JPH10251324A - α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法 - Google Patents
α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法Info
- Publication number
- JPH10251324A JPH10251324A JP5958597A JP5958597A JPH10251324A JP H10251324 A JPH10251324 A JP H10251324A JP 5958597 A JP5958597 A JP 5958597A JP 5958597 A JP5958597 A JP 5958597A JP H10251324 A JPH10251324 A JP H10251324A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- ether
- olefin
- titanium
- polymerization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
なる程十分高い触媒活性と立体規則性を有するα−オレ
フィン重合用触媒ならびに微粉が少なく粉体性状が良好
な高立体規則性α−オレフィン重合体の製造方法を提
供。 【解決手段】(A)Si−O結合を有する有機ケイ素化
合物およびエステル化合物の存在下、一般式Ti(OR
1 )a X4-a (R1 はC1〜20の炭化水素基、Xはハ
ロゲン原子、0<a≦4)で表されるチタン化合物を有
機マグネシウム化合物で還元して得られる固体生成物
を、エーテル化合物、四塩化チタン及び有機酸ハライド
化合物の混合物で処理したのち、エーテル化合物と四塩
化チタンとの混合物もしくは、エーテル化合物と四塩化
チタンとエステル化合物との混合物で処理し得られる3
価のチタン化合物含有固体触媒成分、(B)有機アルミ
ニウム化合物、(C)電子供与性化合物を触媒成分とし
て用いる。
Description
合用触媒およびα−オレフィン重合体の製造方法に関す
る。更に詳しくは、触媒当たりおよびチタン原子当たり
の触媒活性が非常に高い新規な触媒、及び該触媒を用い
て触媒残渣および無定形重合体が極めて少ない機械的性
質と加工性に優れた高立体規則性のα−オレフィン重合
体を製造するためのα−オレフィン重合用触媒、及びα
−オレフィン重合体の製造方法に関する。
フィンのアイソタクチック重合体を製造する方法とし
て、周期律表の第4〜6族の遷移金属化合物と第1、
2、13族の有機金属化合物とからなるいわゆるチーグ
ラーナッタ触媒を使用することはよく知られている。
工業的に利用価値の高い高立体規則性α−オレフィン重
合体の他に無定型重合体が副生する。この無定形重合体
は、工業的に利用価値が少なく、α−オレフィン重合体
を成型品、フィルム、繊維、その他の加工品に加工して
使用する際の機械的性質に大きく悪影響をおよぼす。ま
た、無定形重合体の生成は原料モノマーの損失を招き、
同時に無定形重合体の除去のための製造設備が必要とな
り工業的に見ても極めて大きな不利益を招く。従って、
α−オレフィン重合体を製造するための触媒はこのよう
な無定形重合体の生成が全く無いか、あるいは、あって
も極めて僅かである必要がある。
は、遷移金属化合物と有機金属化合物とからなる触媒残
渣が残留する。この触媒残渣は、α−オレフィン重合体
の安定性、加工性など種々の点において問題を引き起こ
すので、触媒残渣除去と安定化のための設備が必要とな
る。この欠点は、触媒単位重量当たりの生成α−オレフ
ィン重合体重量で表される触媒活性を大きくすることに
より改善することができ、上記触媒残渣除去のための設
備も不要となり、α−オレフィン重合体の製造コストの
引き下げも可能となる。
化合物を有機マグネシウム化合物で還元して、マグネシ
ウムとチタンの共晶体を形成させることにより得られる
Ti−Mg複合型固体触媒は、助触媒の有機アルミニウ
ム化合物、重合第三成分の有機ケイ素化合物と組み合わ
せて用いることによりある程度のα−オレフィンの高立
体規則性・高活性重合が実現できることが知られている
(特公平3−43283号公報、特開平1−31950
8号公報)。
イ素化合物の共存下、4価のチタン化合物を有機マグネ
シウム化合物で還元する際に、さらにエステル化合物を
共存させることで、より高立体規則性・高活性重合が実
現できることを提案した(特開平7−206017号公
報)。
が可能なレベルにはあるが、さらに一層の改良が望まれ
ている。具体的には、α−オレフィン重合体の高品質化
のために、さらなる高立体規則性重合を粒径分布などを
犠牲にすることなく実現することが望まれている。特
に、成形分野のように重合体の高剛性化が望まれている
用途においては、高立体規則性重合体であることが、直
接高剛性の品質を生むので、高立体規則性重合能を有す
る触媒の出現が望まれている。
触媒を工業的実用に供する際その粒子形状及び粒径分布
は、重合体の嵩密度、粒子寸法、流動性を制御する上で
非常に重要である。この粒子形状の改良及び粒径分布の
狭化に関して、エチレンの重合においては、シリカゲル
にチタン−マグネシウム化合物を担持せしめた固体触媒
を用い、かかる問題点を克服しようとする試みがなされ
ている(特開昭54−148098号公報、特開昭56
−47407号公報)。
ロピレンの重合において、シリカゲルにチタン−マグネ
シウム化合物を含浸せしめた固体触媒を用いることによ
って粒子性状が大幅に改善されることが記載されてい
る。これらの方法によれば粒子形状については確かに非
常な改良効果が認められるが、担体に用いたシリカゲル
が製品中に多量に残存する為、フィルム用途においては
フィッシュ・アイの原因となり、品質上好ましくない。
また、重合活性も低く生産性も満足できるものではな
い。そこで、現在、触媒形状が良く、且つ粒径分布が狭
い高活性・高立体規則性の固体触媒成分が切実に望まれ
ている。
本発明の解決すべき課題、即ち本発明の目的は、粒径分
布が良好なα−オレフィン重合用固体触媒成分を含有す
る、触媒残渣および無定形重合体の除去が不必要となる
程十分高い触媒活性と立体規則性を有するα−オレフィ
ン重合用触媒ならびに微粉が少なく粉体性状が良好な高
立体規則性α−オレフィン重合体の製造方法を提供する
ことにある。
を解決すべく鋭意研究を重ねてきた。その結果、有機ケ
イ素化合物およびエステル化合物の共存下、4価のチタ
ン化合物を有機マグネシウム化合物で還元して得られる
固体生成物を特定の処理して得られる固体触媒成分と、
助触媒の有機アルミニウム化合物、重合第三成分の有機
ケイ素化合物とを組み合わせて用いることにより、さら
なるα−オレフィンの高立体規則性・高活性重合を達成
できることを見出した。
る有機ケイ素化合物およびエステル化合物の存在下、一
般式Ti(OR1 )a X4-a (R1 は炭素数が1〜20
の炭化水素基、Xはハロゲン原子、aは0<a≦4の数
字を表す。)で表されるチタン化合物を有機マグネシウ
ム化合物で還元して得られる固体生成物を、エーテル化
合物、四塩化チタン及び有機酸ハライド化合物の混合物
で処理したのち、エーテル化合物と四塩化チタンとの混
合物もしくは、エーテル化合物と四塩化チタンとエステ
ル化合物との混合物で処理することにより得られる3価
のチタン化合物含有固体触媒成分、(B)有機アルミニ
ウム化合物、及び(C)電子供与性化合物を触媒成分と
して用いてなるα−オレフィン重合用触媒、及び該触媒
を用いてα−オレフィンを単独重合または共重合するα
−オレフィン重合体の製造方法にかかるものである。
レフィンの高立体規則性重合が達成される。
明する。 (a)チタン化合物 本発明で使用する固体触媒成分(A)の製造に用いられ
るチタン化合物は、一般式Ti(OR1 )a X4-a (R
1 は炭素数が1〜20の炭化水素基、Xはハロゲン原
子、aは0<a≦4の数字を表す。)で表されるチタン
化合物である。R 1 の具体例としては、メチル基、エチ
ル基、プロピル基、イソプロピル基、ブチル基、イソブ
チル基、tert−ブチル基、アミル基、イソアミル
基、tert−アミル基、ヘキシル基、ヘプチル基、オ
クチル基、デシル基、ドデシル基等のアルキル基、フェ
ニル基、クレジル基、キシレル基、ナフチル基等のアリ
ール基、プロペニル基等のアリル基、ベンジル基等のア
ラルキル基等が例示される。これらの中で炭素数2〜1
8のアルキル基および炭素数6〜18のアリール基が好
ましい。特に炭素数2〜18の直鎖状アルキル基が好ま
しい。また、2種以上の異なるOR1 基を有するチタン
化合物を用いることも可能である。
原子、臭素原子、ヨウ素原子が例示できる。この中で、
特に塩素原子が好ましい結果を与える。
チタン化合物のaの値としては、0<a≦4、好ましく
は、2≦a≦4、特に好ましくは、a=4である。
チタン化合物の製造方法としては、公知の方法が使用で
きる。例えばTi(OR1 )4 とTiX4 を所定の割合
で反応させる方法、あるいは、TiX4 と対応するアル
コール類を所定量反応させる方法が使用できる。また、
これらのチタン化合物は、炭化水素化合物あるいはハロ
ゲン化炭化水素化合物などに希釈されて用いられても良
い。
4-a で表されるチタン化合物としては、四塩化チタン、
四臭化チタン、四沃化チタン等のテトラハロゲン化チタ
ン化合物、メトキシチタントリクロライド、エトキシチ
タントリクロライド、ブトキシチタントリクロライド、
フェノキシチタントリクロライド、エトキシチタントリ
ブロマイド等のトリハロゲン化アルコキシチタン化合
物、ジメトキシチタンジクロライド、ジエトキシチタン
ジクロライド、ジブトキシチタンジクロライド、ジフェ
ノキシチタンジクロライド、ジエトキシチタンジブロマ
イド等のジハロゲン化ジアルコキシチタン化合物、トリ
メトキシチタンクロライド、トリエトキシチタンクロラ
イド、トリブトキシチタンクロライド、トリフェノキシ
チタンクロライド、トリエトキシチタンブロマイド等の
モノハロゲン化トリアルコキシチタン化合物、テトラメ
トキシチタン、テトラエトキシチタン、テトラブトキシ
チタン、テトラフェノキシチタン等のテトラアルコキシ
チタン化合物を挙げることができる。
合物 本発明における固体触媒成分の製造で使用されるSi−
O結合を有する有機ケイ素化合物としては、例えば下記
の一般式で表されるものが使用できる。 Si(OR2 )m R3 4-m R4 (R5 2SiO)p SiR6 3 または、(R7 2SiO)q ここに、R2 は炭素数が1〜20の炭化水素基、R3 、
R4 、R5 、R6 およびR7 は炭素数が1〜20の炭化
水素基または水素原子であり、mは0<m≦4の数字で
あり、pは1〜1000の整数であり、qは2〜100
0の整数である。
は、テトラメトキシシラン、ジメチルジメトキシシラ
ン、テトラエトキシシラン、トリエトキシエチルシラ
ン、ジエトキシジエチルシラン、エトキシトリエチルシ
ラン、テトライソプロポキシシラン、ジイソプロポキシ
ジイソプロピルシラン、テトラプロポキシシラン、ジプ
ロポキシジプロピルシラン、テトラブトキシシラン、ジ
ブトキシジブチルシラン、ジシクロペントキシジエチル
シラン、ジエトキシジフェニルシラン、シクロヘキシロ
キシトリメチルシラン、フェノキシトリメチルシラン、
テトラフェノキシシラン、トリエトキシフェニルシラ
ン、ヘキサメチルジシロキサン、ヘキサエチルジシロキ
サン、ヘキサプロピルジシロキサン、オクタエチルトリ
シロキサン、ジメチルポリシロキサン、ジフェニルポリ
シロキサン、メチルヒドロポリシロキサン、フェニルヒ
ドロポリシロキサン等を例示することができる。
ものは、一般式Si(OR2 )m R 3 4-mで表されるアル
コキシシラン化合物であり、好ましくは1≦m≦4であ
り、特にm=4のテトラアルコキシシラン化合物が好ま
しい。
び多価のカルボン酸エステルが用いられ、それらの例と
して脂肪族カルボン酸エステル、脂環式カルボン酸エス
テル、芳香族カルボン酸エステルを挙げることができ
る。具体例としては、酢酸メチル、酢酸エチル、酢酸フ
ェニル、プロピオン酸メチル、プロピオン酸エチル、酪
酸エチル、吉草酸エチル、アクリル酸メチル、アクリル
酸エチル、メタクリル酸メチル、安息香酸エチル、安息
香酸ブチル、トルイル酸メチル、トルイル酸エチル、ア
ニス酸エチル、コハク酸ジエチル、コハク酸ジブチル、
マロン酸ジエチル、マロン酸ジブチル、マレイン酸ジメ
チル、マレイン酸ジブチル、イタコン酸ジエチル、イタ
コン酸ジブチル、フタル酸モノエチル、フタル酸ジメチ
ル、フタル酸メチルエチル、フタル酸ジエチル、フタル
酸ジ−n−プロピル、フタル酸ジイソプロピル、フタル
酸ジ−n−ブチル、フタル酸ジイソブチル、フタル酸ジ
−n−オクチル、フタル酸ジフェニル等を挙げることが
できる。
ル酸エステル、マレイン酸エステル等の不飽和脂肪族カ
ルボン酸エステルおよびフタル酸エステルが好ましく、
特にフタル酸のジエステルが好ましく用いられる。
Mg−炭素結合を含有する任意の型の有機マグネシウム
化合物を使用することができる。特に一般式R 8 MgX
(式中、R8 は炭素数1〜20の炭化水素基を、Xはハ
ロゲン原子を表す。)で表されるグリニャール化合物お
よび一般式R9 R10Mg(式中、R9 およびR10は炭素
数1〜20の炭化水素基を表す。)で表されるジアルキ
ルマグネシウム化合物またはジアリールマグネシウム化
合物が好適に使用される。ここでR8 、R9 、R10は同
一でも異なっていても良く、メチル基、エチル基、プロ
ピル基、イソプロピル基、ブチル基、sec−ブチル
基、アミル基、イソアミル基、ヘキシル基、オクチル
基、2−エチルヘキシル基、フェニル基、ベンジル基等
の炭素数1〜20のアルキル基、アリール基、アラルキ
ル基、アルケニル基等が例示できる。
メチルマグネシウムクロライド、エチルマグネシウムク
ロライド、エチルマグネシウムブロマイド、エチルマグ
ネシウムアイオダイド、プロピルマグネシウムクロライ
ド、プロピルマグネシウムブロマイド、ブチルマグネシ
ウムクロライド、ブチルマグネシウムブロマイド、se
c−ブチルマグネシウムクロライド、sec−ブチルマ
グネシウムブロマイド、tert−ブチルマグネシウム
クロライド、tert−ブチルマグネシウムブロマイ
ド、アミルマグネシウムクロライド、イソアミルマグネ
シウムクロライド、ヘキシルマグネシウムクロライド、
フェニルマグネシウムクロライド、フェニルマグネシウ
ムブロマイド等が、一般式R9 R10Mgで表される化合
物としては、ジメチルマグネシウム、ジエチルマグネシ
ウム、ジプロピルマグネシウム、ジイソプロピルマグネ
シウム、ジブチルマグネシウム、ジ−sec−ブチルマ
グネシウム、ジ−tert−ブチルマグネシウム、ブチ
ル−sec−ブチルマグネシウム、ジアミルマグネシウ
ム、ジヘキシルマグネシウム、ジフェニルマグネシウ
ム、ブチルエチルマグネシウム等が挙げられる。
としては、ジエチルエーテル、ジプロピルエーテル、ジ
イソプロピルエーテル、ジブチルエーテル、ジイソブチ
ルエーテル、ジアミルエーテル、ジイソアミルエーテ
ル、ジヘキシルエーテル、ジオクチルエーテル、ジフェ
ニルエーテル、ジベンジルエーテル、フェネトール、ア
ニソール、テトラヒドロフラン、テトラヒドロピラン等
のエーテル溶媒が通常よく用いられる。また、ヘキサ
ン、ヘプタン、オクタン、シクロヘキサン、メチルシク
ロヘキサン、ベンゼン、トルエン、キシレン等の炭化水
素溶媒、あるいは、エーテル溶媒と炭化水素溶媒との混
合溶媒も用いられる。
は、エーテル溶液の状態で使用することが好ましいが、
この場合のエーテル化合物としては、分子内に炭素数6
個以上を含有するエーテル化合物または、環状構造を有
するエーテル化合物が用いられる。そして、特に一般式
R8 MgXで表されるグリニャール化合物をエーテル溶
液の状態で使用することが触媒性能の点から好ましい。
機金属化合物との炭化水素可溶性錯体を使用することも
できる。この様な有機金属化合物の例としては、Li,
Be,B,AlまたはZnの有機化合物が挙げられる。
ルエーテル、ジプロピルエーテル、ジイソプロピルエー
テル、ジブチルエーテル、ジイソブチルエーテル、ジア
ミルエーテル、ジイソアミルエーテル、ジネオペンチル
エーテル、ジヘキシルエーテル、ジオクチルエーテル、
メチルブチルエーテル、メチルイソアミルエーテル、エ
チルイソブチルエーテル等のジアルキルエーテルが挙げ
られる。これらのうち、ジブチルエーテルと、ジイソア
ミルエーテルが特に好ましく用いられる。
ノおよび多価のカルボン酸ハライドが用いられ、それら
の例として脂肪族カルボン酸ハライド、脂環式カルボン
酸ハライド、芳香族カルボン酸ハライドを挙げることが
できる。具体例としては、アセチルクロライド、プロピ
オン酸クロライド、酪酸クロライド、吉草酸クロライ
ド、アクリル酸クロライド、メタクリル酸クロライド、
塩化ベンゾイル、トルイル酸クロライド、アニス酸クロ
ライド、コハク酸クロライド、マロン酸クロライド、マ
レイン酸クロライド、イタコン酸クロライド、フタル酸
クロライド等を挙げることができる。
化ベンゾイル、トルイル酸クロライド、フタル酸クロラ
イド等の芳香族カルボン酸クロライドが好ましく、特に
フタル酸クロライドが好ましく用いられる。
物およびエステル化合物の存在下、チタン化合物を有機
マグネシウム化合物で還元して得られる固体生成物を、
エーテル化合物、四塩化チタン及び有機酸ハライド化合
物の混合物で処理したのち、エーテル化合物と四塩化チ
タンの混合物もしくはエーテル化合物と四塩化チタンと
エステル化合物の混合物で処理することにより得られ
る。これらの製造反応は通常、全て窒素、アルゴン等の
不活性気体雰囲気下で行われる。
物の還元反応の方法としては、チタン化合物、有機ケイ
素化合物およびエステル化合物の混合物に有機マグネシ
ウム化合物を添加する方法、あるいは、逆に有機マグネ
シウム化合物の溶液にチタン化合物、有機ケイ素化合物
およびエステル化合物の混合物を添加する方法のいずれ
でも良い。このうち、チタン化合物、有機ケイ素化合物
およびエステル化合物の混合物に有機マグネシウム化合
物を添加する方法が触媒活性の点から好ましい。
ステル化合物は、適当な溶媒に溶解もしくは希釈して使
用するのが好ましい。かかる溶媒としては、ヘキサン、
ヘプタン、オクタン、デカン等の脂肪族炭化水素、トル
エン、キシレン等の芳香族炭化水素、シクロへキサン、
メチルシクロヘキサン、デカリン等の脂環式炭化水素、
ジエチルエーテル、ジブチルエーテル、ジイソアミルエ
ーテル、テトラヒドロフラン等のエーテル化合物が挙げ
られる。
ましくは−30〜50℃、特に好ましくは、−25〜3
5℃の温度範囲である。還元反応温度が高すぎると触媒
活性が低下する。
リマー等の多孔質物質を共存させ、固体生成物を多孔質
物質に含浸させることも可能である。かかる多孔質物質
としては、細孔半径20〜200nmにおける細孔容積
が0.3ml/g以上であり、平均粒径が5〜300μ
mであるものが好ましい。
l2 O3 、MgO、TiO2 、ZrO2 、SiO2 ・A
l2 O3 複合酸化物、MgO・Al2 O3 複合酸化物、
MgO・SiO2 ・Al2 O3 複合酸化物等を挙げるこ
とができる。また、多孔質ポリマーとしては、ポリスチ
レン、スチレン−ジビニルベンゼン共重合体、スチレン
−n,n’−アルキレンジメタクリルアミド共重合体、
スチレン−エチレングリコールジメタクリル酸メチル共
重合体、ポリアクリル酸エチル、アクリル酸メチル−ジ
ビニルベンゼン共重合体、アクリル酸エチル−ジビニル
ベンゼン共重合体、ポリメタクリル酸メチル、メタクリ
ル酸メチル−ジビニルベンゼン共重合体、ポリエチレン
グリコールジメタクリル酸メチル、ポリアクリロニトリ
ル、アクリロニトリル−ジビニルベンゼン共重合体、ポ
リ塩化ビニル、ポリビニルピロリジン、ポリビニルピリ
ジン、エチルビニルベンゼン−ジビニルベンゼン共重合
体、ポリエチレン、エチレン−アクリル酸メチル共重合
体、ポリプロピレン等に代表されるポリスチレン系、ポ
リアクリル酸エステル系、ポリアクリロニトリル系、ポ
リ塩化ビニル系、ポリオレフィン系のポリマーを挙げる
ことができる。これらの多孔質物質のうち、SiO2 ,
Al2 O3 ,スチレン−ジビニルベンゼン共重合体が好
ましく用いられる。
〜12時間程度である。還元反応終了後、さらに20〜
120℃の温度で後反応を行っても良い。
物のチタン原子に対するケイ素原子の原子比で、通常S
i/Ti=1〜50、好ましくは3〜30、特に好まし
くは5〜25の範囲である。また、エステル化合物の使
用量は、チタン化合物のチタン原子に対するエステル化
合物のモル比で、通常エステル化合物/Ti=0.05
〜10、好ましくは0.1〜6、特に好ましくは0.2
〜3の範囲である。さらに、有機マグネシウム化合物の
使用量は、チタン原子とケイ素原子の和とマグネシウム
原子の原子比で、通常Ti+Si/Mg=0.1〜1
0、好ましくは、0.2〜5.0、特に好ましくは、
0.5〜2.0の範囲である。
液分離し、ヘキサン、ヘプタン等の不活性炭化水素溶媒
で数回洗浄を行う。この様にして得られた還元固体生成
物は、三価のチタン、マグネシウムおよびハイドロカル
ビルオキシ基を含有し、一般に非晶性もしくは極めて弱
い結晶性を示す。触媒性能の点から、特に非晶性の構造
が好ましい。
テル化合物、四塩化チタン及び有機酸ハライド化合物の
混合物で処理を行う。有機酸ハライド化合物を用いるこ
とにより、工業的に利用価値の少ない無定形重合体であ
る冷キシレン可溶部の量が減少する。また、同時に重合
活性及び重合体パウダーの嵩密度が向上し、生産性も向
上する。
物中に含有されるチタン原子1モルに対し、通常0.1
〜100モル、好ましくは0.5〜50モル、特に好ま
しくは1〜20モルである。四塩化チタンの添加量は、
還元固体生成物中に含有されるチタン原子1モルに対
し、通常1〜1000モル、好ましくは3〜500モ
ル、特に好ましくは10〜300モルである。また、エ
ーテル化合物1モルに対する四塩化チタンの添加量は、
通常1〜100モル、好ましくは1.5〜75モル、特
に好ましくは2〜50モルである。有機酸ハライド化合
物の使用量は、還元固体生成物中のチタン原子1モル当
たり、通常0.1〜50モル、さらに好ましくは0.3
〜20モル、特に好ましくは0.5〜10モルである。
また、固体生成物中のマグネシウム原子1モル当たりの
有機酸ハライド化合物の使用量は、通常0.01〜1.
0モル、好ましくは0.03〜0.5モルである。有機
酸ハライド化合物の使用量が過度に多い場合には粒子の
崩壊が起こることがある。
ハライド化合物の混合物による還元固体生成物の処理
は、スラリー法やボールミル等による機械的粉砕手段な
ど両者を接触させうる公知のいかなる方法によっても行
うことができるが、機械的粉砕を行うと固体触媒成分に
微粉が多量に発生し、粒径分布が広くなり、工業的観点
から好ましくなく、希釈剤の存在下で両者を接触させる
のが好ましい。
プタン、オクタン等の脂肪族炭化水素、ベンゼン、トル
エン、キシレン等の芳香族炭化水素、シクロヘキサン、
シクロペンタン等の脂環式炭化水素、1,2−ジクロル
エタン、モノクロルベンゼン等のハロゲン化炭化水素が
使用できる。この中でも、芳香族炭化水素及びハロゲン
化炭化水素が特に好ましい。
たり通常、0.1ml〜1000mlであり、好ましく
は1ml〜100mlである。処理温度は、通常−50
〜150℃であり、好ましくは0〜120℃である。処
理時間は、通常30分以上であるが、好ましくは1〜1
0時間である。通常処理終了後静置し、固液分離したの
ち、不活性炭化水素溶媒で数回洗浄を行い、有機酸ハラ
イド処理固体が得られる。
合物もしくは、エーテル化合物と四塩化チタンとエステ
ル化合物の混合物による処理を行う。この処理は、スラ
リー状態で行うのが好ましい。スラリー化するのに用い
る溶媒としては、ペンタン、ヘキサン、ヘプタン、オク
タン、デカン等の脂肪族炭化水素、トルエン、キシレン
等の芳香族炭化水素、シクロヘキサン、メチルシクロヘ
キサン、デカリン等の脂環式炭化水素、ジクロルエタ
ン、トリクロルエチレン、モノクロルベンゼン、ジクロ
ルベンゼン、トリクロルベンゼン等のハロゲンか炭化水
素が挙げられるが、この中でもハロゲン化炭化水素及び
芳香族炭化水素が好ましい。
固体/ml溶媒、特に0.1〜0.5g固体/ml溶媒
が好ましい。反応温度は、通常30〜150℃、好まし
くは45〜135℃、特に好ましくは60〜120℃で
ある。反応時間に特に制限は無いが、通常30分から6
時間程度が好適である。
物、エーテル化合物及び四塩化チタンを供給する方法と
しては、有機酸ハライド処理固体にエステル化合物、エ
ーテル化合物及び四塩化チタンを加える方法、逆にエス
テル化合物、エーテル化合物及び四塩化チタンの溶液中
に有機酸ハライド処理固体を加える方法のいずれの方法
でも良い。有機酸ハライド処理固体にエステル化合物、
エーテル化合物及び四塩化チタンを加える方法において
は、エステル化合物、エーテル化合物を加えたのち四塩
化チタンを加える方法、エステル化合物、エーテル化合
物及び四塩化チタンを同時に添加する方法が好ましく、
特に、有機酸ハライド処理固体に予め調製したエステル
化合物、エーテル化合物及び四塩化チタンとの混合物を
添加する方法が好ましい。
及び四塩化チタンによる処理、もしくはエステル化合
物、エーテル化合物及び四塩化チタンの混合物による処
理は、1回以上繰り返して行ってもよい。触媒活性及び
立体規則性の点から該処理は少なくとも2回繰り返して
行うことが好ましい。
ド処理固体中に含有されるチタン原子1モルに対し、通
常0.1〜100モル、好ましくは0.5〜50モル、
特に好ましくは1〜20モルである。四塩化チタンの添
加量は、有機酸ハライド処理固体中に含有されるチタン
原子1モルに対し、通常1〜1000モル、好ましくは
3〜500モル、特に好ましくは10〜300モルであ
る。また、エーテル化合物1モルに対する四塩化チタン
の添加量は、通常1〜100モル、好ましくは1.5〜
75モル、特に好ましくは2〜50モルである。
ル化合物の使用量は、有機酸ハライド処理固体中に含有
されるチタン原子1モルに対して30モル以下、好まし
くは15モル以下、特に好ましくは5モル以下である。
は、通常固液分離したのち、ヘキサン、ヘプタン等の不
活性炭化水素溶媒で数回洗浄したのち重合に用いる。固
液分離後、多量のモノクロルベンゼン等のハロゲン化炭
化水素溶媒またはトルエン等の芳香族炭化水素溶媒で、
50〜120℃の温度で1回以上洗浄し更にヘキサン等
の脂肪族炭化水素溶媒で数回洗浄を繰り返したのち、重
合に用いるのが触媒活性、立体規則性の点で好ましい。
指標として、ロジン・ラムラー(Rosin−Ramm
ler)の粒度分布関数における定数Nがある(Rosin,
P.and E. Rammler : J. Inst. Fuel, 7, P29 (1933).
及び化学工学便覧 改訂3版、361〜362ペー
ジ)。 R(Dp )=100exp{−(Dp /De )N } ここで、R(Dp )は残留率分布であり、ある粒子径D
p よりも大きい粒子群の積算量と全体量との比を粒子径
に対して残留率曲線として示したものである。またDe
はR(Dp )=36.8%における粒子径を表わす。N
の値が大きいほど分布は狭くなる傾向を示し、この値が
大きい固体触媒成分は、粒径分布が狭く、得られた重合
体は嵩密度が高く工業的にも好ましい。
媒成分は、上記のロジン・ラムラーの粒度分布関数にお
ける定数Nの値として通常5以上であり、粒径分布が狭
い。
なくとも分子内に一個のAl−炭素結合を有するもので
ある。代表的なものを一般式で下記に示す。 R11γAlY3-γ R12R13Al−O−AlR14R15 (式中、R11〜R15は炭素数が1〜20個の炭化水素
基、Yはハロゲン、水素またはアルコキシ基を表し、γ
は2≦γ≦3で表される数字である。) 有機アルミニウム化合物の具体例としては、トリエチル
アルミニウム、トリイソブチルアルミニウム、トリヘキ
シルアルミニウム等のトリアルキルアルミニウム、ジエ
チルアルミニウムハイドライド、ジイソブチルアルミニ
ウムハイドライド等のジアルキルアルミニウムハイドラ
イド、ジエチルアルミニウムクロライド等のジアルキル
アルミニウムハライド、トリエチルアルミニウムとジエ
チルアルミニウムクロライドの混合物のようなトリアル
キルアルミニウムとジアルキルアルミニウムハライドの
混合物、テトラエチルジアルモキサン、テトラブチルジ
アルモキサン等のアルキルアルモキサンが例示できる。
トリアルキルアルミニウム、トリアルキルアルミニウム
とジアルキルアルミニウムハライドの混合物、アルキル
アルモキサンが好ましく、とりわけトリエチルアルミニ
ウム、トリイソブチルアルミニウム、トリエチルアルミ
ニウムとジエチルアルミニウムクロライドの混合物およ
びテトラエチルジアルモキサンが好ましい。
触媒中のチタン原子1モル当たり通常0.5〜1000
モルのごとく広範囲に選ぶことができるが、特に1〜6
00モルの範囲が好ましい。
としては、アルコール類、フェノール類、ケトン類、ア
ルデヒド類、カルボン酸類、有機酸または無機酸のエス
テル類、エーテル類、酸アミド類、酸無水物類等の含酸
素電子供与体、アンモニア類、アミン類、ニトリル類、
イソシアネート類等の含窒素電子供与体等を挙げること
ができる。これらの電子供与体のうち好ましくは無機酸
のエステル類およびエ−テル類が用いられる。
般式R16 n Si(OR17)4-n (式中、R16は炭素数1
〜20の炭化水素基または水素原子、R17は炭素数1〜
20の炭化水素基であり、R16、R17は、それぞれ同一
分子内に異なった置換基を有していても良く、nは0≦
n<4である)で表されるようなケイ素化合物を挙げる
ことができる。具体例としては、テトラメトキシシラ
ン、テトラエトキシシラン、テトラブトキシシラン、テ
トラフェノキシシラン、メチルトリメトキシシラン、エ
チルトリメトキシシラン、ブチルトリメトキシシラン、
イソブチルトリメトキシシラン、tert−ブチルトリ
メトキシシラン、イソプロピルトリメトキシシラン、シ
クロヘキシルトリメトキシシラン、フェニルトリメトキ
シシラン、ビニルトリメトキシシラン、ジメチルジメト
キシシラン、ジエチルジメトキシシラン、ジプロピルジ
メトキシシラン、プロピルメチルジメトキシシラン、ジ
イソプロピルジメトキシシラン、ジブチルジメトキシシ
ラン、ジイソブチルジメトキシシラン、ジ−tert−
ブチルジメトキシシラン、ブチルメチルジメトキシシラ
ン、ブチルエチルジメトキシシラン、tert−ブチル
メチルジメトキシシラン、イソブチルイソプロピルジメ
トキシシラン、tert−ブチルイソプロピルジメトキ
シシラン、ヘキシルメチルジメトキシシラン、ヘキシル
エチルジメトキシシラン、ドデシルメチルジメトキシシ
ラン、ジシクロペンチルジメトキシシラン、シクロペン
チルメチルジメトキシシラン、シクロペンチルエチルジ
メトキシシラン、シクロペンチルイソプロピルジメトキ
シシラン、シクロペンチルイソブチルジメトキシシラ
ン、シクロペンチル−tert−ブチルジメトキシシラ
ン、ジシクロヘキシルジメトキシシラン、シクロヘキシ
ルメチルジメトキシシラン、シクロヘキシルエチルジメ
トキシシラン、シクロヘキシルイソプロピルジメトキシ
シラン、シクロヘキシルイソブチルジメトキシシラン、
シクロヘキシル−tert−ブチルジメトキシシラン、
シクロヘキシルシクロペンチルジメトキシシラン、シク
ロヘキシルフェニルジメトキシシラン、ジフェニルジメ
トキシシラン、フェニルメチルジメトキシシラン、フェ
ニルイソプロピルジメトキシシラン、フェニルイソブチ
ルジメトキシシラン、フェニル−tert−ブチルジメ
トキシシラン、フェニルシクロペンチルジメトキシシラ
ン、ビニルメチルジメトキシシラン、メチルトリエトキ
シシラン、エチルトリエトキシシラン、ブチルトリエト
キシシラン、イソブチルトリエトキシシラン、tert
−ブチルトリエトキシシラン、イソプロピルトリエトキ
シシラン、シクロヘキシルトリエトキシシラン、フェニ
ルトリエトキシシラン、ビニルトリエトキシシラン、ジ
メチルジエトキシシラン、ジエチルジエトキシシラン、
ジプロピルジエトキシシラン、プロピルメチルジエトキ
シシラン、ジイソプロピルジエトキシシラン、ジブチル
ジエトキシシラン、ジイソブチルジエトキシシラン、ジ
−tert−ブチルジエトキシシラン、ブチルメチルジ
エトキシシラン、ブチルエチルジエトキシシラン、te
rt−ブチルメチルジエトキシシラン、ヘキシルメチル
ジエトキシシラン、ヘキシルエチルジエトキシシラン、
ドデシルメチルジエトキシシラン、ジシクロペンチルジ
エトキシシラン、ジシクロヘキシルジエトキシシラン、
シクロヘキシルメチルジエトキシシラン、シクロヘキシ
ルエチルジエトキシシラン、ジフェニルジエトキシシラ
ン、フェニルメチルジエトキシシラン、ビニルメチルジ
エトキシシラン、エチルトリイソプロポキシシラン、ビ
ニルトリブトキシシラン、フェニルトリ−tert−ブ
トキシシラン、2−ノルボルナントリメトキシシラン、
2−ノルボルナントリエトキシシラン、2−ノルボルナ
ンメチルジメトキシシラン、トリメチルフェノキシシラ
ン、メチルトリアリロキシシラン等を挙げることができ
る。
アルキルエーテル、一般式 (式中、R18〜R21は炭素数1〜20の線状または分岐
状のアルキル、脂環式、アリール、アルキルアリール、
アリールアルキル基であり、R18またはR19は水素であ
ってもよい。)で表されるようなジエーテル化合物を挙
げることができる。具体例としては、ジエチルエーテ
ル、ジプロピルエーテル、ジイソプロピルエーテル、ジ
ブチルエーテル、ジアミルエーテル、ジイソアミルエー
テル、ジネオペンチルエーテル、ジヘキシルエーテル、
ジオクチルエーテル、メチルブチルエーテル、メチルイ
ソアミルエーテル、エチルイソブチルエーテル、2,2
−ジイソブチル−1,3−ジメトキシプロパン、2−イ
ソプロピル−2−イソペンチル−1,3−ジメトキシプ
ロパン、2,2−ビス(シクロヘキシルメチル)−1,
3−ジメトキシプロパン、2−イソプロピル−2−3,
7−ジメチルオクチル−1,3−ジメトキシプロパン、
2,2−ジイソプロピル−1,3−ジメトキシプロパ
ン、2−イソプロピル−2−シクロヘキシルメチル−
1,3−ジメトキシプロパン、2,2−ジシクロヘキシ
ル−1,3−ジメトキシプロパン、2−イソプロピル−
2−イソブチル−1,3−ジメトキシプロパン、2,2
−ジイソプロピル−1,3−ジメトキシプロパン、2,
2−ジプロピル−1,3−ジメトキシプロパン、2−イ
ソプロピル−2−シクロヘキシル−1,3−ジメトキシ
プロパン、2−イソプロピル−2−シクロペンチル−
1,3−ジメトキシプロパン、2,2−ジシクロペンチ
ル−1,3−ジメトキシプロパン、2−ヘプチル−2−
ペンチル−1,3−ジメトキシプロパン等を挙げること
ができる。
22R23Si(OR24)2 で表される有機ケイ素化合物が
特に好ましく用いられる。ここで式中、R22はSiに隣
接する炭素原子が2級もしくは3級である炭素数3〜2
0の炭化水素基であり、具体的には、イソプロピル基、
sec−ブチル基、tert−ブチル基、tert−ア
ミル基等の分岐鎖状アルキル基、シクロペンンチル基、
シクロヘキシル基等のシクロアルキル基、シクロペンテ
ニル基等のシクロアルケニル基、フェニル基、トリル基
等のアリール基等が挙げられる。また式中、R23は炭素
数1〜20の炭化水素基であり、具体的には、メチル
基、エチル基、プロピル基、ブチル基、ペンチル基等の
直鎖状アルキル基、イソプロピル基、sec−ブチル
基、tert−ブチル基、tert−アミル基、等の分
岐鎖状アルキル基、シクロペンンチル基、シクロヘキシ
ル基等のシクロアルキル基、シクロペンテニル基等のシ
クロアルケニル基、フェニル基、トリル基等のアリール
基等が挙げられる。さらに式中、R24は炭素数1〜20
の炭化水素基であり、好ましくは炭素数1〜5の炭化水
素基である。
れる有機ケイ素化合物の具体例としては、ジイソプロピ
ルジメトキシシラン、ジイソブチルジメトキシシラン、
ジ−tert−ブチルジメトキシシラン、tert−ブ
チルメチルジメトキシシラン、tert−ブチルエチル
ジメトキシシラン、tert−ブチル−n−プロピルジ
メトキシシラン、tert−ブチル−n−ブチルジメト
キシシラン、tert−アミルメチルジメトキシシラ
ン、tert−アミルエチルジメトキシシラン、ter
t−アミル−n−プロピルジメトキシシラン、tert
−アミル−n−ブチルジメトキシシラン、イソブチルイ
ソプロピルジメトキシシラン、tert−ブチルイソプ
ロピルジメトキシシラン、ジシクロペンチルジメトキシ
シラン、シクロペンチルイソプロピルジメトキシシラ
ン、シクロペンチルイソブチルジメトキシシラン、シク
ロペンチル−tert−ブチルジメトキシシラン、ジシ
クロヘキシルジメトキシシラン、シクロヘキシルメチル
ジメトキシシラン、シクロヘキシルエチルジメトキシシ
ラン、シクロヘキシルイソプロピルジメトキシシラン、
シクロヘキシルイソブチルジメトキシシラン、シクロヘ
キシル−tert−ブチルジメトキシシラン、シクロヘ
キシルシクロペンチルジメトキシシラン、シクロヘキシ
ルフェニルジメトキシシラン、ジフェニルジメトキシシ
ラン、フェニルメチルジメトキシシラン、フェニルイソ
プロピルジメトキシシラン、フェニルイソブチルジメト
キシシラン、フェニル−tert−ブチルジメトキシシ
ラン、フェニルシクロペンチルジメトキシシラン、ジイ
ソプロピルジエトキシシラン、ジイソブチルジエトキシ
シラン、ジ−tert−ブチルジエトキシシラン、te
rt−ブチルメチルジエトキシシラン、tert−ブチ
ルエチルジエトキシシラン、tert−ブチル−n−プ
ロピルジエトキシシラン、tert−ブチル−n−ブチ
ルジエトキシシラン、tert−アミルメチルジエトキ
シシラン、tert−アミルエチルジエトキシシラン、
tert−アミル−n−プロピルジエトキシシラン、t
ert−アミル−n−ブチルジエトキシシラン、ジシク
ロペンチルジエトキシシラン、ジシクロヘキシルジエト
キシシラン、シクロヘキシルメチルジエトキシシラン、
シクロヘキシルエチルジエトキシシラン、ジフェニルジ
エトキシシラン、フェニルメチルジエトキシシラン、2
−ノルボルナンメチルジメトキシシラン等を挙げること
ができる。
α−オレフィンであり、使用できるα−オレフィンの具
体例としてはプロピレン、ブテン−1、ペンテン−1、
ヘキセン−1、ヘプテン−1、オクテン−1、デセン−
1などの直鎖状モノオレフィン類、3−メチルブテン−
1、3−メチルペンテン−1、4−メチルペンテン−
1、などの分岐モノオレフィン類、ビニルシクロヘキサ
ンなどが挙げられる。これらのα−オレフィンは1種類
を用いてもよいし、あるいは、2種類以上を組み合わせ
て用いてもよい。これらのα−オレフィンのうちでは、
プロピレンまたはブテン−1を用いて単独重合を行うこ
と、あるいはプロピレンまたはブテン−1を主成分とす
る混合オレフィンを用いて共重合を行うことが好まし
く、プロピレンを用いて単独重合を行うこと、あるいは
プロピレンを主成分とする混合オレフィンを用いて共重
合を行うことが特に好ましい。また、本発明における共
重合に際しては、エチレン及び上記のα−オレフィンか
ら選ばれる2種類または、それ以上の種類のオレフィン
を混合して用いることができる。さらに、共役ジエンや
非共役ジエンのような多不飽和結合を有する化合物を共
重合に用いることも可能である。そして、重合を2段以
上にして行うヘテロブロック共重合も容易に行うことが
できる。
は、窒素、アルゴン等の不活性ガス中で水分のない状態
で供給する以外は、特に制限すべき条件はない。
合物(B)、および電子供与性化合物(C)は、個別に
供給しても良いし、いずれか2者を予め接触させて供給
しても良い。
レフィンの重合を行うことが可能であるが、このような
重合(本重合)の実施前に以下に述べる予備重合を行っ
てもかまわない。
機アルミニウム化合物(B)の存在下、少量のオレフィ
ンを供給して実施され、スラリー状態で行うのが好まし
い。スラリー化するのに用いる溶媒としては、プロパ
ン、ブタン、イソブタン、ペンタン、イソペンタン、ヘ
キサン、ヘプタン、オクタン、シクロヘキサン、ベンゼ
ン、トルエンのような不活性炭化水素を挙げることがで
きる。また、スラリー化するに際し、不活性炭化水素溶
媒の一部または全部に変えて液状のオレフィンを用いる
ことができる。
用量は、固体触媒成分中のチタン原子1モル当たり、通
常0.5〜700モルのごとく広範囲に選ぶことができ
るが、0.8〜500モルが好ましく、1〜200モル
が特に好ましい。
固体触媒成分1g当たり通常0.01〜1000g、好
ましくは0.05〜500g、特に好ましくは0.1〜
200gである。
500g−固体触媒成分/リットル−溶媒が好ましく、
特に3〜300g−固体触媒成分/リットル−溶媒が好
ましい。予備重合温度は、−20〜100℃が好まし
く、特に0〜80℃が好ましい。また、予備重合中の気
相部でのオレフィンの分圧は、0.01〜20kg/c
m2 が好ましく、特に0.1〜10kg/cm2 が好ま
しいが、予備重合の圧力、温度において液状であるオレ
フィンについては、この限りではない。さらに、予備重
合時間に特に制限はないが、通常2分から15時間が好
適である。
(A)、有機アルミニウム化合物(B)、オレフィンを
供給する方法としては、固体触媒成分(A)と有機アル
ミニウム化合物(B)を接触させておいた後オレフィン
を供給する方法、固体触媒成分(A)とオレフィンを接
触させておいた後有機アルミニウム化合物(B)を供給
する方法のいずれの方法を用いても良い。また、オレフ
ィンの供給方法としては、重合槽内が所定の圧力になる
ように保持しながら順次オレフィンを供給する方法、或
いは所定のオレフィン量を最初にすべて供給する方法の
いずれの方法を用いても良い。また、得られる重合体の
分子量を調節するために水素等の連鎖移動剤を添加する
ことも可能である。
存在下、固体触媒成分(A)を少量のオレフィンで予備
重合するに際し、必要に応じて電子供与性化合物(C)
を共存させても良い。使用される電子供与性化合物は、
上記の電子供与性化合物(C)の一部または、全部であ
る。その使用量は、固体触媒成分(A)中に含まれるチ
タン原子1モルに対し、通常0.01〜400モル、好
ましくは0.02〜200モル、特に好ましくは、0.
03〜100モルであり、有機アルミニウム化合物
(B)に対し、通常0.003〜5モル、好ましくは
0.005〜3モル、特に好ましくは0.01〜2モル
である。
供給方法に特に制限なく、有機アルミニウム化合物
(B)と別個に供給しても良いし、予め接触させて供給
しても良い。また、予備重合で使用されるオレフィン
は、本重合で使用されるオレフィンと同一であっても異
なっていても良い。
は、予備重合を行うことなく、前述の固体触媒成分
(A)、有機アルミニウム化合物(B)および電子供与
性化合物(C)からなるα−オレフィン重合用触媒の存
在下に、α−オレフィンの本重合を行うことができる。
量は、固体触媒成分(A)中のチタン原子1モル当た
り、通常1〜1000モルのごとく広範囲に選ぶことが
できるが、特に5〜600モルの範囲が好ましい。
合物(C)は、固体触媒成分(A)中に含まれるチタン
原子1モルに対し、通常0.1〜2000モル、好まし
くは0.3〜1000モル、特に好ましくは、0.5〜
800モルであり、有機アルミニウム化合物に対し、通
常0.001〜5モル、好ましくは0.005〜3モ
ル、特に好ましくは0.01〜1モルである。
たって実施することができるが、20〜180℃が好ま
しい。重合圧力に関しては特に制限は無いが、工業的か
つ経済的であるという点で、一般に、常圧〜100kg
/cm2 、好ましくは2〜50kg/cm2 程度の圧力
が採用される。重合形式としては、バッチ式、連続式い
ずれでも可能である。また、プロパン、ブタン、イソブ
タン、ペンタン、ヘキサン、ヘプタン、オクタンの如き
不活性炭化水素溶媒によるスラリー重合もしくは溶液重
合、重合温度において液状のオレフィンを媒体としたバ
ルク重合または気相重合も可能である。
めに水素等の連鎖移動剤を添加することも可能である。
に詳細に説明するが、本発明は、以下の実施例によって
特に限定をうけるものではない。なお実施例中、重合体
の各種物性の評価方法は、次のとおりである。
と略す):1gの重合パウダーを200mlの沸騰キシ
レンに溶解したのち、50℃まで徐冷し、次いで氷水に
浸し撹拌しながら20℃まで冷却し、20℃で3時間放
置したのち、析出したポリマーを濾別する。濾液からキ
シレンを蒸発させ、60℃で減圧乾燥して20℃のキシ
レンに可溶なポリマーを回収・秤量し、全ポリマーに対
する重量%を求める。CXSは値が小さいほど、無定形
重合体が少なく、高立体規則性であることを示す。
ベローデ型粘度計を用いて、テトラリン溶媒、135℃
で測定した。
堀場製作所(株)製超遠心式自動粒度分布測定装置CA
PA−700を用いて頻度分布を測定した後、得られた
データを下記のロジン・ラムラーの式(Rosin,P.and E.
Rammler :J.Inst.Fuel,7,P29(1933). 及び化学工学便覧
改訂3版 361〜362ページ)に適用することに
より求めた。 R(Dp )=100exp{−(Dp /De )N } ここで、R(Dp )は残留率分布であり、ある粒子径D
p よりも大きい粒子群の積算量と全体量との比を粒子径
に対して残留率曲線として示したものである。またDe
はR(Dp )=36.8%における粒子径を表わす。N
の値が大きいほど分布は狭くなる傾向を示し、この値が
大きい固体触媒成分は、粒径分布が狭く、得られた重合
体は嵩密度が高く工業的にも好ましい。
素で置換した後、ヘキサン290ml、テトラブトキシ
チタン8.9ml(8.9g、26.1ミリモル)、フ
タル酸ジイソブチル3.1ml(3.3g、11.8ミ
リモル)およびテトラエトキシシラン87.4ml(8
1.6g、392ミリモル)を投入し、均一溶液とし
た。次に、n−ブチルマグネシウムクロライドのジ−n
−ブチルエーテル溶液(有機合成薬品社製、n−ブチル
マグネシウムクロライド濃度2.1mmol/ml)1
99mlを、フラスコ内の温度を6℃に保ちながら、滴
下ロートから5時間かけて徐々に滴下した。滴下終了
後、6℃でさらに1時間撹拌した後、室温でさらに1時
間攪拌した。その後、固液分離し、トルエン260ml
で3回洗浄を繰り返した後、トルエンを適量加え、スラ
リー濃度0.184g/mlとした。固体生成物スラリ
ーの一部をサンプリングし、組成分析を行ったところ固
体生成物中にはチタン原子が1.94重量%、フタル酸
エステルが0.18重量%、エトキシ基が34.6重量
%、ブトキシ基が3.2重量%含有されていた。
スコを窒素で置換したのち、上記(a)で得られた固体
生成物を含むスラリーを50ml投入し、トルエンを2
3.5ml抜き出し、あらかじめ調製したブチルエーテ
ル0.80ml(6.45ミリモル)、四塩化チタン1
6.0ml(0.146モル)及びフタル酸クロライド
1.6ml(11.1ミリモル:0.20ml/1g固
体生成物)の混合液を加え、115℃まで昇温しそのま
ま3時間攪拌した。反応終了後、同温度で固液分離した
後、同温度でトルエン40mlで2回洗浄を行った。次
いで、トルエン10.0ml、フタル酸イソブチル0.
45ml(1.68ミリモル)、ブチルエーテル0.8
0ml(6.45ミリモル)、および四塩化チタン8.
0ml(0.073モル)を加え、115℃で1時間反
応を行った。反応終了後、同温度で固液分離し、同温度
でトルエン40mlで3回洗浄を行ったのち、ヘキサン
40mlで3回洗浄し、さらに減圧乾燥して固体触媒成
分6.90gを得た。固体触媒成分中には、チタン原子
が2.18重量%、フタル酸エステルが9.03重量
%、エトキシ基が0.3重量%、ブトキシ基が0.1重
量%含まれていた。また、固体触媒成分を実体顕微鏡で
観察したところ、微粉の無い良好な粒子性状を有してい
た。
アルゴン置換し、トリエチルアルミニウム2.6ミリモ
ル、シクロヘキシルエチルジメトキシシラン0.26ミ
リモル及び(b)で合成した固体触媒成分2.5mgを
仕込み、0.33kg/cm2 の分圧に相当する水素を
加えた。次いで780gの液化プロピレンを仕込み、オ
ートクレーブの温度を80℃に昇温し、80℃で1時間
重合を行った。重合終了後未反応モノマーをパージし
た。生成した重合体を60℃で2時間減圧乾燥し、10
9gのポリプロピレンパウダーを得た。従って、固体触
媒成分1g当たりのポリプロピレンの収量(以下、PP
/Catと略す。)は、PP/Cat=43,500
(g/g)であった。また、全重合体収量に占める20
℃キシレンに可溶な成分の割合はCXS=0.54(w
t%)、重合体の極限粘度は[η]=1.94、嵩密度
=0.385g/mlであった。重合条件及び重合結果
を表1に示す。
(7.5g、22ミリモル)、フタル酸ジイソブチル
2.5ml(2.6g、9.3ミリモル)およびテトラ
エトキシシラン74.8ml(70.3g、338ミリ
モル)、有機マグネシウム化合物溶液173mlとした
以外は、実施例1の(a)と同様にして反応を行った。
固液分離して得た固体生成物は、ヘキサン300mlで
3回、トルエン300mlで3回洗浄を繰り返した後ト
ルエン270mlを加えた。固体生成物スラリーの一部
をサンプリングし、組成分析を行ったところ固体生成物
中にはチタン原子が1.80重量%、フタル酸エステル
が0.1重量%、エトキシ基が35.0重量%、ブトキ
シ基が3.2重量%含有されていた。
スコをアルゴンで置換したのち、上記(a)で得られた
固体生成物を含むスラリーを84ml投入し、更に上澄
み液を12.1mlを抜き取り、フタル酸ジイソブチル
7.8ml(29ミリモル)を加え、95℃で30分反
応を行った。反応後、固液分離し、トルエン59mlで
2回洗浄を行った。次いで、フラスコにトルエン15.
3ml、フタル酸ジイソブチル0.66ml(2.5ミ
リモル)、ブチルエーテル1.2ml(6.9ミリモ
ル)、および四塩化チタン23.4ml(0.213モ
ル)の混合物を加え、105℃で3時間処理を行った。
処理終了後、同温度で固液分離した後、同温度でトルエ
ン59mlで2回洗浄を行った。次いで、トルエン1
2.0ml、ブチルエーテル1.2ml(6.9ミリモ
ル)、および四塩化チタン11.7ml(0.106モ
ル)の混合物を加え、105℃で1時間処理を行った。
処理終了後、同温度で固液分離した。同温度でトルエン
59mlで3回洗浄を行ったのち、ヘキサン59mlで
3回洗浄し、さらに減圧乾燥して固体触媒成分8.1g
を得た。固体触媒成分中には、チタン原子が1.5重量
%、フタル酸エステルが8.9重量%、エトキシ基が
0.4重量%、ブトキシ基が0.1重量%含まれてい
た。
(c)で得た固体触媒成分を4.0mg用いた以外は同
様にしてプロピレンの重合を行った。重合結果は、PP
/Cat=30,000(g/g)と重合活性は低く、
CXS=0.74(wt%)と立体規則性が低かった。
また、嵩密度=0.360g/ml、[η]=2.01であ
った。重合条件及び重合結果を表1に示す。
スコをアルゴンで置換したのち、実施例6(a)で調製
した固体生成物を含むスラリーの量を50ml投入し、
更に上澄み液を3.5ml抜き取り、フタル酸クロライ
ド1.6ml(11.1ミリモル)を加え、110℃で
30分反応を行った。反応後、固液分離し、トルエン4
0mlで2回洗浄を行った。次いで、フラスコにトルエ
ン10ml、フタル酸ジイソブチル0.45ml(1.
7ミリモル)、ブチルエーテル0.8ml(6.5ミリ
モル)、および四塩化チタン16.0ml(0.146
モル)の混合物を加え、115℃で3時間反応を行っ
た。反応終了後、同温度で固液分離した後、同温度でト
ルエン40mlで2回洗浄を行った。次いで、トルエン
10ml、ブチルエーテル0.8ml(6.5ミリモ
ル)、および四塩化チタン8.0ml(0.073モ
ル)の混合物を加え、115℃で1時間反応を行った。
反応終了後、同温度で固液分離した後、同温度でトルエ
ン40mlで3回洗浄を行ったのち、ヘキサン40ml
で3回洗浄し、さらに減圧乾燥して固体触媒成分5.8
gを得た。固体触媒成分中には、チタン原子が1.28
重量%、フタル酸エステルが5.75重量%、エトキシ
基が1.2重量%、ブトキシ基が0.2重量%含まれて
いた。
は、実施例1(c)のプロピレンの重合と同様にしてプ
ロピレンの重合を行った。重合結果は、PP/Cat=
7,700(g/g)と重合活性は低く、CXS=1.
56(wt%)と立体規則性が低かった。また、嵩密度
=0.420g/ml、[η]=1.61であった。重合条
件及び重合結果を表1に示す。
量を50ml投入し、トルエンを23.5ml抜き出
し、先にフタル酸クロライド1.60ml(11.1ミ
リモル:0.20ml/1g固体生成物)を加え、その
後、ブチルエーテル0.80ml(6.45ミリモル)
四塩化チタン16.0ml(0.146モル)の混合液
を加え、115℃まで昇温しそのまま3時間攪拌した。
反応終了後、同温度で固液分離した後、同温度でトルエ
ン40mlで2回洗浄を行った。次いで、トルエン10
ml、フタル酸ジイソブチル0.45ml(1.68ミ
リモル)、ブチルエーテル0.80ml(6.45ミリ
モル)、および四塩化チタン8.0ml(0.073モ
ル)の混合物を加え、115℃で1時間処理を行った。
処理終了後、同温度で固液分離し、同温度でトルエン4
0mlで3回洗浄を行ったのち、ヘキサン40mlで3
回洗浄し、さらに減圧乾燥して固体触媒成分7.27g
を得た。固体触媒成分中には、チタン原子が2.29重
量%、フタル酸エステルが11.03重量%、エトキシ
基が0.2重量%、ブトキシ基が0.1重量%含まれて
いた。
1(c)のプロピレンの重合と同様にしてプロピレンの
重合を行った。重合結果は、PP/Cat=25,80
0(g/g)と低活性であった。また、CXS=0.5
7(wt%)、嵩密度=0.365g/ml、[η]=1.
95であった。重合条件及び重合結果を表1に示す。
かつ触媒残渣および無定形重合体の除去が不必要な、十
分高い触媒活性と立体規則性を有するα−オレフィン重
合用触媒、ならびに高品質の高立体規則性α−オレフィ
ン重合体の製造方法が提供される。
ャート図である。本フローチャート図は、本発明の実施
態様の代表例であり、本発明は、何らこれに限定される
ものではない。
Claims (3)
- 【請求項1】(A)Si−O結合を有する有機ケイ素化
合物およびエステル化合物の存在下、一般式Ti(OR
1 )a X4-a (R1 は炭素数が1〜20の炭化水素基、
Xはハロゲン原子、aは0<a≦4の数字を表す。)で
表されるチタン化合物を有機マグネシウム化合物で還元
して得られる固体生成物を、エーテル化合物、四塩化チ
タン及び有機酸ハライド化合物の混合物で処理したの
ち、エーテル化合物と四塩化チタンとの混合物もしく
は、エーテル化合物と四塩化チタンとエステル化合物と
の混合物で処理することにより得られる3価のチタン化
合物含有固体触媒成分、(B)有機アルミニウム化合
物、及び(C)電子供与性化合物を触媒成分として用い
てなることを特徴とするα−オレフィン重合用触媒。 - 【請求項2】固体触媒成分(A)の粒径分布が、ロジン
・ラムラーの粒度分布関数におけるNの値として5以上
であることを特徴とする請求項1記載のα−オレフィン
重合用触媒。 - 【請求項3】請求項1または2記載のα−オレフィン重
合用触媒を用いてα−オレフィンを単独重合または共重
合することを特徴とするα−オレフィン重合体の製造方
法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05958597A JP3419237B2 (ja) | 1997-03-13 | 1997-03-13 | α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05958597A JP3419237B2 (ja) | 1997-03-13 | 1997-03-13 | α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10251324A true JPH10251324A (ja) | 1998-09-22 |
JP3419237B2 JP3419237B2 (ja) | 2003-06-23 |
Family
ID=13117464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05958597A Expired - Fee Related JP3419237B2 (ja) | 1997-03-13 | 1997-03-13 | α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3419237B2 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001114815A (ja) * | 1999-10-19 | 2001-04-24 | Idemitsu Petrochem Co Ltd | オレフィン重合触媒、オレフィン重合体の製造方法及びオレフィン重合体 |
JP2001294610A (ja) * | 2000-02-08 | 2001-10-23 | Sumitomo Chem Co Ltd | α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒、およびα−オレフィン重合体の製造方法 |
JP2003105019A (ja) * | 2001-09-28 | 2003-04-09 | Sumitomo Chem Co Ltd | α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒、およびα−オレフィン重合体の製造方法 |
JP2007269996A (ja) * | 2006-03-31 | 2007-10-18 | Sumitomo Chemical Co Ltd | オレフィン重合用固体触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法 |
KR101044589B1 (ko) | 2002-08-06 | 2011-06-29 | 스미또모 가가꾸 가부시끼가이샤 | α-올레핀 중합용 촉매의 제조방법, 및 α-올레핀중합체의 제조방법 |
JP2011184537A (ja) * | 2010-03-08 | 2011-09-22 | Sumitomo Chemical Co Ltd | α−オレフィン重合用触媒 |
JP2014162905A (ja) * | 2013-02-27 | 2014-09-08 | Toho Titanium Co Ltd | オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒およびオレフィン類重合体の製造方法 |
-
1997
- 1997-03-13 JP JP05958597A patent/JP3419237B2/ja not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001114815A (ja) * | 1999-10-19 | 2001-04-24 | Idemitsu Petrochem Co Ltd | オレフィン重合触媒、オレフィン重合体の製造方法及びオレフィン重合体 |
JP2001294610A (ja) * | 2000-02-08 | 2001-10-23 | Sumitomo Chem Co Ltd | α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒、およびα−オレフィン重合体の製造方法 |
JP2003105019A (ja) * | 2001-09-28 | 2003-04-09 | Sumitomo Chem Co Ltd | α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒、およびα−オレフィン重合体の製造方法 |
KR101044589B1 (ko) | 2002-08-06 | 2011-06-29 | 스미또모 가가꾸 가부시끼가이샤 | α-올레핀 중합용 촉매의 제조방법, 및 α-올레핀중합체의 제조방법 |
JP2007269996A (ja) * | 2006-03-31 | 2007-10-18 | Sumitomo Chemical Co Ltd | オレフィン重合用固体触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法 |
JP2011184537A (ja) * | 2010-03-08 | 2011-09-22 | Sumitomo Chemical Co Ltd | α−オレフィン重合用触媒 |
JP2014162905A (ja) * | 2013-02-27 | 2014-09-08 | Toho Titanium Co Ltd | オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒およびオレフィン類重合体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP3419237B2 (ja) | 2003-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2950168B2 (ja) | α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法 | |
JP3832039B2 (ja) | α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法 | |
US6395667B1 (en) | Solid catalyst component for α-olefin polymerization and process for producing α-olefin polymer | |
US5608018A (en) | α-olefin polymerization catalyst system and process for producing α-olefin catalyst | |
JP4085733B2 (ja) | α−オレフィン重合触媒およびα−オレフィン共重合体の製造方法 | |
JP2006096936A (ja) | α−オレフィン重合用触媒およびα−オレフィン重合体の製造方法 | |
JP3419237B2 (ja) | α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法 | |
JPH10212312A (ja) | α−オレフィン重合触媒用固体触媒成分 | |
EP0657476B2 (en) | Alpha-olefin polymers, alpha-olefin polymerizing catalyst and process for producing alpha-olefin polymers | |
JP3521550B2 (ja) | α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法 | |
EP0747400B1 (en) | Alpha-olefin polymerization catalyst and process for producing alpha-olefin polymer | |
JP3885336B2 (ja) | α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法 | |
JP3552342B2 (ja) | α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法 | |
US6566464B2 (en) | Process for producing solid catalyst component and catalyst for α-olefin polymerization, and process for producing α-olefin polymer | |
JP4710144B2 (ja) | α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒、およびα−オレフィン重合体の製造方法 | |
JP4839513B2 (ja) | α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒、およびα−オレフィン重合体の製造方法 | |
JPH11228616A (ja) | α−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法 | |
JP4085740B2 (ja) | α−オレフィン重合触媒およびα−オレフィン共重合体の製造法 | |
JP3050074B2 (ja) | α−オレフィン重合用触媒系及びα−オレフィン重合体の製造方法 | |
JPH07157511A (ja) | オレフィン重合体の製造方法およびオレフィンの重合用触媒 | |
JPH07157510A (ja) | α−オレフィン重合体およびα−オレフィン重合用触媒ならびにα−オレフィン重合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080418 Year of fee payment: 5 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D05 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090418 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090418 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100418 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |