JPH10248177A - Charging circuit - Google Patents

Charging circuit

Info

Publication number
JPH10248177A
JPH10248177A JP9048027A JP4802797A JPH10248177A JP H10248177 A JPH10248177 A JP H10248177A JP 9048027 A JP9048027 A JP 9048027A JP 4802797 A JP4802797 A JP 4802797A JP H10248177 A JPH10248177 A JP H10248177A
Authority
JP
Japan
Prior art keywords
charging
current
battery
predetermined value
charging current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9048027A
Other languages
Japanese (ja)
Inventor
Tomohisa Hagino
智久 萩野
Takamasa Obara
崇正 小原
Takashi Ueda
高士 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9048027A priority Critical patent/JPH10248177A/en
Publication of JPH10248177A publication Critical patent/JPH10248177A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To conduct safe charging without fear for over-charging within a short period of time with the quick charging method, by conducting the complete charging with a third charging current which is smaller than the second charging current, after a battery voltage during the charging has reached the second predetermined value lower than the first predetermined value. SOLUTION: A power source 1 can switch a charging current in the three stages. Namely, the charging current can be switched to the rate current (3C) three times, rate current (2C) two times the nominal capacity of battery and rate current (1C) equal to the nominal, capacity of battery. Here, IC means a current value which can supply the charging amount equal to the nominal capacity in an hour when the battery is charged with a constant current value. Therefore, the higher the rate is, the larger the charging current is and thereby charging amount can be increased within a short period of time. A microcomputer 2 switches a charging current supplied from the power source 1 and also switches the quick charging and trycle charging. Therefore, there is no fear for over-charging.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、二次電池の急速充電
を行うための充電回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging circuit for rapidly charging a secondary battery.

【0002】[0002]

【従来の技術】二次電池は携帯機器や電池駆動の玩具等
に広く利用されている。これらの機器や玩具の使用中に
電池切れが起こると、電池を充電して再利用したり、予
備の電池と交換することによって、機器や玩具を再度使
用することができる。予備の電池を使用する場合でも、
その間に電池切れを起こした電池を充電して、再度利用
できるようにあらかじめ充電しておく必要がある。特
に、二次電池が玩具に利用されるような場合は、子供が
扱うことが多いので、電池切れを起こしても繰り返しす
ぐに利用できるように、短時間で充電できる急速充電が
必要になってくる。ただ、急速充電は充電電流が大きい
ために、電池温度が上昇してしまったり、また過充電に
なると電池の劣化を招きやすい欠点がある。従って、短
時間で充電を行いながら、また充電時に特別な注意を払
わなくても安全で電池の劣化を招きにくい充電を行うこ
とが必要である。
2. Description of the Related Art Secondary batteries are widely used in portable devices and battery-driven toys. If the battery runs out during use of these devices and toys, the devices and toys can be used again by charging and reusing the batteries or replacing them with spare batteries. Even if you use extra batteries,
In the meantime, it is necessary to charge the battery that has run out of battery and charge it in advance so that it can be used again. In particular, when secondary batteries are used in toys, children often handle them, so it is necessary to have quick charging that can be charged in a short time so that they can be used immediately and repeatedly even if the batteries run out. come. However, rapid charging has a drawback that the charging current is large, so that the battery temperature rises, and that overcharging tends to cause deterioration of the battery. Therefore, it is necessary to perform charging in a short period of time and without any special attention during charging, which is safe and less likely to cause deterioration of the battery.

【0003】このため、例えば特開昭60−24173
9号公報に開示されているように、充電初期に大電流で
充電を行い、その後満充電に近づくにつれて充電電流を
徐々に低減させる電流低減手段を備えた充電回路が知ら
れている。この充電回路は、大電流による急速充電を行
うと共に、充電電流を徐々に低減していき、さらに小さ
い安全電流で充電量を100%に近づけるようになって
いる。このため、短時間で充電を行いながら、充電量を
100%に近づけることができ、また充電電流を低減さ
せることで過充電による劣化を防止することができる。
[0003] For this reason, for example, Japanese Patent Application Laid-Open No. 60-24173 is disclosed.
As disclosed in Japanese Patent Application Laid-Open No. 9-209, there is known a charging circuit including a current reducing unit that performs charging with a large current at an initial stage of charging and then gradually reduces the charging current as the battery approaches full charge. This charging circuit performs rapid charging with a large current and gradually reduces the charging current so that the charging amount approaches 100% with a smaller safe current. For this reason, the charging amount can be brought close to 100% while charging is performed in a short time, and deterioration due to overcharging can be prevented by reducing the charging current.

【0004】しかしながら、この公報に示された充電回
路は、安全電流に切り替わるまでの大電流による充電に
おいて、電池を発熱させて危険を招いたり、電池を劣化
させてしまう可能性がある。この公報に示された充電回
路の動作説明図を図1に示す。この充電回路は充電時の
電池電圧が所定値になったときに充電電流を切り替える
ようになっている。充電電流は4段階に変化して初期の
大電流から段階的に低減して最後は安全電流となってい
る。充電電流を切り替える際、充電時の電池電圧を検出
して電池電圧が所定値になると切り替わる。このとき、
電池電圧は図1に示す通り、ある単一の一定値が設定さ
れている。即ち、4段階に切り替わる充電電流は、初期
の充電電流から次の充電電流に切り替わるときや、最後
に安全電流へと切り替わるときも、全て電池電圧が同じ
値に達したときに切り替わるようになっている。
[0004] However, the charging circuit disclosed in this publication may cause danger or degrade the battery by generating heat when charging with a large current until switching to the safe current. FIG. 1 is a diagram illustrating the operation of the charging circuit disclosed in this publication. This charging circuit switches the charging current when the battery voltage at the time of charging reaches a predetermined value. The charging current changes in four stages and gradually decreases from the initial large current, and finally becomes the safe current. When the charging current is switched, the battery voltage at the time of charging is detected, and switching is performed when the battery voltage reaches a predetermined value. At this time,
As shown in FIG. 1, the battery voltage is set to a single constant value. That is, the charging current switched in four stages is switched when the battery voltage reaches the same value, even when switching from the initial charging current to the next charging current or finally when switching to the safe current. I have.

【0005】急速充電によって充電が行われる場合、満
充電に達すると充電を停止するか安全電流に切り替える
必要がある。大電流のまま充電を継続して行うと過充電
となって電池の劣化を招く原因となるからである。満充
電に達したことを検出するためには電池電圧のピーク値
を検出したり、ピーク値からわずかに低下した所謂−Δ
Vを検出することによって行われる。
When charging is performed by rapid charging, it is necessary to stop charging or switch to a safe current when full charge is reached. This is because if the charging is continued with a large current, the battery will be overcharged and cause deterioration of the battery. In order to detect that the battery has reached a full charge, a peak value of the battery voltage is detected, or a so-called -Δ voltage slightly lowered from the peak value is detected.
This is done by detecting V.

【0006】しかしながら、前記充電回路の場合、電池
電圧の絶対値によって充電電流を切り替えるようになっ
ているので、正確に満充電を検出できない欠点がある。
また、電池電圧検出回路における設定電圧は、充電の初
期や中期及び末期に関係なく一定となっているために、
充電の中期や末期は充電初期と比較してそれだけ充電が
進行しているから、充電の初期と同様に、中期や末期に
おいて同様の設定電圧により充電電流を切り替えると、
満充電を超えてしまって過充電を招く恐れがある。また
過充電を招かないように設定電圧を低くすると、今度は
充電初期において十分な充電量が得られないまま充電電
流が低減してしまい、短時間で充電できない欠点があ
る。
However, in the case of the charging circuit, since the charging current is switched according to the absolute value of the battery voltage, there is a disadvantage that the full charge cannot be detected accurately.
Also, since the set voltage in the battery voltage detection circuit is constant regardless of the initial, middle, and end stages of charging,
In the middle and late stages of charging, charging is progressing as much as compared to the initial stage of charging, so as in the early stage of charging, if the charging current is switched at the same set voltage in the middle and end stages,
There is a danger that overcharging may occur due to exceeding the full charge. Further, if the set voltage is reduced so as not to cause overcharging, the charging current is reduced without obtaining a sufficient charge amount in the initial stage of charging, and there is a disadvantage that charging cannot be performed in a short time.

【0007】[0007]

【発明が解決しようとする課題】従って、この発明は急
速充電によって短時間で充電を行うとはいえ、過充電の
心配がなく安全に充電を行うことができる充電回路を提
供するものである。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a charging circuit capable of performing safe charging without fear of overcharging, even though charging is performed in a short time by rapid charging.

【0008】[0008]

【課題を解決するための手段】この発明は、上記課題を
解決するため、二次電池を第1の充電電流で充電し、充
電時の電池電圧が第1の所定値に達した後、第1の充電
電流よりも小さい第2の充電電流で充電し、充電時の電
池電圧が第1の所定値よりも低い第2の所定値に達した
後、第2の充電電流よりもさらに小さい第3の充電電流
で満充電まで充電を行う電流低減手段を備えたことを特
徴とするものである。
According to the present invention, in order to solve the above-mentioned problems, a secondary battery is charged with a first charging current, and after the battery voltage at the time of charging reaches a first predetermined value, the secondary battery is charged. The battery is charged with the second charging current smaller than the first charging current, and after the battery voltage at the time of charging reaches the second predetermined value lower than the first predetermined value, the second charging current is further smaller than the second charging current. And a current reducing means for performing charging up to full charge with the charging current of No. 3.

【0009】また、前記電流低減手段は、前記第1の所
定値及び第2の所定値を二次電池の周囲温度に応じて変
更する温度補償回路を備えていることを特徴とする。
Further, the current reducing means includes a temperature compensating circuit for changing the first predetermined value and the second predetermined value according to an ambient temperature of the secondary battery.

【0010】[0010]

【作用】本発明によれば、充電初期において、第1の充
電電流によって急速に充電を行い過充電を招く可能性が
低い充電初期のうちに充電量を稼ぐ。やがて電池電圧が
第1の所定値に達すると前記第1の充電電流よりも小さ
い第2の充電電流によって充電を行う。第2の充電電流
による充電は、電池電圧が前記第1の所定値よりも低い
第2の所定値に達したときに終了するので、電池が満充
電を超えて過充電になってしまったり、電池の温度が異
常に上昇してしまうことを防止する。そして電池電圧が
第2の所定値に達すると、さらに小さい第3の充電電流
で満充電まで充電を行う。第3の充電電流は第1及び第
2の充電電流よりも小さいから、ピーク電圧の検出や−
ΔVの検出等の満充電の検出が行いやすく、過充電の心
配がない。
According to the present invention, in the early stage of charging, the battery is rapidly charged by the first charging current, and the amount of charge is obtained in the early stage of charging, which is less likely to cause overcharging. Eventually, when the battery voltage reaches a first predetermined value, charging is performed with a second charging current smaller than the first charging current. Since the charging by the second charging current ends when the battery voltage reaches a second predetermined value lower than the first predetermined value, the battery may be overcharged beyond the full charge, The battery temperature is prevented from rising abnormally. When the battery voltage reaches the second predetermined value, charging is performed with a smaller third charging current until the battery is fully charged. Since the third charging current is smaller than the first and second charging currents, detection of the peak voltage and-
It is easy to detect full charge such as ΔV detection, and there is no fear of overcharging.

【0011】また、前記電流低減手段は、前記第1の所
定値及び第2の所定値を二次電池の周囲温度に応じて変
更する温度補償回路を備えているので、例えば周囲温度
が高いときに充電を行うと電池の劣化を招きやすいこと
から、温度補償回路によって、周囲温度の上昇に従って
第1の所定値及び第2の所定値を低く設定することがで
きる。このため、より一層、電池の劣化を防止して、安
全に充電を行うことができる。
Further, the current reducing means includes a temperature compensating circuit for changing the first predetermined value and the second predetermined value in accordance with the ambient temperature of the secondary battery. Since the battery is liable to be deteriorated when charging is performed, the first predetermined value and the second predetermined value can be set low according to the rise in the ambient temperature by the temperature compensation circuit. For this reason, it is possible to further prevent the battery from deteriorating and charge the battery safely.

【0012】[0012]

【実施例】本発明の実施例を図面に基づいて説明する。
図2は本発明による充電回路のブロック回路図である。
この図において、左側に描かれた充電器と右側に描かれ
たパック電池とで二次電池の充電回路が構成される。パ
ック電池は、ニッケル水素蓄電池Bと、電池Bと密接し
てパック電池内に設けられたサーミスタTとを内臓して
いる。サーミスタTは電池Bの周囲温度を検出するよう
に配置されている。また、パック電池は3端子を有して
おり、それぞれ+端子と−端子とT端子となっている。
一方、充電器は、前記電池Bに充電電流を供給する電源
1と、後述する電流低減手段や温度補償回路を含むマイ
クロコンピュータ2とを内蔵しており、パック電池と同
様に+端子と−端子とT端子とを備えている。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 2 is a block circuit diagram of the charging circuit according to the present invention.
In this figure, a charger drawn on the left side and a battery pack drawn on the right side constitute a charging circuit for a secondary battery. The battery pack includes a nickel-metal hydride storage battery B and a thermistor T provided in the battery pack in close contact with the battery B. The thermistor T is arranged to detect the ambient temperature of the battery B. The battery pack has three terminals, a + terminal, a-terminal and a T terminal, respectively.
On the other hand, the charger incorporates a power source 1 for supplying a charging current to the battery B and a microcomputer 2 including a current reducing means and a temperature compensating circuit, which will be described later. And a T terminal.

【0013】電源1は充電電流を3段階に切り替えるこ
とができる。即ち、電池Bの公称容量の3倍のレート電
流(3C)、2倍のレート電流(2C)及び等倍のレー
ト電流(1C)に切り替えることができる。ここで1C
とは、電池を一定の電流値で充電した場合に、1時間で
公称容量と等しい充電量を供給することができる電流値
である。従って、レートが高いほど充電電流が大きく短
時間で充電量を多くすることができる。
The power supply 1 can switch the charging current in three stages. That is, it is possible to switch to a rate current (3C) that is three times the nominal capacity of the battery B, a rate current (2C) that is twice the rate, and a rate current (1C) that is the same as the nominal capacity of the battery B. Where 1C
Is a current value that can supply a charge amount equal to the nominal capacity in one hour when the battery is charged with a constant current value. Therefore, the higher the rate is, the larger the charging current is, and the more the charging amount can be increased in a short time.

【0014】マイクロコンピュ−タ2は電源1と+及び
−端子との間に接続され、また、+端子から電池電圧を
入力すると共に、T端子から温度信号を入力することが
できる。マイクロコンピュータ2は、入力した電池電圧
や温度信号を演算制御することができ、その演算結果に
基づいて所定の出力を発することができる。即ち、電流
切り替え信号を電源1に出力して電源1から供給される
充電電流を切り替えたり、また、充電電流路中に介挿さ
れている抵抗の切り替え信号を出力して急速充電とトリ
クル充電を切り替えたりする。また、電池Bの充電状態
を判定して充電状態の表示を行うことができる。
The microcomputer 2 is connected between the power supply 1 and the + and-terminals, and can input a battery voltage from the + terminal and a temperature signal from the T terminal. The microcomputer 2 can calculate and control the input battery voltage and temperature signals, and can generate a predetermined output based on the calculation results. That is, a current switching signal is output to the power supply 1 to switch the charging current supplied from the power supply 1, and a switching signal of a resistor inserted in the charging current path is output to perform rapid charging and trickle charging. Switch. Further, the state of charge of the battery B can be determined and the state of charge can be displayed.

【0015】本発明による充電回路の動作を図3及び図
4に示すフローチャートに基づいて説明する。まず図3
において、 (1)充電器1に電池Bが接続されていないときは充電
表示は電池無しを表示すると共に、急速充電及びトリク
ル充電の各スイッチをオフしている。 (2)電池Bが接続されると電池電圧が検出される。ニ
ッケル水素電池の電圧は1セル当たり2Vを超えること
がないので、2V未満の電圧が検出されたとき、電池有
りの判定を行う。 (3)次に1セル当たり1.1Vを超えているかどうか
を判定する。 (4)1.1V未満の場合、電池Bは不活性状態にある
と判定し、急速充電をオフすると同時にトリクル充電を
オンし、充電中を表示する。 (5)トリクル充電が20分経過しても電池電圧が1.
1V以上に回復しなければ充電を停止して、電池の異常
を表示する。 (6)1セル当たり1.1Vを満足する電池に対して、
充電を開始する。このとき3Cレートによる急速充電が
行われるとともに、充電中を表示する。この急速充電は
4.9秒間オンし、0.1秒間オフするパルス充電が行
われている。 (7)その後、充電開始からの電池温度上昇20℃以上
かどうか判定する。 (8)20℃を超えている場合、電池の発熱による劣化
から保護するため、急速充電をオフするとともにトリク
ル充電に切り替える。このとき満充電の表示を行ってい
る。 (9)20℃を超えない電池Bに対しては3Cレートの
急速充電を継続し、前記パルスのオフの期間に電池電圧
を検出する。3Cレートの急速充電は、電池電圧が第1
の所定値V1(T)を超えるか、または充電時間が10
分を経過するまで継続される。尚、電池電圧を測定する
際、パルスのオフの期間に行うのは、充電電流が供給さ
れているときに測定を行うと電池の内部抵抗による影響
が大きく、正確な電池電圧が測定できなくなり、これを
防止するためである。 (10)前記(9)の判定でYESのとき、マイクロコ
ンピュータ2中の電流低減手段が働いて、2Cレートの
急速充電に切り替わりる。3Cレートのときと同様にパ
ルス充電が行われる。 (11)前記(7)と同様の判定が行われる。
The operation of the charging circuit according to the present invention will be described with reference to the flowcharts shown in FIGS. First, FIG.
(1) When the battery B is not connected to the charger 1, the charge display indicates that there is no battery, and the switches for quick charge and trickle charge are turned off. (2) When the battery B is connected, the battery voltage is detected. Since the voltage of the nickel-metal hydride battery does not exceed 2 V per cell, when a voltage of less than 2 V is detected, it is determined that the battery is present. (3) Next, it is determined whether or not the voltage exceeds 1.1 V per cell. (4) When the voltage is less than 1.1 V, it is determined that the battery B is in an inactive state, and the trickle charge is turned on at the same time as the quick charge is turned off, thereby indicating that charging is in progress. (5) The battery voltage remains at 1.
If the voltage does not recover to 1 V or more, the charging is stopped and an abnormality of the battery is displayed. (6) For a battery satisfying 1.1 V per cell,
Start charging. At this time, quick charging at the 3C rate is performed, and a message that charging is being performed is displayed. This rapid charging is performed for 4.9 seconds and then pulsed for 0.1 seconds. (7) Thereafter, it is determined whether or not the battery temperature rise from the start of charging is 20 ° C. or more. (8) If the temperature exceeds 20 ° C., in order to protect the battery from deterioration due to heat generation, quick charge is turned off and trickle charge is switched. At this time, the display of the full charge is performed. (9) For the battery B not exceeding 20 ° C., the rapid charging at the 3C rate is continued, and the battery voltage is detected during the off-time of the pulse. The 3C rate fast charge requires the battery voltage to be the first
Exceeds the predetermined value V1 (T), or the charging time is 10
Continued until minutes have passed. Incidentally, when measuring the battery voltage, during the period of the pulse off, if the measurement is performed while the charging current is supplied, the influence of the internal resistance of the battery is large, it is impossible to measure the battery voltage accurately, This is to prevent this. (10) If the determination in (9) is YES, the current reduction means in the microcomputer 2 operates to switch to the 2C rate quick charge. Pulse charging is performed as in the case of the 3C rate. (11) The same determination as in (7) is performed.

【0016】図4において、 (12)前記(9)と同様に電池電圧と第2の所定値V
2(T)とが比較される。 (13)前記(12)の判定でYESのとき、マイクロ
コンピュータ2中の電流低減手段が働いて、1Cレート
の急速充電に切り替わる。この場合、パルス充電は行わ
れず、電流は常時オンとなっている。 (14)その後、(7)と同様の判定が行われる。 (15)そして、ピークセンサーや−ΔVセンサーまた
は60分タイマーによる満充電検出が行われる。 (16) 満充電を検出すると、急速充電からトリクル
充電に切り替わり、満充電の表示を行う。 (17)そして、トリクル充電が8時間経過したかどう
かを判定する。 (18)8時間経過すると、トリクル充電を停止する。
尚、充電表示は満充電の表示を維持している。
In FIG. 4, (12) the battery voltage and the second predetermined value V
2 (T). (13) When the determination in (12) is YES, the current reduction means in the microcomputer 2 operates to switch to the 1C rate quick charge. In this case, the pulse charging is not performed, and the current is always on. (14) Thereafter, the same determination as in (7) is performed. (15) Then, full charge detection is performed by a peak sensor, a -ΔV sensor, or a 60-minute timer. (16) When full charge is detected, the mode is switched from quick charge to trickle charge, and a full charge is displayed. (17) Then, it is determined whether or not the trickle charge has passed for 8 hours. (18) After 8 hours, trickle charging is stopped.
Note that the charge display maintains the full charge display.

【0017】以上の動作において、充電中の充電電流及
び電池電圧の推移について図5に示すと共に、前記第1
の所定値V1(T)と第2の所定値V2(T)の周囲温
度の変化による電圧設定例を図6に示す。電池電圧の第
1の所定値V1(T)と第2の所定値V2(T)は、5
0℃以下の通常の周囲温度の範囲においては、V1
(T)の方が高く設定されている。そしてこれらの所定
値は図6に示すように、マイクロコンピュータ2中の温
度補償回路により、周囲温度の上昇に伴って、階段状に
低下するように設定されている。また、50℃以上の高
温の環境下においては、充電初期の高いレート電流での
充電によって電池が劣化してしまったり、異常に発熱し
て危険な状態を招くことを防止するため、充電初期の設
定値V1(T)を小さくしている。
In the above operation, transitions of the charging current and the battery voltage during charging are shown in FIG.
FIG. 6 shows an example of voltage setting based on a change in the ambient temperature between the predetermined value V1 (T) and the second predetermined value V2 (T). The first predetermined value V1 (T) and the second predetermined value V2 (T) of the battery voltage are 5
In the normal ambient temperature range of 0 ° C. or less, V1
(T) is set higher. As shown in FIG. 6, these predetermined values are set by a temperature compensation circuit in the microcomputer 2 so as to decrease stepwise as the ambient temperature increases. Further, in a high temperature environment of 50 ° C. or more, in order to prevent the battery from deteriorating due to charging at a high rate current in the initial stage of charging or to cause an abnormal heat generation and a dangerous state, the initial charging is performed. The set value V1 (T) is reduced.

【0018】[0018]

【発明の効果】本発明によれば、充電初期において、第
1の充電電流によって急速に充電を行い過充電を招く可
能性が低い充電初期のうちに充電量を稼ぐ。やがて電池
電圧が第1の所定値に達すると前記第1の充電電流より
も小さい第2の充電電流によって充電を行う。第2の充
電電流による充電は、電池電圧が前記第1の所定値より
も低い第2の所定値に達したときに終了するので、電池
が満充電を超えて過充電になってしまったり、電池の温
度が異常に上昇してしまうことを防止する。そして電池
電圧が第2の所定値に達すると、さらに小さい第3の充
電電流で満充電まで充電を行う。第3の充電電流は第1
及び第2の充電電流よりも小さいから、ピーク電圧の検
出や−ΔVの検出等の満充電の検出が行いやすく、過充
電の心配がない。
According to the present invention, in the early stage of charging, the battery is rapidly charged by the first charging current, and the amount of charge is obtained in the early stage of charging, which is less likely to cause overcharging. Eventually, when the battery voltage reaches a first predetermined value, charging is performed with a second charging current smaller than the first charging current. Since the charging by the second charging current ends when the battery voltage reaches a second predetermined value lower than the first predetermined value, the battery may be overcharged beyond the full charge, The battery temperature is prevented from rising abnormally. When the battery voltage reaches the second predetermined value, charging is performed with a smaller third charging current until the battery is fully charged. The third charging current is the first
And the second charging current is smaller than the second charging current, it is easy to detect the full charge such as the detection of the peak voltage and the detection of -ΔV, and there is no fear of overcharging.

【0019】また、前記電流低減手段は、前記第1の所
定値及び第2の所定値を二次電池の周囲温度に応じて変
更する温度補償回路を備えているので、例えば周囲温度
が高いときに充電を行うと電池の劣化を招きやすいこと
から、温度補償回路によって、周囲温度の上昇に従って
第1の所定値及び第2の所定値を低く設定することがで
きる。このため、より一層、電池の劣化を防止して、安
全に充電を行うことができる。
Further, the current reducing means includes a temperature compensating circuit for changing the first predetermined value and the second predetermined value in accordance with the ambient temperature of the secondary battery. Since the battery is liable to be deteriorated when charging is performed, the first predetermined value and the second predetermined value can be set low according to the rise in the ambient temperature by the temperature compensation circuit. For this reason, it is possible to further prevent the battery from deteriorating and charge the battery safely.

【0020】その結果、この発明は急速充電によって短
時間で充電を行うとはいえ、過充電や電池の劣化の心配
がなく安全に充電を行うことができる。従って、例え
ば、子供が扱うことが多い玩具等に用いられる二次電池
の充電に最適である。
As a result, according to the present invention, although charging is performed in a short time by rapid charging, charging can be performed safely without fear of overcharging or battery deterioration. Therefore, for example, it is most suitable for charging a secondary battery used for a toy or the like often handled by children.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の充電回路における充電電流の変化特性図FIG. 1 is a diagram showing a change characteristic of a charging current in a conventional charging circuit.

【図2】本発明の充電回路のブロック回路図FIG. 2 is a block circuit diagram of a charging circuit of the present invention.

【図3】充電制御フローチャートFIG. 3 is a charge control flowchart.

【図4】充電制御フローチャートFIG. 4 is a charge control flowchart.

【図5】充電電流及び電池電圧の変化特性図FIG. 5 is a change characteristic diagram of a charging current and a battery voltage.

【図6】充電電流切り替え電圧設定例を示す図FIG. 6 is a diagram showing an example of setting a charging current switching voltage.

【符号の説明】[Explanation of symbols]

1 電源 2 マイクロコンピュータ B ニッケル水素蓄電池 T サーミスタ 1 power supply 2 microcomputer B nickel-metal hydride storage battery T thermistor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二次電池を第1の充電電流で充電し、充
電時の電池電圧が第1の所定値に達した後、第1の充電
電流よりも小さい第2の充電電流で充電し、充電時の電
池電圧が第1の所定値よりも低い第2の所定値に達した
後、第2の充電電流よりもさらに小さい第3の充電電流
で満充電まで充電を行う電流低減手段を備えたことを特
徴とする充電回路。
A secondary battery is charged with a first charging current, and after a battery voltage during charging reaches a first predetermined value, the secondary battery is charged with a second charging current smaller than the first charging current. After the battery voltage at the time of charging reaches a second predetermined value lower than the first predetermined value, a current reducing unit that performs charging with a third charging current smaller than the second charging current until full charging is performed. A charging circuit, comprising:
【請求項2】 前記電流低減手段は、前記第1の所定値
及び第2の所定値を二次電池の周囲温度に応じて変更す
る温度補償回路を備えていることを特徴とする請求項1
記載の充電回路。
2. The apparatus according to claim 1, wherein said current reducing means includes a temperature compensation circuit for changing said first predetermined value and said second predetermined value according to an ambient temperature of a secondary battery.
The charging circuit as described.
JP9048027A 1997-03-03 1997-03-03 Charging circuit Pending JPH10248177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9048027A JPH10248177A (en) 1997-03-03 1997-03-03 Charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9048027A JPH10248177A (en) 1997-03-03 1997-03-03 Charging circuit

Publications (1)

Publication Number Publication Date
JPH10248177A true JPH10248177A (en) 1998-09-14

Family

ID=12791836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9048027A Pending JPH10248177A (en) 1997-03-03 1997-03-03 Charging circuit

Country Status (1)

Country Link
JP (1) JPH10248177A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277166A (en) * 1999-03-25 2000-10-06 Yamaha Motor Co Ltd Method for controlling quick charger
US6373224B1 (en) 1999-06-04 2002-04-16 Mitsubishi Denki Kabushiki Kaisha Battery accumulating apparatus
WO2004051821A1 (en) * 2002-11-29 2004-06-17 Max Co., Ltd. Electric dual-layered capacitor charging circuit
JP2008220121A (en) * 2007-03-07 2008-09-18 Nagano Japan Radio Co Charging device
JP2010049916A (en) * 2008-08-21 2010-03-04 Sanyo Electric Co Ltd Method for controlling charge of secondary battery and secondary battery device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277166A (en) * 1999-03-25 2000-10-06 Yamaha Motor Co Ltd Method for controlling quick charger
US6373224B1 (en) 1999-06-04 2002-04-16 Mitsubishi Denki Kabushiki Kaisha Battery accumulating apparatus
WO2004051821A1 (en) * 2002-11-29 2004-06-17 Max Co., Ltd. Electric dual-layered capacitor charging circuit
JP2008220121A (en) * 2007-03-07 2008-09-18 Nagano Japan Radio Co Charging device
JP2010049916A (en) * 2008-08-21 2010-03-04 Sanyo Electric Co Ltd Method for controlling charge of secondary battery and secondary battery device

Similar Documents

Publication Publication Date Title
US8344700B2 (en) Charging method and charger
US5519303A (en) Fast battery charging method and apparatus with temperature gradient detection
JP3043808B2 (en) Method for charging rechargeable batteries particularly quickly
JP5638779B2 (en) Secondary battery characteristic detection method and secondary battery device
US5589755A (en) Method and apparatus for charging a secondary battery
KR940027251A (en) A method of monitoring the charge of sealed nickel storage cells and a charger using the method
JP3005460B2 (en) Rechargeable battery charging method
JP2001157369A (en) Method of controlling charging and discharging of battery
JPH077866A (en) Circuit for charging secondary battery
JP5474438B2 (en) Secondary battery device
JPH10248177A (en) Charging circuit
KR960027130A (en) Battery charging control device and method for electric vehicle
JPH11187585A (en) Charger and charging method for lithium ion secondary battery
JP3132798B2 (en) Storage battery charge control device
JP2002199606A (en) Battery pack and charging method of the battery
JP2002017049A (en) Charge/discharge system
JP2001110457A (en) Method for determining abnormal condition of battery, apparatus for determining abnormal condition of battery, and secondary battery pack
JP2000277168A (en) Method for refreshing discharge of secondary battery
JP2569791B2 (en) Charger
JPH1092473A (en) Method and device for controlling charge of battery
JP3767112B2 (en) Secondary battery charging control method and charging device therefor
JPH0779534A (en) Charger and method for detecting completion of charging
JPH0898427A (en) Charger
JPH05268732A (en) Charger of battery
JPH06196206A (en) Charging method