JPH10247670A - Solder bump mounting method - Google Patents

Solder bump mounting method

Info

Publication number
JPH10247670A
JPH10247670A JP9065497A JP6549797A JPH10247670A JP H10247670 A JPH10247670 A JP H10247670A JP 9065497 A JP9065497 A JP 9065497A JP 6549797 A JP6549797 A JP 6549797A JP H10247670 A JPH10247670 A JP H10247670A
Authority
JP
Japan
Prior art keywords
semiconductor
temperature
substrate
solder
bump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9065497A
Other languages
Japanese (ja)
Inventor
Tsutomu Sakatsu
務 坂津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP9065497A priority Critical patent/JPH10247670A/en
Publication of JPH10247670A publication Critical patent/JPH10247670A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling method for reflow process by which residual stresses are made to about zero near the center of temperature change in a temperature cycle. SOLUTION: In a solder bump mounting method, a bump 3 is solidified after either a semiconductor 1 or a substrate 2 having the smaller coefficient of thermal expansion is cooled while expansion of the temperature of the substrate 2 or semiconductor 1 having the higher coefficient of thermal expansion is suppressed by lowering its temperature to a certain degree before the bump 3 solidifies, because a stress occurs in an ordinary reflow process when the semiconductor 1 and substrate 2 have different coefficients of thermal expansion. When the bump 3 is solidified in such a way, the stress applied to the bump 3 when the temperature of the bump 3 drops to a room temperature level become smaller. When the semiconductor 1 is connected to the substrate through the ordinary reflow process in the temperature cycle shown in Fig. (A), a stress is always applied to the bump 3 after the bump 3 is cooled as shown in Fig. (B) due to the difference in thermal expansion between the substrate 2 and the semiconductor 1 and the maximum stress also become larger, but, when the bump 3 is cooled in the above-mentioned manner, the stress becomes about zero near the center (Tic) of the temperature change as shown in Fig. (C).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハンダバンプ実
装、より詳細には、例えば、半導体と基板とを接続させ
るためのハンダバンプの接続方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to solder bump mounting, and more particularly, to a method of connecting solder bumps for connecting, for example, a semiconductor to a substrate.

【0002】[0002]

【従来の技術】特開平5−343409号公報(半田バ
ンプの製造方法)に記載の発明は、半導体基板上の電極
パッドを含む表面にバリアメタル膜を形成し、その上に
レジスト膜を形成して電極パッド上のレジスト膜に開口
部を設け、次いで、この開口部のバリアメタル膜上にS
n含有量の少ない第1のPb−Sn半田膜及びその半田
膜よりもSn含有量が多く酸化速度の遅い第2のPb−
Sn半田膜を順次積層し、これにより、Pbの酸化膜が
悪影響を与える工程(例えば、フラックスを用いた球状
バンプ形成工程及びフラックス洗浄工程,フェースダウ
ンボンディング工程等)の改善と、リフロー温度の低温
度化による熱応力の低減を可能としている。
2. Description of the Related Art According to the invention described in Japanese Patent Application Laid-Open No. 5-343409 (a method for manufacturing solder bumps), a barrier metal film is formed on a surface of a semiconductor substrate including electrode pads, and a resist film is formed thereon. An opening is formed in the resist film on the electrode pad, and then an S is formed on the barrier metal film in the opening.
a first Pb-Sn solder film having a small n content and a second Pb- having a large Sn content and a slower oxidation rate than the solder film;
An Sn solder film is sequentially laminated, thereby improving a process (for example, a process of forming a spherical bump using a flux, a flux cleaning process, a face down bonding process, etc.) in which the Pb oxide film has an adverse effect, and a low reflow temperature. Thermal stress can be reduced by increasing the temperature.

【0003】また、特開平6−613036号公報(チ
ップキャリアとその実装構造体)に記載の発明は、回路
面全面に接続端子を有するLSIチップをキャリア基板
にフェースダウンで実装し、そのLSIチップとキャリ
ア基板との間隙を封止剤で完全に充填し、さらに、LS
Iチップの裏面にヒートスプレッダを備え、これにより
LSIとキャリア基板との熱膨張差による熱応力を低下
させ、さらに、冷却効率のよい実装構造を提供してい
る。
Further, the invention described in Japanese Patent Application Laid-Open No. 6-613036 (chip carrier and its mounting structure) is to mount an LSI chip having connection terminals on the entire circuit surface face down on a carrier substrate and to mount the LSI chip face down. The gap between the substrate and the carrier substrate is completely filled with a sealant.
A heat spreader is provided on the back surface of the I chip to reduce thermal stress due to a difference in thermal expansion between the LSI and the carrier substrate, and to provide a mounting structure with high cooling efficiency.

【0004】上述のように、ハンダバンプによるフェー
スダウン実装では、リフロープロセスによって半導体と
基板を接続させるが、接続時の加熱、或いは、環境や動
作による発熱で、デバイス温度が繰り返し変化し、半導
体と基板との熱膨張係数の差でバンプに応力がかかる。
特に、接続時が高温(ハンダ凝固温度)であるため、室
温に冷却した状態でも応力が加わっており、ハンダ材の
疲労破壊につながる。この応力を緩和するために樹脂を
充填したり、バンプ高さを高くしたりしている。
As described above, in the face-down mounting using solder bumps, the semiconductor and the substrate are connected by a reflow process. However, the device temperature repeatedly changes due to heating at the time of connection or heat generated by the environment or operation, and the semiconductor and the substrate are repeatedly connected. The stress is applied to the bumps due to the difference in thermal expansion coefficient between the bumps.
In particular, since the temperature at the time of connection is a high temperature (solder solidification temperature), stress is applied even when cooled to room temperature, which leads to fatigue fracture of the solder material. To alleviate this stress, resin is filled or the bump height is increased.

【0005】[0005]

【発明が解決しようとする課題】図13は、リフロープ
ロセスで半導体1と基板2をハンダバンプ3で接合する
場合の例を示す図で、ハンダバンプ3が溶融している状
態(図13(A))では、応力は加わらないが、ハンダ
が凝固し冷却すると(図13(B))、基板2と半導体
1との熱膨張係数の差でバンプ3に応力がかる。
FIG. 13 is a view showing an example of a case where the semiconductor 1 and the substrate 2 are joined by solder bumps 3 in a reflow process, in a state where the solder bumps 3 are melted (FIG. 13A). In this case, no stress is applied, but when the solder solidifies and cools (FIG. 13B), stress is applied to the bumps 3 due to the difference in the coefficient of thermal expansion between the substrate 2 and the semiconductor 1.

【0006】上述のように、ハンダ凝固時の高温状態か
ら室温まで冷却すると、通常の状態でも応力が発生して
おり、多段バンプにしても、溶融状態でのチップ引き上
げにしても、バンプを高くするのは非常に困難である。
As described above, when the solder is cooled from a high temperature state during solidification to room temperature, stress is generated even in a normal state. It is very difficult to do.

【0007】上述のように、リフロープロセスで半導体
と基板をハンダバンプで接続する場合、温度サイクルは
どうしてもかかるので、本発明は、その変化の中心付近
の温度で残留応力が0に近くなるような、リフロープロ
セスの冷却方法、更には、リフロー後に残留応力をとる
方法を提供するものである。
As described above, when a semiconductor and a substrate are connected by solder bumps in a reflow process, a temperature cycle is inevitably applied. Therefore, the present invention provides a method in which the residual stress becomes close to zero at a temperature near the center of the change. Another object of the present invention is to provide a cooling method for a reflow process and a method for removing residual stress after reflow.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、ハン
ダパンプ電極を介して、半導体を基板にフェースダウン
実装する接続プロセスにおいて、リフローにより、ハン
ダバンプが半導体電極と基板電極との接続が得られた
後、半導体あるいは基板のどちらか一方を高温状態に保
ったまま、他方のみを冷却し、ある程度まで温度が下が
った後、全体を冷却していくことを特徴とし、もって、
残留応力の少ないハンダバンプのフリップチップ接続が
得られるようにしたものである。
According to a first aspect of the present invention, in a connection process of mounting a semiconductor face down on a substrate via a solder pump electrode, the solder bump is connected to the semiconductor electrode and the substrate electrode by reflow. After that, while keeping either one of the semiconductor or the substrate in a high temperature state, only the other is cooled, and after the temperature is lowered to a certain extent, the whole is cooled.
It is intended to obtain a flip chip connection of solder bumps with little residual stress.

【0009】請求項2の発明は、請求項1の発明におい
て、基板を樹脂基板とした場合、半導体側をハンダ溶融
温度以上に維持しながら、基板側を冷却し、基板温度が
ある程度まで下がった後、全体を冷却してハンダパンプ
を硬化させて接続を得ることを特徴とし、もって、熱膨
張係数の差が大きな樹脂基板と半導体チップとの接合に
おいて、応力の緩和がはかれるようにしたものである。
According to a second aspect of the present invention, in the first aspect of the present invention, when the substrate is a resin substrate, the substrate side is cooled while maintaining the semiconductor side at a solder melting temperature or higher, and the substrate temperature falls to a certain degree. After that, the whole is cooled and the solder pump is cured to obtain a connection, so that stress is reduced in joining the resin substrate and the semiconductor chip having a large difference in thermal expansion coefficient. .

【0010】請求項3の発明は、請求項2の発明におい
て、半導体側に高さ制御可能なヒータコレットを密着さ
せ、基板下のヒータブロックと別に温度制御を行うこと
を特徴とし、もって、ヒータコレットを用いて半導体側
の加熱方法で制御することで、細かな制御が可能となる
ようにしたものである。
According to a third aspect of the present invention, in the second aspect of the present invention, a heater collet capable of controlling the height is brought into close contact with the semiconductor side, and the temperature is controlled separately from the heater block below the substrate. By using a collet to control by a heating method on the semiconductor side, fine control is enabled.

【0011】請求項4の発明は、請求項2の発明におい
て、光ビームを半導体裏面より照射することで、半導体
側を加熱することを特徴とし、もって、光ビームを使う
ことで非接触で加熱でき、効率よく接合できるようにし
たものである。
A fourth aspect of the present invention is characterized in that, in the second aspect of the present invention, the semiconductor side is heated by irradiating a light beam from the back surface of the semiconductor, and the non-contact heating is performed by using the light beam. It is possible to join them efficiently.

【0012】請求項5の発明は、請求項4の発明におい
て、光ビームの照射ポイントを半導体の四隅にすること
を特徴とし、もって、応力の大きくなる外周部のバンプ
に対して、時間を遅らせて凝固させられるようにしたも
のである。
According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the irradiation point of the light beam is set at the four corners of the semiconductor, so that the time is delayed with respect to the bump on the outer peripheral portion where the stress increases. It is intended to be coagulated.

【0013】請求項6の発明は、請求項2の発明におい
て、使用環境,動作による発熱などで予想される温度変
化の中心値の温度において、膨張差が最小となるよう
に、以下のように半導体と基板側の温度を制御する、す
なわち、半導体側をハンダ溶融温度以上に保った状態
で、基板側の温度を基板膨張の比率が、ハンダ凝固点
(融点)での半導体膨張の比率と同じになる温度まで冷
却し、その温度を保ちながら、半導体側を冷却し、ハン
ダが凝固する温度まで下がった後、両者を室温まで冷却
することを特徴とし、もって、使用環境の温度変化の中
で、応力の発生を抑える接続が得られるようにしたもの
である。
According to a sixth aspect of the present invention, in the second aspect of the present invention, the difference in expansion is minimized at the temperature at the center value of the temperature change expected due to the use environment, heat generation due to operation, and the like, as follows. Controlling the temperature of the semiconductor and the substrate side, that is, keeping the semiconductor side at or above the solder melting temperature, and increasing the substrate side temperature so that the ratio of substrate expansion is the same as the ratio of semiconductor expansion at the solder freezing point (melting point). Cooling down to a certain temperature, maintaining the temperature, cooling the semiconductor side, cooling down to the temperature at which the solder solidifies, and then cooling both to room temperature. This is to provide a connection that suppresses the generation of stress.

【0014】請求項7の発明は、通常のリフロープロセ
スによって、ハンダバンプ電極を介して、半導体を基板
にフェースダウン実装した物に対し、光ビームで局所的
に加熱し、全体を加熱せずに、ハンダバンプを溶融さ
せ、応力を緩和させることを特徴とし、もって、通常の
リフロープロセスを経てきた物に対しても、後から応力
緩和が行えるようにしたものである。
According to a seventh aspect of the present invention, an object in which a semiconductor is mounted face down on a substrate via a solder bump electrode by a normal reflow process is locally heated with a light beam, and the entire body is not heated. It is characterized in that the solder bumps are melted to relieve the stress, so that stress relieving can be performed later even on a product that has undergone a normal reflow process.

【0015】請求項8の発明は、請求項7の発明におい
て、マウントされた半導体の側部から、ハンダバンプに
光ビームを照射し、順次溶融,硬化を起こさせて、バン
プに発生している残留応力を除去することを特徴とし、
もって、基板および半導体の全体温度をあまり上げず
に、ハンダバンプのみを加熱溶融することができるよう
にしたものである。
According to an eighth aspect of the present invention, in the seventh aspect of the present invention, the solder bump is irradiated with a light beam from the side of the mounted semiconductor to cause the solder bump to melt and harden in sequence, so that the residue generated on the bump is formed. It is characterized by removing stress,
Thus, only the solder bumps can be heated and melted without significantly increasing the entire temperature of the substrate and the semiconductor.

【0016】請求項9の発明は、請求項8の発明におい
て、半導体の載った基板を回転させると同時に回転軸を
水平移動させることで、光ビームの焦点位置にバンダバ
ンプが位置するようにし、バンプを順番に溶融,凝固を
行わせることを特徴とし、もって、請求項8の方法を効
率よくスピーディーに行うことができるようにしたもの
である。
According to a ninth aspect of the present invention, in the eighth aspect of the present invention, the substrate on which the semiconductor is mounted is rotated and, at the same time, the rotation axis is horizontally moved, so that the bander bump is located at the focal position of the light beam. Are sequentially melted and solidified, so that the method of claim 8 can be performed efficiently and speedily.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(請求項1,2の発明)半導体と基板の熱膨張係数が違
うと通常のリフロープロセスでは応力が発生するため、
線膨張係数の大きい方をバンプが凝固する前に、ある程
度温度を下げておいて、膨張を押さえておき、その後
で、線膨張係数の小さい方を冷却し、バンプを凝固させ
る。すると、室温レベルに温度が下がった時にバンプに
かかる応力が小さくなる。樹脂基板を使った場合、Si
チップと通常の基板では、線膨張係数は倍近く樹脂基板
の方が大きいため、基板側を冷却する。
(Inventions of Claims 1 and 2) If the semiconductor and the substrate have different coefficients of thermal expansion, stress is generated in a normal reflow process.
Before the solidification of the bump having a larger linear expansion coefficient, the temperature is lowered to some extent to suppress the expansion, and thereafter, the bump having a smaller linear expansion coefficient is cooled to solidify the bump. Then, the stress applied to the bumps when the temperature drops to the room temperature level decreases. When a resin substrate is used, Si
Since the coefficient of linear expansion of the chip and the normal substrate is nearly doubled for the resin substrate, the substrate side is cooled.

【0018】環境の変化,動作による発熱などで、デバ
イスの温度変化が起こる。簡単のためそれらの温度サイ
クルが図1(A)のようであるとすると、通常のリフロ
ープロセスで接続すると、冷却後、基板と半導体の熱膨
張の差で図1(B)に示すように常に応力がかかり、最
大応力も大きいが、上述のように冷却すると、図1
(C)に示すように温度変化の中心付近(Tc)では応
力は0に近くなる。
A change in the temperature of the device occurs due to a change in environment, heat generated by operation, or the like. For the sake of simplicity, assuming that the temperature cycles are as shown in FIG. 1 (A), if they are connected by a normal reflow process, after cooling, the difference in thermal expansion between the substrate and the semiconductor will always be as shown in FIG. Although stress is applied and the maximum stress is large, when cooled as described above, FIG.
As shown in (C), the stress becomes close to zero near the center of the temperature change (Tc).

【0019】(請求項6の発明)図2に示すように、リ
フロープロセスにおいて、全体をハンダ溶融温度以上に
昇温した後、半導体をその温度に維持したまま、基板側
を温度Taまで冷却する。なお、温度Taは、この温度
時の基板膨張がハンダ凝固温度(融点)時の半導体の膨
張と等しくなる温度である。温度Taまで冷却した後、
半導体を冷却しハンダを凝固させ、接合が得られた後、
全体を冷却させる。
(Invention of Claim 6) As shown in FIG. 2, in the reflow process, after the whole is heated to a temperature equal to or higher than the solder melting temperature, the substrate is cooled to the temperature Ta while maintaining the semiconductor at that temperature. . The temperature Ta is a temperature at which the substrate expansion at this temperature is equal to the expansion of the semiconductor at the solder solidification temperature (melting point). After cooling to temperature Ta,
After cooling the semiconductor and solidifying the solder, the joint is obtained,
Let the whole cool down.

【0020】図3に示すように、通常のリフロープロセ
スでは、図3(A)に示すように、冷却過程でハンダ融
点以下になるとバンプが凝固し、その時点から温度が下
がるにつれ膨張差が大きくなり、応力が発生してくる。
しかし、図3(B)に示すように基板側を冷却した状態
で、ハンダバンプを凝固させて接合した場合、膨張差が
減少し、応力の発生を押さえることができる。
As shown in FIG. 3, in a normal reflow process, as shown in FIG. 3 (A), when the temperature falls below the melting point of the solder during the cooling process, the bumps solidify, and the difference in expansion increases as the temperature decreases from that point. And stress is generated.
However, when the solder bumps are solidified and joined in a state where the substrate side is cooled as shown in FIG. 3B, the difference in expansion is reduced, and the generation of stress can be suppressed.

【0021】図4に示すように、半導体1側を高温状
態,基板2側を温度Taにしたとき、半導体1から基板
2にかけて温度勾配ができる。バンプ3の中間点で、ハ
ンダ融点近傍になるように設定する。バンプ3は半分が
溶融状態、半分が凝固している状態となっている。
As shown in FIG. 4, when the semiconductor 1 is at a high temperature and the substrate 2 is at a temperature Ta, a temperature gradient is generated from the semiconductor 1 to the substrate 2. The intermediate point of the bump 3 is set to be near the melting point of the solder. The bump 3 is in a half-molten state and a half-solidified state.

【0022】(請求項3の発明)図5に示すように、請
求項3においては、半導体1側にヒータヘッド5を密着
させて加熱する一方、基板2の下には熱伝導性のよいブ
ロック6を配し、熱を逃がす。
(Invention of Claim 3) As shown in FIG. 5, according to the invention, a heater head 5 is brought into close contact with the semiconductor 1 side to heat it, while a block having good heat conductivity is provided under the substrate 2. Place 6 and let the heat escape.

【0023】(請求項4の発明)図6,図7に示すよう
に、請求項4の発明においては、半導体1の裏側の加熱
にレーザーなど光ビーム7を用いるもので、非接触で加
熱ができる。
(Invention of Claim 4) As shown in FIGS. 6 and 7, in the invention of Claim 4, a light beam 7 such as a laser is used for heating the backside of the semiconductor 1, and heating is performed in a non-contact manner. it can.

【0024】(請求項5の発明)一般的に、応力は膨張
・収縮の方向を考えると、図8に矢印の大きさで示すよ
うに、チップ外周部の方が大きくなる。そこで、図9,
図10に示すように、チップ裏面の4隅(a,b,c,
d)を加熱ポイントとする、熱の伝達を考えると図11
に示すように、外周部のバンプが時間的に後に凝固し、
残留応力を緩和する。
(Invention of Claim 5) In general, when considering the directions of expansion and contraction, the stress is larger at the outer peripheral portion of the chip as shown by the size of the arrow in FIG. Therefore, FIG.
As shown in FIG. 10, four corners (a, b, c,
Considering the heat transfer with d) as the heating point, FIG.
As shown in the figure, the outer peripheral bumps solidify later in time,
Relieves residual stress.

【0025】(請求項7,8,9の発明)請求項7の発
明においては、通常のリフロープロセスを経てきた物に
対して、後から局所的に加熱し、全体の温度を上げず
に、バンプを一旦溶融させることで、残留応力を解放し
てやる。請求項8の発明は、半導体側部から直接ハンダ
バンプを照射,加熱し溶融させる方法である。請求項9
の発明は、図12に示すように、レンズ等で集光させる
場合など焦点位置に照射バンプが位置するように回転軸
8のまわりに全体を回転させる動きと、水平方向の動き
とを組み合わせ、常に焦点がバンプに合うようにしたも
のである。
(Inventions of Claims 7, 8, and 9) In the invention of Claim 7, an object which has passed through a normal reflow process is locally heated later without increasing the overall temperature. The residual stress is released by melting the bump once. The invention of claim 8 is a method of irradiating, heating and melting solder bumps directly from the semiconductor side. Claim 9
As shown in FIG. 12, the invention of the present invention combines the movement of rotating the whole around the rotation axis 8 and the movement in the horizontal direction so that the irradiation bump is located at the focal position such as when condensing with a lens or the like, The focus is always on the bump.

【0026】[0026]

【発明の効果】請求項1の発明は、ハンダパンプ電極を
介して、半導体を基板にフェースダウン実装する接続プ
ロセスにおいて、リフローにより、ハンダバンプが半導
体電極と基板電極との接続が得られた後、半導体あるい
は基板のどちらか一方を高温状態に保ったまま、他方の
みを冷却し、ある程度まで温度が下がった後、全体を冷
却していくようにしたので、残留応力の少ないハンダバ
ンプのフリップチップ接続が得られる。
According to the first aspect of the present invention, in a connection process for mounting a semiconductor face down on a substrate via a solder pump electrode, after the solder bump is connected to the semiconductor electrode and the substrate electrode by reflow, the semiconductor Alternatively, while keeping one of the substrates at a high temperature, only the other is cooled, and after the temperature has decreased to a certain extent, the whole is cooled, so that flip-chip connection of solder bumps with little residual stress is obtained. Can be

【0027】請求項2の発明は、請求項1の発明におい
て、基板を樹脂基板とした場合、半導体側をハンダ溶融
温度以上に維持しながら、基板側を冷却し、基板温度が
ある程度まで下がった後、全体を冷却してハンダパンプ
を硬化させて接続するようにしたので、熱膨張係数の差
が大きな樹脂基板と半導体チップとの接合において、応
力の緩和をはかることができる。
According to a second aspect of the present invention, in the first aspect of the present invention, when the substrate is a resin substrate, the substrate side is cooled while maintaining the semiconductor side at a solder melting temperature or higher, and the substrate temperature drops to a certain degree. Thereafter, since the whole is cooled and the solder pump is hardened and connected, stress can be relaxed in joining the resin substrate and the semiconductor chip having a large difference in thermal expansion coefficient.

【0028】請求項3の発明は、請求項2の発明におい
て、半導体側に高さ制御可能なヒータコレットを密着さ
せ、基板下のヒータブロックと別に温度制御を行うよう
にしたので、半導体側の加熱にヒータコレットを用いて
制御することで、細かな制御が可能となる。
According to a third aspect of the present invention, in the second aspect of the present invention, a heater collet whose height can be controlled is brought into close contact with the semiconductor side, and the temperature is controlled separately from the heater block below the substrate. By performing control using a heater collet for heating, fine control becomes possible.

【0029】請求項4の発明は、請求項2の発明におい
て、光ビームを半導体の裏面より照射することで、半導
体側を加熱するようにしたので、光ビームを使うこと
で、非接触が加熱でき、効率がよい。
According to a fourth aspect of the present invention, in the second aspect of the present invention, the semiconductor side is heated by irradiating a light beam from the back surface of the semiconductor. Yes, it is efficient.

【0030】請求項5の発明は、請求項4の発明におい
て、光ビームの照射ポイントを半導体の四隅にするよう
にしたので、応力の大きくなる外周部のバンプに対し
て、時間を遅らせて凝固させることができる。
According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the irradiation points of the light beam are set at the four corners of the semiconductor. Can be done.

【0031】請求項6の発明は、請求項2の発明におい
て、使用環境,動作による発熱などで予想される温度変
化の中心値の温度において、膨張差が最小となるよう
に、半導体側をハンダ溶融温度以上に保った状態で、基
板側の温度を基板膨張の比率が、ハンダ凝固点(融点)
での半導体膨張の比率と同じになる温度まで冷却し、そ
の温度を保ちながら、半導体側を冷却し、ハンダが凝固
する温度まで下がった後、両者を室温まで冷却するよう
にしたので、使用環境の温度変化の中で、応力の発生を
抑える接続が得られる。
According to a sixth aspect of the present invention, in the second aspect of the present invention, the semiconductor side is soldered so that the difference in expansion is minimized at a temperature at a center value of a temperature change expected due to a use environment, heat generation due to operation, and the like. While maintaining the melting temperature or higher, the ratio of the substrate expansion to the substrate side temperature is determined by the solder freezing point (melting point).
The semiconductor side was cooled down to a temperature that was the same as the ratio of semiconductor expansion in the above, and while maintaining that temperature, the semiconductor was cooled down to the temperature at which the solder solidified, and then both were cooled down to room temperature. In this temperature change, a connection that suppresses the occurrence of stress can be obtained.

【0032】請求項7の発明は、通常のリフロープロセ
スによって、ハンダバンプ電極を介して、半導体を基板
にフェースダウン実装した物に対し、光ビームで局所的
に加熱し、全体を加熱せずに、ハンダバンプを溶融さ
せ、応力を緩和させるようにしたので、通常のリフロー
プロセスを経てきた物に対しても、後から応力緩和が行
える。
According to a seventh aspect of the present invention, an object in which a semiconductor is mounted face down on a substrate via a solder bump electrode by a normal reflow process is locally heated with a light beam, and the whole is not heated. Since the solder bumps are melted to relieve the stress, it is possible to relieve the stress even after passing through the normal reflow process.

【0033】請求項8の発明は、請求項7の発明におい
て、マウントされた半導体の側部から、ハンダバンプを
照射し、順次溶融,硬化を起こさせて、バンプに発生し
ている残留応力を除去するようにしたので、基板および
半導体の全体温度をあまり上げずに、ハンダバンプのみ
を加熱溶融することができる。
According to an eighth aspect of the present invention, in the seventh aspect of the present invention, the solder bump is irradiated from the side of the mounted semiconductor to cause melting and hardening in order, thereby removing the residual stress generated in the bump. Therefore, only the solder bumps can be heated and melted without significantly increasing the overall temperature of the substrate and the semiconductor.

【0034】請求項9の発明は、請求項8の発明におい
て、半導体の載った基板を回転させると同時に回転軸を
水平移動させることで、光ビームの焦点位置にバンダバ
ンプが位置するようにし、バンプを順番に溶融,凝固を
行わせるようにしたので、請求項8の方法を効率よくス
ピーディーに行うことができる。
According to a ninth aspect of the present invention, in the invention of the eighth aspect, the substrate on which the semiconductor is mounted is rotated and the rotation axis is horizontally moved at the same time, so that the bander bump is located at the focal position of the light beam. Are sequentially melted and solidified, so that the method of claim 8 can be performed efficiently and speedily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の動作原理を説明するための温度サイ
クルの一例を示す図である。
FIG. 1 is a diagram showing an example of a temperature cycle for explaining the operation principle of the present invention.

【図2】 請求項6の発明の加熱動作を説明するための
図である。
FIG. 2 is a view for explaining a heating operation according to the invention of claim 6;

【図3】 請求項6の発明における熱膨張動作を説明す
るための図である。
FIG. 3 is a diagram for explaining a thermal expansion operation according to the invention of claim 6;

【図4】 請求項6の発明においてバンプの溶融状態を
示す図である。
FIG. 4 is a view showing a molten state of a bump according to the invention of claim 6;

【図5】 請求項3の発明の一実施例を示す図である。FIG. 5 is a diagram showing one embodiment of the invention of claim 3;

【図6】 請求項4の発明の一実施例を示す図である。FIG. 6 is a diagram showing an embodiment of the invention of claim 4;

【図7】 請求項4の発明の他の実施例を示す図であ
る。
FIG. 7 is a view showing another embodiment of the invention of claim 4;

【図8】 請求項5の発明の動作原理を説明するための
図である。
FIG. 8 is a diagram for explaining the operation principle of the invention of claim 5;

【図9】 請求項5の発明の熱方法を説明するための側
面図である。
FIG. 9 is a side view for explaining the heat method of the invention of claim 5;

【図10】 請求項5の発明の熱伝導の例を示す図であ
る。
FIG. 10 is a diagram showing an example of heat conduction according to the invention of claim 5;

【図11】 請求項5の発明のバンプの冷却順序を説明
するための図である。
FIG. 11 is a view for explaining a bump cooling order according to the invention of claim 5;

【図12】 請求項7,8,9の発明の実施例を説明す
るための図である。
FIG. 12 is a diagram for explaining an embodiment of the invention according to claims 7, 8, and 9;

【図13】 半導体と基板とをハンダバンプで接合する
場合の例を説明するための図である。
FIG. 13 is a diagram for explaining an example in which a semiconductor and a substrate are joined by solder bumps.

【符号の説明】[Explanation of symbols]

1…半導体、2…基板、3…バンプ、5…ヒータヘッ
ド、6…伝熱ブロック、7…光ビーム、8…回転軸。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor, 2 ... Substrate, 3 ... Bump, 5 ... Heater head, 6 ... Heat transfer block, 7 ... Light beam, 8 ... Rotation axis.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ハンダパンプ電極を介して、半導体を基
板にフェースダウン実装する接続プロセスにおいて、リ
フローにより、ハンダバンプにより半導体電極と基板電
極との接続が得られた後、半導体あるいは基板のどちら
か一方を高温状態に保ったまま、他方のみを冷却し、あ
る程度まで温度が下がった後、全体を冷却していくこと
を特徴とするハンダバンプ実装方法。
In a connection process in which a semiconductor is mounted face down on a substrate via a solder pump electrode, after the connection between the semiconductor electrode and the substrate electrode is obtained by reflow by a solder bump, either the semiconductor or the substrate is connected. A solder bump mounting method characterized in that only the other is cooled while maintaining a high temperature state, and the whole is cooled after the temperature is lowered to some extent.
【請求項2】 基板を樹脂基板とした場合、半導体側を
ハンダ溶融温度以上に維持しながら、基板側を冷却し、
基板温度がある程度まで下がった後、全体を冷却してハ
ンダパンプを硬化させて接続を得ることを特徴とする請
求項1に記載のハンダバンプ実装方法。
2. When the substrate is a resin substrate, the substrate side is cooled while maintaining the semiconductor side at a solder melting temperature or higher.
2. The solder bump mounting method according to claim 1, wherein after the substrate temperature has dropped to a certain degree, the whole is cooled and the solder pump is hardened to obtain a connection.
【請求項3】 半導体側に高さ制御可能なヒータコレッ
トを密着させ、基板下のヒータブロックと別に温度制御
を行うことを特徴とする請求項2に記載のハンダバンプ
実装方法。
3. The solder bump mounting method according to claim 2, wherein a heater collet whose height can be controlled is brought into close contact with the semiconductor side, and the temperature is controlled separately from a heater block below the substrate.
【請求項4】 光ビームを半導体裏面より照射すること
で、半導体側を加熱することを特徴とする請求項2に記
載のハンダバンプ実装方法。
4. The solder bump mounting method according to claim 2, wherein the semiconductor side is heated by irradiating a light beam from the back surface of the semiconductor.
【請求項5】 光ビームの照射ポイントを半導体の四隅
にすることを特徴とする請求項4に記載のハンダバンプ
実装方法。
5. The solder bump mounting method according to claim 4, wherein irradiation points of the light beam are set at four corners of the semiconductor.
【請求項6】 使用環境,動作による発熱などで予想さ
れる温度変化の中心値の温度において、膨張差が最小と
なるように、半導体側をハンダ溶融温度以上に保った状
態で、基板側の温度を基板膨張の比率が、ハンダ凝固点
(融点)での半導体膨張の比率と同じになる温度まで冷
却し、その温度を保ちながら、半導体側を冷却し、ハン
ダが凝固する温度まで下がった後、両者を室温まで冷却
することを特徴とする請求項2に記載のハンダバンプ実
装方法。
6. At a temperature at a center value of a temperature change expected due to a use environment, heat due to operation, or the like, a semiconductor side is kept at a solder melting temperature or higher so that a difference in expansion is minimized. After cooling the temperature to a temperature at which the rate of substrate expansion is the same as the rate of semiconductor expansion at the solder freezing point (melting point), and while maintaining that temperature, cooling the semiconductor side and lowering to the temperature at which the solder solidifies, 3. The solder bump mounting method according to claim 2, wherein both are cooled to room temperature.
【請求項7】 通常のリフロープロセスによって、ハン
ダバンプ電極を介して、半導体を基板にフェースダウン
実装した物に対し、光ビームで局所的に加熱し、全体を
加熱せずに、ハンダバンプを溶融させ、応力を緩和させ
ることを特徴とするハンダバンプ実装方法。
7. An object in which a semiconductor is mounted face down on a substrate via a solder bump electrode by a normal reflow process, locally heated by a light beam, and the solder bump is melted without heating the whole. A solder bump mounting method, which relieves stress.
【請求項8】 マウントされた半導体の側部から、ハン
ダバンプを照射し、順次溶融,硬化を起こさせて、バン
プに発生している残留応力を除去することを特徴とする
請求項7に記載のハンダバンプ実装方法。
8. The method according to claim 7, wherein a solder bump is irradiated from the side of the mounted semiconductor to cause melting and hardening to occur in order to remove residual stress generated in the bump. Solder bump mounting method.
【請求項9】 半導体の載った基板を回転させると同時
に回転軸を水平移動させることで、光ビームの焦点位置
にバンダバンプが位置するようにし、バンプを順番に溶
融,凝固を行わせることを特徴とする請求項8に記載の
ハンダバンプ実装方法。
9. The method according to claim 9, wherein the substrate on which the semiconductor is mounted is rotated, and at the same time, the rotation axis is horizontally moved so that the bander bump is located at the focal position of the light beam, and the bump is melted and solidified in order. 9. The solder bump mounting method according to claim 8, wherein:
JP9065497A 1997-03-03 1997-03-03 Solder bump mounting method Pending JPH10247670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9065497A JPH10247670A (en) 1997-03-03 1997-03-03 Solder bump mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9065497A JPH10247670A (en) 1997-03-03 1997-03-03 Solder bump mounting method

Publications (1)

Publication Number Publication Date
JPH10247670A true JPH10247670A (en) 1998-09-14

Family

ID=13288796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9065497A Pending JPH10247670A (en) 1997-03-03 1997-03-03 Solder bump mounting method

Country Status (1)

Country Link
JP (1) JPH10247670A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118789A (en) * 2015-07-21 2015-12-02 宁波芯科电力半导体有限公司 Low-temperature combination method for thyristor chips

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118789A (en) * 2015-07-21 2015-12-02 宁波芯科电力半导体有限公司 Low-temperature combination method for thyristor chips

Similar Documents

Publication Publication Date Title
EP1374297B1 (en) Flip chip interconnection using no-clean flux
KR100555354B1 (en) A method of coupling singulated chip to a substrate package, fluxless flip chip interconnection and a method of forming contact points on chip
TW445498B (en) Flip chip C4 extension structure and process
US20060035454A1 (en) Fluxless solder transfer and reflow process
US5090609A (en) Method of bonding metals, and method and apparatus for producing semiconductor integrated circuit device using said method of bonding metals
TWI304006B (en) Tin/indium lead-free solders for low stress chip attachment
JPS5928989B2 (en) Circuit package and its manufacturing method
US20180043478A1 (en) No clean flux composition and methods for use thereof
JP2001110957A (en) Method for manufacturing power semiconductor module
US20050145846A1 (en) Apparatus and methods for an underfilled integrated circuit package
EP1230676A1 (en) Advanced flip-chip join package
JP3998484B2 (en) How to connect electronic components
JPH10247670A (en) Solder bump mounting method
JP3674179B2 (en) Ball grid array semiconductor device and manufacturing method thereof
EP1457100A2 (en) Chip-join process to reduce elongation mismatch between the adherents and semiconductor package made thereby
JP5062710B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste
JP2006332141A (en) Method of manufacturing semiconductor device
JPH09246319A (en) Flip chip mounting method
JPH04270092A (en) Solder material and joining method
JP2000260827A (en) Heating apparatus and method for mounting semiconductor chip
JP2004006926A (en) Wiring board with solder bump, its manufacturing method, and flattening jig
JPH02128486A (en) Joining layer of semiconductor laser element heat releasing body submount
JPH0951049A (en) Soldering method
US20230386964A1 (en) Inverted trapezoidal heat dissipating solder structure and method of making the same
JP2003124244A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

A977 Report on retrieval

Effective date: 20051027

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Effective date: 20060707

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20060831

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061006

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061102