村
Yoshiaki Inoue
好明 井上
Seiji Yokota
誠二 横田
Kazuhiro Kawasaki
一博 川嵜
Akira Terajima
章 寺島
Chie Fukazawa
智絵 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Toshiba Corp
Original Assignee
Neturen Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Toshiba Corp filed Critical Neturen Co Ltd
Priority to JP06312397A priority Critical patent/JP3657729B2/en
Publication of JPH10251635A publication Critical patent/JPH10251635A/en
Application granted granted Critical
Publication of JP3657729B2 publication Critical patent/JP3657729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a spherical particulate BaFX-base fluorescent substance having high luminous efficiency and good dispersibility by treating a specified fluorescent substance powder in a nonoxidizing high-temperature gas stream. SOLUTION: A raw material phosphor powder having a constitution of the formula BaFX:R (wherein X is at least one halogen element selected from F, Cl, Br and I; and R is at least one element selected from lanthanide group elements) is fed into a high-frequency hot-plasma treatment device, where it is subjected to heat treatment in a nonoxidizing high-temperature gas stream under conditions under which at least 5% of the fluorescent substance powder serving as war material is vaporized. Fluorescent substance particles melted in the high-temperature gas stream and solidified, with particle diameters close to those of raw material particles are collected by a cyclone, while the particulate phosphor vaporized from raw material particles in the high-temperature gas stream and solidified is collected by a filter. The fine particles collected by a filter are recovered to give spherical fine phosphor particles having a mean diameter of 0.05-1μm, preferably 0.1-0.2μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はBaFX系微粒子蛍
光体の製造方法に関する。
The present invention relates to a method for producing a BaFX-based fine particle phosphor.

【0002】[0002]

【従来の技術】[Prior art]

BaFX:R(XはF,Cl,BrおよびIからなる群
より選択される少なくとも1種のハロゲン元素、Rはラ
ンタニド族からなる群より選択される少なくとも1種の
元素である。)で表される蛍光体は、X線増感紙、X線
イメージングプレートまたはホールバーニング記録材料
として有用であることが知られている。
BaFX: R (X is at least one halogen element selected from the group consisting of F, Cl, Br and I, and R is at least one element selected from the group consisting of lanthanide groups). Phosphors are known to be useful as X-ray intensifying screens, X-ray imaging plates or hole burning recording materials.

【0003】例えば米国特許4,080,306には、
BaFXのバリウムを少量の2価のユーロピウムで置換
した蛍光体がX線照射によって紫外〜青色領域に効率の
よい発光を示し、この蛍光体を塗布した蛍光面をレギュ
ラータイプの写真フィルムと組み合わせるとX線像を好
適に増感して記録できることが記載されている。特開平
6−9956号公報には、BaFX系蛍光体のハロゲン
元素を化学量論組成より少なくした場合、X線照射によ
って色中心が形成され、これに赤色光を照射すると青色
の発光(いわゆる輝尽発光)が効率よく生じることが開
示されている。したがって、この蛍光体を塗布して形成
された蛍光面を用いてX線像を潜像として記録し、これ
に赤色レーザー光を照射することにより青色発光像を再
生できる。
For example, US Pat. No. 4,080,306 discloses that
The phosphor obtained by substituting a small amount of divalent europium for barium of BaFX shows efficient light emission in the ultraviolet to blue region by X-ray irradiation. When the phosphor screen coated with this phosphor is combined with a regular type photographic film, X It describes that a line image can be suitably sensitized and recorded. Japanese Patent Application Laid-Open No. 6-9956 discloses that when the halogen element of a BaFX-based phosphor is made smaller than the stoichiometric composition, a color center is formed by X-ray irradiation, and when this is irradiated with red light, blue light emission (so-called bright light) is obtained. (Emitted light emission) occurs efficiently. Therefore, an X-ray image is recorded as a latent image using the phosphor screen formed by applying the phosphor, and a blue light emission image can be reproduced by irradiating the latent image with a red laser beam.

【0004】また、ソリッドステートコミュニケーショ
ン誌99巻10号759−762頁には、BaFXのバ
リウムを少量の2価のサマリウムで置換した蛍光体を用
い、レーザー光照射によって吸収スペクトルバンドにホ
ールを形成して光記憶し、これに伴って生じる蛍光強度
の変化を観測することによって記憶を再生できることが
示されている。さらに、BaFX系蛍光体は電子線照射
による発光効率も高く、電子線を利用する発光デバイス
への応用も可能である。
Further, in Solid State Communication Magazine Vol. 99, No. 10, pp. 759-762, a phosphor in which barium of BaFX is replaced by a small amount of divalent samarium, and holes are formed in an absorption spectrum band by laser light irradiation. It is shown that the memory can be reproduced by optically storing the data and observing a change in the fluorescence intensity caused by the optical storage. Further, the BaFX-based phosphor has high luminous efficiency by electron beam irradiation, and can be applied to a light emitting device using an electron beam.

【0005】上述したいずれの用途でも、BaFX系蛍
光体粉体を基板に塗布して蛍光面を形成するが、その際
に用いられる蛍光体の粒子径は数μm以上である。この
ことは、一般的な工業用途において、粒子径が2〜10
μmの無機蛍光体が用いられていることに対応してい
る。一般的な工業用途で蛍光体の粒子径が上記のような
範囲に設定されているのは以下のような理由による。す
なわち、フラックス法により蛍光体を製造する場合、発
光効率を最適化できるのは粒子径が上記の範囲の場合で
ある。一方、粒子径が上記の範囲より小さい場合には、
発光効率が低下するとされている。これは、粒子径が小
さくなると個々の粒子表面が非発光層で覆われ、非発光
層の占める割合が大きくなることによると考えられてい
る。例えばテレビジョン学会技術報告ED−754、2
1頁、図6には、フラックス法で製造したZnS蛍光体
に関して、粒子径7μmのものと比較して粒子径1μm
程度のものでは発光効率が10〜50%程度に低下する
ことが示されている。これを外挿すると、100nm以
下の粒子径では発光は期待できない水準になる。
In any of the above-mentioned applications, a BaFX-based phosphor powder is applied to a substrate to form a phosphor screen, and the phosphor used at this time has a particle size of several μm or more. This means that in general industrial applications, the particle size is 2 to 10
This corresponds to the use of a μm inorganic phosphor. The reason why the particle size of the phosphor is set in the above range for general industrial use is as follows. That is, when the phosphor is manufactured by the flux method, the luminous efficiency can be optimized when the particle diameter is in the above range. On the other hand, if the particle size is smaller than the above range,
It is said that luminous efficiency decreases. It is considered that this is because when the particle diameter decreases, the surface of each particle is covered with the non-light-emitting layer, and the proportion of the non-light-emitting layer increases. For example, the technical report of the Institute of Television Engineers of Japan ED-754, 2
One page, FIG. 6, shows that the ZnS phosphor produced by the flux method has a particle diameter of 1 μm compared to a particle having a particle diameter of 7 μm.
It is shown that luminous efficiency is reduced to about 10 to 50% in the case of about. By extrapolating this, light emission is at a level that cannot be expected with a particle diameter of 100 nm or less.

【0006】しかし、BaFX系蛍光体を例えばX線増
感紙に用いる場合、より高い分解能を得るには蛍光体の
粒子径を小さくすることが必要になる。また、基板上に
粒子径の小さい蛍光体を含む蛍光面および粒子径の大き
い蛍光体を含む蛍光面の2層を順次形成し、大粒子から
の発光を小粒子で反射させて基板と反対方向へ進行する
光を多くするようにして蛍光面の発光効率を向上させる
ことが有効である。さらに、粒子径の小さいBaFX系
蛍光体をCaWO4 などの他のX線用蛍光体と混合して
使用することもある。これらの目的のためには、粒子径
が1μmより小さいにもかかわらず発光効率が高く、分
散性が良好で優れた粒状性が得られるBaFX系蛍光体
を用いることが望ましい。
However, when a BaFX-based phosphor is used for, for example, an X-ray intensifying screen, it is necessary to reduce the particle size of the phosphor to obtain higher resolution. In addition, two layers, a phosphor screen containing a phosphor having a small particle diameter and a phosphor screen containing a phosphor having a large particle diameter, are sequentially formed on the substrate, and light emitted from the large particles is reflected by the small particles so that the direction opposite to the substrate is reflected. It is effective to improve the luminous efficiency of the phosphor screen by increasing the amount of light traveling to the fluorescent screen. Further, a BaFX-based phosphor having a small particle diameter may be mixed with another X-ray phosphor such as CaWO 4 for use. For these purposes, it is desirable to use a BaFX-based phosphor which has a high luminous efficiency despite having a particle diameter of less than 1 μm, has good dispersibility, and has excellent granularity.

【0007】通常、BaFX系蛍光体は母体原料(ハロ
ゲン化バリウム)および付活剤源(ハロゲン化ユーロピ
ウムなど)をフラックス(ハロゲン化アルカリなど)と
混合して600〜800℃の不活性雰囲気中で焼成し固
相反応させるという方法で製造される。しかし、この方
法では、粒子どうしの付着による凝集が多く、分散性が
悪くなる。また、BaFXはPbFX型に属する結晶構
造を有するため、粒子形状が偏平になりやすい。このよ
うな偏平な粒子形状を有する蛍光体からの発光は等方的
ではなく、蛍光面からの発光は垂直方向よりも水平方向
に出射する成分が多くなる。このため、蛍光面からの光
を写真撮影すると、背景ノイズが大きい、すなわち粒状
性が悪くなる。
Usually, a BaFX phosphor is prepared by mixing a base material (barium halide) and an activator source (eg, europium halide) with a flux (eg, an alkali halide) in an inert atmosphere at 600 to 800 ° C. It is manufactured by a method of firing and solid-phase reaction. However, according to this method, agglomeration due to adhesion of particles is large, and dispersibility deteriorates. Further, BaFX has a crystal structure belonging to the PbFX type, so that the particle shape tends to be flat. The light emission from the phosphor having such a flat particle shape is not isotropic, and the light emission from the phosphor screen emits more components in the horizontal direction than in the vertical direction. For this reason, when photographing light from the phosphor screen, background noise is large, that is, graininess is deteriorated.

【0008】微粒子状のBaFX系蛍光体を製造する方
法としては種々の方法が考えられるが、好適な方法は知
られていない。例えば、ボールミリング粉砕などの機械
的方法で微粒子にすると、発光効率が低下する。上述し
た米国特許4,080,306には、水中でBaF2
BaX2 を攪拌して反応させた後に、凝集粒子をフラッ
クスとともに焼成する方法が記載されているが、1μm
以下の粒子は得られていない。上述した特開平6−99
56号公報には、BaFXの偏平一次粒子をスプレード
ライ法で造粒し、これを焼成して球状にする方法が提案
されている。しかし、この方法で得られる蛍光体は、偏
平一次粒子の形が残るため完全な球状ではなく、また1
μm以下の微粒子は得られていない。
Various methods can be considered for producing the BaFX-based phosphor in the form of fine particles, but a suitable method is not known. For example, when fine particles are formed by a mechanical method such as ball milling, the luminous efficiency is reduced. The above-mentioned US Pat. No. 4,080,306 describes a method in which BaF 2 and BaX 2 are stirred and reacted in water, and then the aggregated particles are fired together with a flux.
The following particles have not been obtained. JP-A-6-99 mentioned above
No. 56 proposes a method in which BaFX flat primary particles are granulated by a spray-drying method, and the granulated particles are fired to be spherical. However, the phosphor obtained by this method is not perfectly spherical because the shape of flat primary particles remains, and the phosphor is not perfectly spherical.
No fine particles of μm or less were obtained.

【0009】一方、本発明者らは、酸化物系または硫化
物系の蛍光体を熱プラズマ中で溶融させて冷却する方法
を提案している(特願平5−227058号)。しか
し、この方法により得られた0.1μm程度の粒子径を
有する蛍光体の発光効率は、粒子径が数μmのものに比
べて50%以下になることがわかっている。これは、粒
子径が小さくなると粒子表面の非発光層の割合が多くな
り、発光効率が低下するという理由によって説明でき
る。このような結果から、BaFX系蛍光体についても
微粒子状にすると発光効率が低下すると予想されてい
た。
On the other hand, the present inventors have proposed a method of cooling an oxide-based or sulfide-based phosphor by melting it in thermal plasma (Japanese Patent Application No. 5-227008). However, it has been found that the luminous efficiency of a phosphor having a particle diameter of about 0.1 μm obtained by this method is 50% or less as compared with a phosphor having a particle diameter of several μm. This can be explained by the reason that as the particle diameter decreases, the ratio of the non-light emitting layer on the particle surface increases, and the luminous efficiency decreases. From these results, it was expected that the luminous efficiency would be reduced when the BaFX-based phosphor was also made into fine particles.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、発光
効率が高く分散性の良好な球状のBaFX系微粒子蛍光
体を製造できる方法を提供することにある。
An object of the present invention is to provide a method for producing a spherical BaFX-based fine particle phosphor having high luminous efficiency and good dispersibility.

【0011】[0011]

【課題を解決するための手段】本発明の蛍光体の製造方
法は、下記一般式 BaFX:R (XはF,Cl,BrおよびIからなる群より選択され
る少なくとも1種のハロゲン元素、Rはランタニド族か
らなる群より選択される少なくとも1種の元素であ
る。)で表される組成を有する蛍光体粉体を原料とし、
非酸化性の高温気流中で処理し、平均粒子径0.05〜
1μmの微粒子を得ることを特徴とするものである。
According to the present invention, there is provided a method for producing a phosphor, comprising the following general formula: BaFX: R (X is at least one halogen element selected from the group consisting of F, Cl, Br and I; Is at least one element selected from the group consisting of lanthanides.) A phosphor powder having a composition represented by the following formula:
Treated in a non-oxidizing high-temperature air stream, average particle size 0.05 to
It is characterized in that fine particles of 1 μm are obtained.

【0012】[0012]

【発明の実施の形態】本発明の蛍光体を製造するには、
一般式BaFX:R(XはF,Cl,BrおよびIから
なる群より選択される少なくとも1種のハロゲン元素、
Rはランタニド族からなる群より選択される少なくとも
1種の元素である。)で表される組成を有する蛍光体粉
体を原料とし、非酸化性の高温気流中で処理する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS To manufacture the phosphor of the present invention,
General formula BaFX: R (X is at least one halogen element selected from the group consisting of F, Cl, Br and I,
R is at least one element selected from the group consisting of lanthanides. The phosphor powder having the composition represented by the formula (1) is used as a raw material and is treated in a non-oxidizing high-temperature gas stream.

【0013】本発明の方法には、通常のフラックス法で
製造した粒子径数μmの蛍光体粉体を原料として用い
る。また、処理装置としては、例えば特開平8−109
375に開示されている高周波熱プラズマ処理装置を用
いることができる。本発明において、原料となる蛍光体
粉体を非酸化性雰囲気としたのは、蛍光体の酸化が生じ
るとバリウムの一部を置換する付活剤であるユーロピウ
ムまたはサマリウムが2価から3価に変化し、発光色が
大幅に変化するためである。
In the method of the present invention, a phosphor powder having a particle diameter of several μm produced by a usual flux method is used as a raw material. As a processing apparatus, for example, Japanese Patent Application Laid-Open No. 8-109
375 can be used. In the present invention, the phosphor powder as a raw material is made to have a non-oxidizing atmosphere because europium or samarium, which is an activator that partially replaces barium when the phosphor is oxidized, changes from divalent to trivalent. This is because the emission color changes significantly.

【0014】本発明に方法においては、高周波熱プラズ
マのパワーとプラズマ中への原料蛍光体の供給量を調整
することにより、原料蛍光体が溶融するだけでなく蒸発
する条件で処理を行う。一般に、プラズマのパワーが強
く、原料蛍光体の供給量が少ないほど蒸発割合を多くで
きる。そして、反応容器よりも下流にサイクロンおよび
さらに下流にフィルタを設け、高温気流中で溶融して凝
固した原料粒子に近い粒子径を有する蛍光体粒子をサイ
クロンで捕集し、高温気流中で原料粒子から蒸発して固
化した微粒子蛍光体をフィルターで捕集する。こうして
フィルターで捕集された微粒子を回収する。
In the method of the present invention, by adjusting the power of the high-frequency thermal plasma and the supply amount of the raw material phosphor into the plasma, the treatment is performed under the condition that the raw material phosphor is not only melted but also evaporated. In general, the evaporation rate can be increased as the power of the plasma is stronger and the supply amount of the raw material phosphor is smaller. Then, a cyclone and a filter are further provided downstream of the reaction vessel, and the fluorescent particles having a particle diameter close to the raw material particles that have been melted and solidified in the high-temperature airflow are collected by the cyclone. The fine particle phosphor evaporated and solidified is collected by a filter. Thus, the fine particles collected by the filter are collected.

【0015】本発明においては、原料となる蛍光体粉体
の少なくとも5%以上が蒸発する条件に設定することが
好ましい。これは、原料蛍光体の蒸発する割合が5%未
満であると、サイクロンで捕集された粒子とフィルター
で捕集された微粒子とで格子定数および発光スペクトル
に変化が認められるためである。このことは、蛍光体組
成が幾分変化することを示唆している。
In the present invention, it is preferable to set a condition under which at least 5% or more of the phosphor powder as a raw material evaporates. This is because when the evaporation rate of the raw material phosphor is less than 5%, changes in the lattice constant and emission spectrum between the particles collected by the cyclone and the particles collected by the filter are recognized. This suggests that the phosphor composition changes somewhat.

【0016】なお、フィルターから回収される蛍光体微
粒子に、原料蛍光体に近い1μmを超える粒子径を有す
る蛍光体粒子が含まれている場合には、液中で超音波を
照射して粒子径の大きい蛍光体粒子を沈降させて除去す
ればよい。
In the case where the phosphor fine particles recovered from the filter contain phosphor particles having a particle diameter exceeding 1 μm close to the raw phosphor, the particles are irradiated with ultrasonic waves in a liquid. The phosphor particles having a large particle diameter may be settled and removed.

【0017】本発明の方法によってフィルターで回収さ
れるBaFX系蛍光体微粒子は、熱プラズマ処理条件を
調整することにより、粒子径を0.05〜1μmとする
ことができ、粒子径が小さいにもかかわらず発光効率が
高く、しかも球状で分散性の良好な形態にできる。本発
明者らによるこれまでの研究では、酸化物または酸硫化
物を熱プラズマ中で蒸発凝固させると粒子径10〜10
0nm程度の微粒子が得られることがわかっているが、
上述したようにこのような微粒子蛍光体は発光効率が劣
っている。一方、酸化亜鉛または硫化亜鉛などを熱プラ
ズマ中で蒸発凝固させると針状または偏平状の微粒子が
得られることがわかっている。これに対して、BaFX
系蛍光体の場合、熱プラズマ中で蒸発急冷して得た粒子
径0.05〜1μmの微粒子の発光効率は、原料蛍光体
の発光効率の80%以上であり、場合によっては原料蛍
光体よりも発光効率が高くなる。このような、BaFX
系蛍光体では他の蛍光体から類推される範囲を超える予
想外の結果が得られる。ただし、これらの結果が得られ
る理由は現在のところ不明確である。なお、X線回折の
結果によれば、原料蛍光体と蒸発して凝固した微粒子蛍
光体とでは結晶構造に変化がなく、上述したようなプラ
ズマ条件では格子定数に変化が生じていないことが認め
られた。
The BaFX-based phosphor fine particles recovered by the filter according to the method of the present invention can have a particle size of 0.05 to 1 μm by adjusting the conditions of the thermal plasma treatment, and can be used even if the particle size is small. Regardless, the luminous efficiency is high, and the sphere can be formed into a spherical shape with good dispersibility. Previous studies by the present inventors have shown that oxides or oxysulfides have a particle size of 10 to 10 when vaporized and solidified in a thermal plasma.
It is known that fine particles of about 0 nm can be obtained,
As described above, such a fine particle phosphor has poor luminous efficiency. On the other hand, it is known that when zinc oxide or zinc sulfide is vaporized and solidified in thermal plasma, needle-like or flat fine particles are obtained. On the other hand, BaFX
In the case of a system phosphor, the luminous efficiency of fine particles having a particle diameter of 0.05 to 1 μm obtained by evaporating and quenching in thermal plasma is 80% or more of the luminous efficiency of the raw phosphor, and in some cases, higher than that of the raw phosphor. The luminous efficiency also increases. BaFX like this
In the case of the system phosphor, unexpected results exceeding the range inferred from other phosphors can be obtained. However, the reasons for these results are unclear at present. According to the results of X-ray diffraction, it was confirmed that the crystal structure of the raw material phosphor and the fine particle phosphor solidified by evaporation did not change, and that the lattice constant did not change under the above-described plasma conditions. Was done.

【0018】本発明の方法により得られるBaFX系微
粒子蛍光体は、例えばX線増感紙に好適に用いることが
できる。例えば、基板上に粒子径の小さい蛍光体を含む
蛍光面および粒子径の大きい蛍光体を含む蛍光面の2層
を順次形成した構造のX線増感紙において、粒子径の小
さい蛍光体としてBaFX系微粒子蛍光体を用いること
ができる。また、CaWO4 などの他のX線用蛍光体と
BaFX系微粒子蛍光体を混合して用いることもでき
る。
The BaFX-based fine particle phosphor obtained by the method of the present invention can be suitably used for, for example, an X-ray intensifying screen. For example, in an X-ray intensifying screen having a structure in which a phosphor screen containing a phosphor having a small particle diameter and a phosphor screen containing a phosphor having a large particle diameter are sequentially formed on a substrate, BaFX is used as a phosphor having a small particle diameter. Based fine particle phosphor can be used. Also, another X-ray phosphor such as CaWO 4 and a BaFX-based fine particle phosphor can be mixed and used.

【0019】本発明の蛍光体の平均粒子径を0.05〜
1μmとしたのは、以下のような理由による。すなわ
ち、0.05μm未満では発光効率が低下するうえに、
X線増感紙の用途で粒子径の小さい蛍光体を含む蛍光面
(反射層)または混合蛍光体として用いる場合に光散乱
が少なくなりすぎて不適である。また、粒子径が小さす
ぎると粉体の取り扱いが困難になる。一方、1μmを超
えると高い分解能を得ることができなくなる。また、X
線増感紙の用途で反射層に用いるには粒子径が大きす
ぎ、混合蛍光体として用いる場合には均一混合が困難に
なる。これらの目的に対しては、粒子径を0.5μmよ
り小さくすることがより好ましい。
The phosphor of the present invention has an average particle diameter of 0.05 to
The reason why the thickness is set to 1 μm is as follows. That is, if the thickness is less than 0.05 μm, the luminous efficiency is reduced, and
When used as a phosphor screen (reflection layer) or a phosphor mixture containing a phosphor having a small particle size in the use of an X-ray intensifying screen, the light scattering is too small to be suitable. If the particle diameter is too small, it becomes difficult to handle the powder. On the other hand, if it exceeds 1 μm, high resolution cannot be obtained. Also, X
The particle size is too large to be used for the reflective layer in line intensifying screen applications, and uniform mixing becomes difficult when used as a mixed phosphor. For these purposes, it is more preferable to make the particle diameter smaller than 0.5 μm.

【0020】本発明の蛍光体は電子線照射によっても効
率よく発光する。これを利用して、抗原抗体反応などの
生体反応の標識に用いることができる。すなわち、生体
組織または抗原もしくは抗体に本発明の蛍光体を付着さ
せ、カソードルミネセンス像観察によってこれらの生体
組織または抗原もしくは抗体の位置を知ることができ
る。この場合、蛍光体の粒子径は0.1μmを超えない
ことが好ましい。逆に、蛍光体粒子の周りに生体組織ま
たは抗原もしくは抗体を付着させて蛍光体を標識とする
場合には、粒子径は0.1〜1μmが望ましい。
The phosphor of the present invention emits light efficiently even by electron beam irradiation. This can be used to label biological reactions such as antigen-antibody reactions. That is, the fluorescent substance of the present invention is attached to a living tissue or an antigen or an antibody, and the position of the living tissue or the antigen or the antibody can be known by observing a cathodoluminescence image. In this case, it is preferable that the particle diameter of the phosphor does not exceed 0.1 μm. Conversely, when a fluorescent material is used as a label by attaching a living tissue or an antigen or an antibody around the fluorescent material particles, the particle size is desirably 0.1 to 1 μm.

【0021】本発明の蛍光体は蛍光インクにも応用する
ことができる。すなわち、粒子径が小さく分散性に優れ
ているので液中で沈降する割合が少ない。したがって、
印刷するときに目詰まりを起こしにくく、しかも電子線
やX線照射で発光効率の高い印刷物を作製できる。例え
ば、有価証券の真贋判定用の蛍光インクなどへの応用が
可能である。この場合、平均粒子径は0.1〜0.2μ
mであることがより望ましい。
The phosphor of the present invention can be applied to a fluorescent ink. That is, since the particle diameter is small and the dispersibility is excellent, the rate of settling in the liquid is small. Therefore,
Clogging does not easily occur during printing, and a printed matter with high luminous efficiency can be produced by electron beam or X-ray irradiation. For example, the present invention can be applied to a fluorescent ink or the like for authenticating securities. In this case, the average particle size is 0.1 to 0.2 μ
m is more desirable.

【0022】[0022]

【実施例】以下、本発明の実施例を説明する。 実施例1 本実施例ではBaFCl:Eu蛍光体の微粒子を製造し
た。まず、BaF2 粒子をBaFClの化学量論組成よ
り過剰のBaCl2 水溶液中に懸濁し、BaF2 がBa
FClになるまでよく攪拌した。次に、この懸濁液をろ
過して水および過剰のBaCl2 を除去した。得られた
BaFClを再び水中に懸濁させ、これに適量のEuF
2 およびEuCl3 を加えてよく攪拌した。この懸濁液
を再びろ過し、得られた粉体を乾燥した。この粉体を窒
素雰囲気中において700℃で焼成した。冷却後、粉体
を水洗してBaFCl:Eu蛍光体を得た。ブレーン法
で求めた蛍光体の平均粒子径は4μmであった。
Embodiments of the present invention will be described below. Example 1 In this example, BaFCl: Eu phosphor fine particles were manufactured. First, was suspended BaF 2 particles in an excess of BaCl 2 aqueous solution than the stoichiometric composition of BaFCl, BaF 2 is Ba
Stir well until FCl. Then, to remove BaCl 2 of water and excess filtering the suspension. The obtained BaFCl is suspended again in water, and an appropriate amount of EuF is added thereto.
2 and EuCl 3 were added and mixed well. This suspension was filtered again, and the obtained powder was dried. This powder was fired at 700 ° C. in a nitrogen atmosphere. After cooling, the powder was washed with water to obtain a BaFCl: Eu phosphor. The average particle diameter of the phosphor determined by the Blaine method was 4 μm.

【0023】この蛍光体をアルゴンガスをキャリヤーと
して周波数4MHz、出力10kWの高周波熱プラズマ
中に供給した。蛍光体の一部は溶融して熱プラズマの外
部へ抜け出して急冷され、熱プラズマ装置の下流に設け
られたサイクロンで回収された。蛍光体の一部は蒸発し
急冷されて微粒子になり、サイクロンのさらに下流に設
けられたフィルターで回収された。
The phosphor was supplied into a high-frequency thermal plasma having a frequency of 4 MHz and an output of 10 kW using argon gas as a carrier. A part of the phosphor was melted, escaped from the thermal plasma, rapidly cooled, and collected by a cyclone provided downstream of the thermal plasma device. Part of the phosphor was evaporated and quenched into fine particles, which were collected by a filter provided further downstream of the cyclone.

【0024】フィルターで回収された微粒子の割合は装
置に投入した原料蛍光体に比べ重量比で15%であっ
た。この微粒子の粒子径を透過型電子顕微鏡法で測定し
た。その結果、平均粒子径は0.2μmであり、粒子径
が1μm以上である粒子の割合は1%以下であった。粒
子径が0.05μm以下のものは粒子形状が球状でない
ものも含まれたが、粒子径が0.1μm以上のものはほ
ぼ球状であった。
The ratio of the fine particles recovered by the filter was 15% by weight as compared with the raw material phosphor charged into the apparatus. The particle size of the fine particles was measured by transmission electron microscopy. As a result, the average particle diameter was 0.2 μm, and the proportion of particles having a particle diameter of 1 μm or more was 1% or less. Particles having a particle diameter of 0.05 μm or less included those having a non-spherical particle shape, but those having a particle diameter of 0.1 μm or more were almost spherical.

【0025】図1にこの微粒子のX線回折図を示す。回
折線の幅と位置から、得られた微粒子は結晶性の良好な
BaFClであることがわかる。図2に、得られた蛍光
体を10kV、0.5μA/cm2 の電子線で励起した
ときの発光スペクトルを示す。発光ピーク位置は熱プラ
ズマ処理する前の蛍光体と同じ380−385nmにあ
った。発光バンドの半値幅はわずかに小さくなった。そ
して、発光ピークの高さは熱プラズマ処理する前の蛍光
体に比べて17%も高かった。
FIG. 1 shows an X-ray diffraction diagram of the fine particles. From the width and position of the diffraction line, it can be seen that the obtained fine particles are BaFCl having good crystallinity. FIG. 2 shows an emission spectrum when the obtained phosphor is excited by an electron beam of 10 kV and 0.5 μA / cm 2 . The emission peak position was at 380 to 385 nm, which is the same as that of the phosphor before the thermal plasma treatment. The half width of the emission band was slightly reduced. The height of the emission peak was 17% higher than that of the phosphor before the thermal plasma treatment.

【0026】比較のために、熱プラズマ処理する前の蛍
光体をボールミルで粉砕し、平均粒子径0.5μmの粉
体(比較例1)を得た。実施例1および比較例1の蛍光
体を用い、5mm厚さの蛍光膜を形成し、80kVのX
線管からのX線を照射し、発光出力を東芝ガラス製KL
39干渉フィルターを通して測定した。この結果、実施
例1では比較例1の5倍の発光出力が得られた。
For comparison, the phosphor before thermal plasma treatment was pulverized with a ball mill to obtain a powder having an average particle diameter of 0.5 μm (Comparative Example 1). Using the phosphors of Example 1 and Comparative Example 1, a phosphor film having a thickness of 5 mm was formed, and a X-ray of 80 kV was formed.
Irradiates X-rays from the X-ray tube and changes the emission output to KL made by Toshiba Glass
Measured through a 39 interference filter. As a result, in Example 1, a light emission output five times that of Comparative Example 1 was obtained.

【0027】実施例2 実施例1と同様な方法でBaFBr:Eu蛍光体を調製
した。ブレーン法で求めた蛍光体の平均粒子径は4.7
μmであった。次に、この蛍光体を実施例1と同じ条件
で熱プラズマ処理し、微粒子をフィルターで回収した。
微粒子の回収率は20%であった。X線回折から、得ら
れた微粒子は結晶性の良好なBaFBrであることがわ
かった。
Example 2 A BaFBr: Eu phosphor was prepared in the same manner as in Example 1. The average particle size of the phosphor obtained by the Blaine method is 4.7.
μm. Next, this phosphor was subjected to thermal plasma treatment under the same conditions as in Example 1, and fine particles were collected with a filter.
The recovery rate of the fine particles was 20%. X-ray diffraction showed that the obtained fine particles were BaFBr having good crystallinity.

【0028】図3に、得られた蛍光体を実施例1と同じ
条件で電子線励起したときの発光スペクトルを示す。発
光ピーク位置は熱プラズマ処理する前の蛍光体と同じく
385−390nmにあり、スペクトルバンドの形はほ
ぼ同じであった。そして、発光ピーク高さは熱プラズマ
処理する前の蛍光体に比べて16%も高かった。
FIG. 3 shows an emission spectrum when the obtained phosphor is excited by an electron beam under the same conditions as in Example 1. The emission peak position was at 385 to 390 nm similarly to the phosphor before the thermal plasma treatment, and the shape of the spectral band was almost the same. The emission peak height was 16% higher than that of the phosphor before the thermal plasma treatment.

【0029】一方、熱プラズマ処理前の蛍光体を粉砕し
て平均粒子径0.4μmの粉体(比較例2)を得た。実
施例2および比較例2の蛍光体を用い、5mm厚さの蛍
光膜を形成し、上記と同じ条件でX線励起して発光出力
を測定した。その結果、実施例2では比較例2の6倍以
上の発光出力が得られた。
On the other hand, the phosphor before the thermal plasma treatment was pulverized to obtain a powder having an average particle diameter of 0.4 μm (Comparative Example 2). A phosphor film having a thickness of 5 mm was formed using the phosphors of Example 2 and Comparative Example 2, and the luminescence output was measured by X-ray excitation under the same conditions as described above. As a result, in Example 2, a light emission output six times or more that of Comparative Example 2 was obtained.

【0030】[0030]

【発明の効果】以上詳述したように本発明によれば、発
光効率が高く分散性の良好な球状のBaFX系微粒子蛍
光体を製造することができる。
As described in detail above, according to the present invention, a spherical BaFX-based fine particle phosphor having high luminous efficiency and good dispersibility can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の蛍光体のX線回折図。FIG. 1 is an X-ray diffraction diagram of a phosphor of Example 1.

【図2】実施例1の蛍光体の発光スペクトル図。FIG. 2 is an emission spectrum diagram of the phosphor of Example 1.

【図3】実施例2の蛍光体の発光スペクトル図。FIG. 3 is an emission spectrum diagram of the phosphor of Example 2.

フロントページの続き (72)発明者 松田 直寿 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 奥村 美和 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 井上 好明 神奈川県平塚市田村5893 高周波熱錬株式 会社内 (72)発明者 横田 誠二 神奈川県平塚市田村5893 高周波熱錬株式 会社内 (72)発明者 川嵜 一博 神奈川県平塚市田村5893 高周波熱錬株式 会社内 (72)発明者 寺島 章 神奈川県平塚市田村5893 高周波熱錬株式 会社内 (72)発明者 深澤 智絵 神奈川県平塚市田村5893 高周波熱錬株式 会社内Continuing from the front page (72) Naoto Matsuda, Inventor 1 Kosuka Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba R & D Center (72) Miwa Okumura 1 Kosuka-Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Inside the Toshiba R & D Center (72) Inventor Yoshiaki Inoue 5983 Tamura, Hikarizuka-shi, Kanagawa Prefecture High-frequency refining stock company (72) Inventor Seiji Yokota 5983, Tamura, Hiratsuka-shi, Kanagawa Prefecture High-frequency heat refining stock company (72) Inventor Kazuhiro Kawasaki 5893 Tamura, Hiratsuka-shi, Kanagawa Pref. Inside the company (72) Inventor Akira Terashima 5983 Tamura, Hiratsuka-shi, Kanagawa Pref. Heat-melting stock company

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式 BaFX:R (XはF,Cl,BrおよびIからなる群より選択され
る少なくとも1種のハロゲン元素、Rはランタニド族か
らなる群より選択される少なくとも1種の元素であ
る。)で表される組成を有する蛍光体粉体を原料とし、
非酸化性の高温気流中で処理し、平均粒子径0.05〜
1μmの微粒子を得ることを特徴とする蛍光体の製造方
法。
1. The following general formula: BaFX: R (X is at least one halogen element selected from the group consisting of F, Cl, Br and I, and R is at least one halogen element selected from the group consisting of lanthanide group) A phosphor powder having a composition represented by the following formula:
Treated in a non-oxidizing high-temperature air stream, average particle size 0.05 to
A method for producing a phosphor, wherein fine particles of 1 μm are obtained.
【請求項2】 原料となる蛍光体粉体から蒸発して固化
した平均粒子径0.05〜1μmの微粒子を回収するこ
とを特徴とする請求項1記載の蛍光体の製造方法。
2. The method for producing a phosphor according to claim 1, wherein fine particles having an average particle diameter of 0.05 to 1 μm which have been evaporated and solidified from the phosphor powder as a raw material are recovered.
JP06312397A 1997-03-17 1997-03-17 Method for manufacturing phosphor Expired - Fee Related JP3657729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06312397A JP3657729B2 (en) 1997-03-17 1997-03-17 Method for manufacturing phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06312397A JP3657729B2 (en) 1997-03-17 1997-03-17 Method for manufacturing phosphor

Publications (2)

Publication Number Publication Date
JPH10251635A true JPH10251635A (en) 1998-09-22
JP3657729B2 JP3657729B2 (en) 2005-06-08

Family

ID=13220196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06312397A Expired - Fee Related JP3657729B2 (en) 1997-03-17 1997-03-17 Method for manufacturing phosphor

Country Status (1)

Country Link
JP (1) JP3657729B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533737A (en) * 1998-12-23 2002-10-08 デュール デンタル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Flat panel storage element for X-ray images
JP2006083329A (en) * 2004-09-17 2006-03-30 Konica Minolta Medical & Graphic Inc Photostimulable phosphor composed of rare earth-doped alkaline earth metal fluoride halide and radiological image conversion panel produced by using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533737A (en) * 1998-12-23 2002-10-08 デュール デンタル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Flat panel storage element for X-ray images
JP4979849B2 (en) * 1998-12-23 2012-07-18 ミヒャエル トームス Flat plate memory element for x-ray images and method of manufacturing a flat plate memory element
JP2006083329A (en) * 2004-09-17 2006-03-30 Konica Minolta Medical & Graphic Inc Photostimulable phosphor composed of rare earth-doped alkaline earth metal fluoride halide and radiological image conversion panel produced by using the same

Also Published As

Publication number Publication date
JP3657729B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
US6835940B2 (en) Radiation image conversion panel
JPS58109899A (en) Fluorescent agent and x-ray sensitizing paper
US5227254A (en) Photostimulable europium-doped barium fluorobromide phosphors
JP2000192034A (en) Production of phosphor
GB2089829A (en) Rare earth oxyhalide phosphor and x-ray image converters
EP0614961B1 (en) Preparation of metal halide phosphor particles of selected particle size range with improved powder flowability
JP4214681B2 (en) Method for producing rare earth activated alkaline earth metal fluoride halide photostimulable phosphor particles
US7001537B2 (en) Phosphor and its production process
JPH10251635A (en) Production of fluorescent substance
US20050258377A1 (en) Radiation image conversion panel
JPH08134443A (en) Phosphor, cathode ray tube, fluorescent lamp, and radiation-intensifying screen
EP0483283A1 (en) IMPROVED PROCESS FOR PREPARING BaFBr:Eu PHOSPHORS.
JP2007314709A (en) Metal oxide phosphor, its manufacturing method, and scintillator plate for radiation obtained using the same
US6623661B2 (en) Method for producing photostimulable phosphor
JP2004217796A (en) Spherical rare earth oxide-based phosphor and method for producing the same
JPWO2007040063A1 (en) Nano-sized phosphor
JP3260563B2 (en) Phosphor and manufacturing method thereof
JP2003336051A (en) Inorganic phosphor and method for producing the same
JPS6327392B2 (en)
JP3777700B2 (en) Rare earth activated barium fluoride halide based stimulable phosphor and radiation image conversion panel using the same
JP2001131546A (en) Rare-earth oxysulfide phosphor and radiological image- conversion screen
EP0128264A2 (en) Process for the preparation of phosphor
JPH09165572A (en) Red luminiferous fluorescent material with red color pigment
JP2003270395A (en) Radiogram conversion panel
JPH06158041A (en) Production of stimulable phosphor, and x-ray image conversion panel obtained using the stimulable phosphor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

A131 Notification of reasons for refusal

Effective date: 20041207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050310

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080318

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees