JPH10245285A - Carbon composite material for reducing atmosphere furnace, and its production - Google Patents

Carbon composite material for reducing atmosphere furnace, and its production

Info

Publication number
JPH10245285A
JPH10245285A JP9067385A JP6738597A JPH10245285A JP H10245285 A JPH10245285 A JP H10245285A JP 9067385 A JP9067385 A JP 9067385A JP 6738597 A JP6738597 A JP 6738597A JP H10245285 A JPH10245285 A JP H10245285A
Authority
JP
Japan
Prior art keywords
composite material
carbon composite
atmosphere furnace
reducing atmosphere
graphite substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9067385A
Other languages
Japanese (ja)
Other versions
JP4498477B2 (en
Inventor
Shinsuke Aida
信介 合田
Rakunen Ka
楽年 何
Tetsuro Tojo
哲朗 東城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP06738597A priority Critical patent/JP4498477B2/en
Publication of JPH10245285A publication Critical patent/JPH10245285A/en
Application granted granted Critical
Publication of JP4498477B2 publication Critical patent/JP4498477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides

Abstract

PROBLEM TO BE SOLVED: To obtain a carbon composite material for a reducing atmosphere furnace capable of manifesting inhibiting effects against an excellent reducing gas reaction even in a high temperature reducing gas atmosphere over 1,000 deg.C and capable of largely elongating a product life, and further to provide a method for producing the carbon composite material. SOLUTION: This carbon composite material for a reducing atmosphere furnace has TaC coating membrane 3 of a crystalline structure comprising compactly accumulated fine particles formed on the surface of a graphite substrate 2 and further a thermal expansion coefficient as a characteristic value of the graphite substrate is regulated so as to be within the range of the thermal expansion coefficient of the tantalum carbide coating membrane ±2.0×10<-6> /K. The method for producing the carbon composition material for the reducing atmosphere furnace comprises the formation of the tantalum carbide coating membrane on the graphite substrate having the before thermal expansion value as the characteristic value by using metal tantalum as a target material and a reaction gas by an arc ion plating(AIP) type reactive evaporation method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温下における還
元性ガスとの反応抑制効果に優れた炭素複合材料、さら
に詳しくは1000℃を超える高温の還元性ガス雰囲気
中においても、炭素材料と還元性ガスとの反応抑制効果
を十分に発揮することができる炭化タンタル被覆黒鉛系
材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon composite material having an excellent effect of suppressing a reaction with a reducing gas at a high temperature, and more particularly to a carbon composite material capable of reducing a carbon material even in a reducing gas atmosphere at a high temperature exceeding 1000.degree. TECHNICAL FIELD The present invention relates to a tantalum carbide-coated graphite-based material that can sufficiently exhibit a reaction suppression effect with a reactive gas.

【0002】[0002]

【従来の技術】従来、高温下におけるチッ素ガス、アン
モニアガス等の還元性ガス雰囲気下に晒される黒鉛系材
料は、当然ながら還元性ガスとの反応によって変質した
り目減りし、その材料に求められている本来の機能が十
分果たせなくなったとき、寿命が尽きたとして新しい部
材と取り換えることが行われる。
2. Description of the Related Art Conventionally, graphite-based materials exposed to reducing gas atmospheres such as nitrogen gas and ammonia gas at high temperatures are naturally deteriorated or reduced by the reaction with the reducing gas, and are required for the material. When the original function that has been performed can no longer be sufficiently performed, it is determined that the life has expired and replacement with a new member is performed.

【0003】例えば、炉内に黒鉛系材料からなるヒータ
ーを配置し、炉内にアンモニアガスを導入してアンモニ
ア雰囲気を形成し、そのヒーターで炉内を1200℃程
度に加熱保持されたアンモニア雰囲気炉の場合について
いえば、ヒーターとしては一般には黒鉛基材の表面に炭
化ケイ素を被覆した黒鉛系材料が使用される。これは、
黒鉛基材そのものはアンモニアと非常に反応しやすいた
め、黒鉛製のヒーターでは短時間のうちに消耗が進行し
穴が開き始める、つまり断線が生じるため、このような
現象を回避して少しでもヒーターとしての寿命を長くで
きるように、アンモニアとの反応を緩和させる手段とし
て、黒鉛基材の表面に炭化ケイ素を被覆したものであ
る。
[0003] For example, a heater made of a graphite-based material is arranged in a furnace, an ammonia gas is introduced into the furnace to form an ammonia atmosphere, and the furnace is heated to about 1200 ° C by the heater, and an ammonia atmosphere furnace is maintained. In the case of (1), a graphite-based material in which the surface of a graphite substrate is coated with silicon carbide is generally used as the heater. this is,
Since the graphite base itself reacts very easily with ammonia, the graphite heater wears out in a short time and starts to open holes, that is, breaks occur. As a means for alleviating the reaction with ammonia, the surface of a graphite substrate is coated with silicon carbide so that the life of the graphite substrate can be extended.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の炭化ケ
イ素の被覆という手段は、あくまでもヒーターとアンモ
ニアとの反応を緩慢にしてヒーターの消耗を遅らせるこ
とを目的としており、黒鉛基材上の炭化ケイ素被膜とア
ンモニアとの反応が徐々に進行することに変わりはな
い。最大の理由は、炭化ケイ素の分解温度が約1400
℃であって、その近辺の温度域での蒸気圧が高いことに
よる。そして、炭化ケイ素被膜がアンモニアとの反応に
より徐々に薄くなり、黒鉛基材の露出にまで至ると、黒
鉛基材とアンモニアが一気に反応し、上述したように短
時間のうちに消耗が進行し穴が開き始め、つまり断線が
生じ、ヒーターとしての寿命が尽きることになる。
However, the above-mentioned means of coating with silicon carbide is intended only to slow down the reaction between the heater and ammonia and to delay the consumption of the heater. The reaction between the film and ammonia gradually proceeds. The biggest reason is that the decomposition temperature of silicon carbide is about 1400
° C and high vapor pressure in the temperature range around the temperature. Then, when the silicon carbide film is gradually thinned by the reaction with the ammonia, and reaches the exposure of the graphite base, the graphite base and the ammonia react at a stretch, and as described above, the wear proceeds in a short time, and the hole progresses. Begin to open, that is, disconnection occurs, and the life of the heater is exhausted.

【0005】本発明者らは、かねてより還元性雰囲気炉
用炭素複合材料の研究を進めており、上記の炭化ケイ素
被覆炭素複合材料より優れた材料を開発するための糸口
として、遷移金属炭化物では一番融点が高く、かつ化学
的安定度が高いとされる炭化タンタル(以下「TaC」
で表示する。)に着目した。そして、黒鉛基材(ヒータ
ー)の上にTaCの被膜を形成するに際しては、まず特
開平6−280117号公報に開示のプラズマ溶射によ
る物理的蒸着法(いわゆるPVD法)及びCVD法を参
考に実験を行った。その後、CVR(化学気相反応)法
の実施による実験も行った。
The present inventors have been researching carbon composite materials for reducing atmosphere furnaces for some time, and as a clue for developing a material superior to the above-mentioned silicon carbide-coated carbon composite material, a transition metal carbide has been used. Tantalum carbide (hereinafter “TaC”), which has the highest melting point and the highest chemical stability
To display. ). When forming a TaC film on a graphite substrate (heater), an experiment was first performed with reference to a physical vapor deposition method (so-called PVD method) and a CVD method by plasma spraying disclosed in Japanese Patent Application Laid-Open No. Hei 6-280117. Was done. After that, an experiment was performed by implementing a CVR (chemical vapor reaction) method.

【0006】しかし、TaCの融点が約4000℃と非
常に高いため、PVD法の実施は極めて困難であり、ま
たいわゆるCVR法により得られるTaC被膜は多孔質
となってしまうため、両法については実用的な成膜法と
して基本的に採用困難と判断した。結局、CVD法によ
り得られたTaC被覆黒鉛基材を高温の還元性ガス雰囲
気中で使用した所、わずか数回(約30時間)の使用で
TaC被膜にクラックが生じ、黒鉛基材とTaC被膜と
の間に剥離が生じた。
However, since the melting point of TaC is as high as about 4000 ° C., it is extremely difficult to carry out the PVD method, and the TaC film obtained by the so-called CVR method becomes porous. It was judged that it was basically difficult to adopt it as a practical film forming method. Eventually, when the TaC-coated graphite substrate obtained by the CVD method was used in a high-temperature reducing gas atmosphere, cracks occurred in the TaC coating after only a few uses (about 30 hours), and the graphite substrate and the TaC coating were used. And peeling occurred.

【0007】本発明は、上記の事情に鑑みてなされたも
のであり、その目的とするところは、1000℃を超え
る高温の還元性ガス雰囲気中においても、優れた還元性
ガス反応抑制効果を発揮し、製品寿命を大きく延ばすこ
とができる還元性雰囲気炉用炭素複合材料及びその製造
方法を提供する点にある。
The present invention has been made in view of the above circumstances, and has as its object to exhibit an excellent effect of suppressing a reducing gas reaction even in a high-temperature reducing gas atmosphere exceeding 1000 ° C. Another object of the present invention is to provide a carbon composite material for a reducing atmosphere furnace and a method for producing the same, which can greatly extend the product life.

【0008】[0008]

【課題を解決するための手段】本発明者らは、従来法
(CVD法)で得られたTaC被膜と黒鉛基材との間に
簡単に生じるクラックや剥離の原因を解明すべく、あら
ゆる角度から検討してきた。その結果、次の及びの
事実が判明した。 黒鉛基材上のTaC被膜の結晶組織は繊維柱状(図5
(a)参照)又は柱状(図5(b)参照)をしており、
さらにいずれの場合も黒鉛基材とTaC被膜との密着力
に弱い構造をしていること。 黒鉛基材とTaC被膜の熱膨張係数の差が大きく離れ
ている場合ほど、クラックや剥離の発生、進行の程度が
顕著となる傾向にあること。
Means for Solving the Problems The present inventors attempted to elucidate the causes of cracks and separation easily occurring between a TaC coating obtained by a conventional method (CVD method) and a graphite base material at various angles. Has been considered since. As a result, the following facts were found. The crystal structure of the TaC coating on the graphite substrate has a fiber columnar shape (FIG. 5).
(See FIG. 5 (a)) or columnar (see FIG. 5 (b)).
Further, in any case, the structure has a weak adhesion to the graphite base material and the TaC film. The larger the difference between the thermal expansion coefficients of the graphite base material and the TaC coating is, the more the cracks and peeling tend to occur and progress.

【0009】この結果、本発明者らは、TaC被膜の結
晶組織として微粒子が緻密に積層した状態を具現できる
ような結晶組織組織面からの工夫((イ))と、TaC
被膜と黒鉛基材との熱膨張係数差を一定の範囲内に収め
る等の黒鉛基材の特性面からの工夫((ロ))を施せ
ば、TaC被膜内のクラックの進行を著しく遅らせ、ひ
いては黒鉛基材とTaC被膜との剥離の発生の大幅な抑
制につながるはず、との知見を得ることができ、この知
見を基に更に検討を重ねた末、上記(イ)、(ロ)の工
夫として最適な具体的手段に到達し、本発明を完成し
た。
[0009] As a result, the inventors of the present invention have proposed a device ((a)) from the viewpoint of the crystal structure that can realize a state in which fine particles are densely stacked as the crystal structure of the TaC film ((a)).
If a measure ((b)) is taken in view of the characteristics of the graphite base material such as keeping the difference in thermal expansion coefficient between the coating and the graphite base within a certain range, the progress of cracks in the TaC coating will be significantly slowed down, It is possible to obtain the knowledge that this should lead to a significant suppression of the occurrence of separation between the graphite base material and the TaC film, and after further studying based on this knowledge, the above-mentioned ideas (a) and (b) As a result, the present invention has been completed.

【0010】即ち、上記目的を達成し得た本発明の一つ
は、黒鉛基材の表面に、微粒子が緻密に積層した結晶組
織のTaCの被膜が形成され、かつ該黒鉛基材の特性値
として熱膨張係数が、前記TaC被膜の熱膨張係数±
2.0×10-6/Kの範囲内にあることを特徴とする還
元性雰囲気炉用炭素複合材料である。また、第2の発明
は、前記黒鉛基材としてさらに、0.01〜5μmの平
均気孔半径、また1000℃基準のガス放出圧力が10
-4Pa/g以下であり、さらに不純物の含有量がAl<
0.3ppm、Fe<1.0ppm、Mg<0.1pp
m、Si<0.1ppmで、灰分が10ppm以下の高
純度等方性黒鉛基材という特性値を有するものである。
また、第3の発明は、さらにTaC被膜の膜厚が5〜1
00μmであることを追加構成要件とする還元性雰囲気
炉用炭素複合材料である。
That is, one of the objects of the present invention that has achieved the above object is that a TaC film having a crystal structure in which fine particles are densely laminated is formed on the surface of a graphite substrate, and the characteristic value of the graphite substrate is obtained. Is the thermal expansion coefficient of the TaC coating ±
A carbon composite material for a reducing atmosphere furnace characterized by being in the range of 2.0 × 10 −6 / K. In the second invention, the graphite substrate further has an average pore radius of 0.01 to 5 μm and a gas discharge pressure of 1000 ° C.
-4 Pa / g or less, and the content of impurities is Al <
0.3 ppm, Fe <1.0 ppm, Mg <0.1 pp
m, Si <0.1 ppm, and has a characteristic value of a high-purity isotropic graphite base material having an ash content of 10 ppm or less.
In the third invention, the thickness of the TaC film is further reduced to 5 to 1.
It is a carbon composite material for a reducing atmosphere furnace, which has an additional component requirement of 00 μm.

【0011】また、第4の発明は、上記両発明をアンモ
ニア雰囲気炉用炭素複合材料として利用する用途発明で
あり、第5の発明は、還元性雰囲気炉用炭素複合材料を
成膜炉用ヒーターに利用する用途発明である。半導体薄
膜としては、Si,GaAs,GaInP,GaN,I
nGaNなどが例示できる。また、第6の発明は、ター
ゲット材としての金属Ta及び反応ガスを使用してアー
クイオンプレーティング(AIP)式反応性蒸着法(以
下単に「AIP法」という。)により黒鉛基材の表面に
TaCの皮膜を形成する還元性雰囲気炉用炭素複合材料
の製造方法であって、前記黒鉛基材の特性値としての熱
膨張係数が、前記TaC被膜の熱膨張係数±2.0×1
-6/Kの範囲内にあることを特徴とする還元性雰囲気
炉用炭素複合材料の製造方法である。
A fourth invention is a use invention in which both of the above inventions are used as a carbon composite material for an ammonia atmosphere furnace, and a fifth invention is a heater for a film formation furnace using the carbon composite material for a reducing atmosphere furnace. It is a use invention used for. As the semiconductor thin film, Si, GaAs, GaInP, GaN, I
nGaN and the like can be exemplified. According to a sixth aspect of the present invention, an arc ion plating (AIP) type reactive deposition method (hereinafter, simply referred to as “AIP method”) is used on a surface of a graphite substrate using metal Ta as a target material and a reactive gas. A method for producing a carbon composite material for a reducing atmosphere furnace, which forms a TaC film, wherein the coefficient of thermal expansion as a characteristic value of the graphite base material is the coefficient of thermal expansion of the TaC film ± 2.0 × 1
A method for producing a carbon composite material for a reducing atmosphere furnace, wherein the carbon composite material is within a range of 0 -6 / K.

【0012】さらに、第7の発明は、上記第6の発明の
うち黒鉛基材としてさらに、0.01〜5μmの平均気
孔半径、また1000℃基準のガス放出圧力が10-4
a/g以下であり、さらに不純物の含有量がAl<0.
3ppm、Fe<1.0ppm、Mg<0.1ppm、
Si<0.1ppmで、灰分が10ppm以下の高純度
等方性黒鉛基材という特性値を有する製造方法である。
In a seventh aspect of the present invention, the graphite base material of the sixth aspect further has an average pore radius of 0.01 to 5 μm and a gas discharge pressure of 10 -4 P based on 1000 ° C.
a / g or less, and the content of impurities is Al <0.
3 ppm, Fe <1.0 ppm, Mg <0.1 ppm,
This is a production method having a characteristic value of a high-purity isotropic graphite base material with Si <0.1 ppm and an ash content of 10 ppm or less.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しつつ説明する。図1は、本発明に係る還元性雰
囲気炉用炭素複合材料を示す断面模式図であり、図2
は、本発明の製造方法の一例を示す工程図、図3は、A
IP処理を実施するためのAIP装置を示す原理説明図
である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view showing a carbon composite material for a reducing atmosphere furnace according to the present invention.
Is a process diagram showing an example of the production method of the present invention, and FIG.
FIG. 2 is a principle explanatory diagram illustrating an AIP device for performing an IP process.

【0014】図1(a)において、本発明の複合材料1
は、黒鉛基材2の表面にTaC被膜3が形成された構造
をしている。図1(b)は、TaC被膜3の一部を拡大
した模式図である。TaC被膜3は、φ1〜10μm程
度のTaC微粒子が均質かつ緻密に詰まって積層した状
態の結晶構造からなる層であり、その場合嵩密度が1
4.30g/cm3 以上であるようなものが望ましい。
アウトガスの少ない高純度等方性黒鉛基材を使うのは、
高温で黒鉛基材から放出するガス及び不純物が少なく、
また電気抵抗率や熱膨張率が各方向における方向性が少
なくためである。なお、多孔質のTaC被膜の形成を防
ぐため、TaC被膜の嵩密度が14.30g/cm3
上とすることによって、外部からのガス侵入を抑制する
ことができる。このような結晶組織及び特性を有するT
aC被膜3を形成するには、後に詳記するようにターゲ
ット材としての金属タンタル及び反応ガスを使用したA
IP法の実施が有効である。
In FIG. 1A, a composite material 1 of the present invention is shown.
Has a structure in which a TaC coating 3 is formed on the surface of a graphite substrate 2. FIG. 1B is a schematic diagram in which a part of the TaC coating 3 is enlarged. The TaC coating 3 is a layer having a crystal structure in which TaC fine particles having a diameter of about 1 to 10 μm are uniformly and densely packed and stacked, and in this case, the bulk density is 1
It is desirable that the weight be 4.30 g / cm 3 or more.
The use of high-purity isotropic graphite substrate with low outgas
Low gas and impurities released from graphite base at high temperature,
In addition, the electrical resistivity and the coefficient of thermal expansion are less directional in each direction. In addition, in order to prevent formation of a porous TaC film, gas intrusion from the outside can be suppressed by setting the bulk density of the TaC film to 14.30 g / cm 3 or more. T having such a crystal structure and characteristics
In order to form the aC film 3, as will be described in detail later, A using metal tantalum and a reaction gas as a target material is used.
Implementation of the IP method is effective.

【0015】黒鉛基材2としては、TaC被膜3との親
和性に良好な高純度等方性黒鉛基材を使用することが望
ましく、さらに該黒鉛基材の特性値が以下の条件(〜
)を満たすものを採用することが望ましい。 熱膨張係数が、TaC被膜の熱膨張係数±2.0×1
-6/K である。黒鉛基材とTaC被膜との熱膨張係
数差によりTaC皮膜に発生する熱応力を減少させるた
めである。
As the graphite base material 2, it is desirable to use a high-purity isotropic graphite base material having good affinity for the TaC coating 3, and the characteristic value of the graphite base material is set as follows.
It is desirable to adopt one that satisfies). The coefficient of thermal expansion is the coefficient of thermal expansion of the TaC coating ± 2.0 × 1
0 −6 / K. This is to reduce thermal stress generated in the TaC film due to a difference in thermal expansion coefficient between the graphite base material and the TaC film.

【0016】平均気孔半径は0.01〜5μmであ
る。ここで「平均気孔半径」とは、水銀ポロシメーター
から求めた細孔容積の平均気孔半径の値であって、最大
圧力98MPa、試料と水銀の接触角141.3°とし
たときの累積気孔容積の半分値としたものである。平均
気孔半径が0.01μm未満では、いわゆるアンカー効
果が十分発揮されず、TaC被膜が剥離しやすくなるか
らである。一方、5μmを超えると、高温下での黒鉛基
材からの放出ガスの量が多くなるからである。
The average pore radius is from 0.01 to 5 μm. Here, the “average pore radius” is a value of an average pore radius of a pore volume obtained from a mercury porosimeter, and is a value of a cumulative pore volume when a maximum pressure is 98 MPa and a contact angle between a sample and mercury is 141.3 °. It is a half value. When the average pore radius is less than 0.01 μm, the so-called anchor effect is not sufficiently exhibited, and the TaC coating is easily peeled. On the other hand, if it exceeds 5 μm, the amount of gas released from the graphite substrate at a high temperature increases.

【0017】1000℃基準のガス放出圧力が10-4
Pa/g以下である。放出されるガスとしては、H2
CH4 、C0、C02 、H2 0などがあるが、特にTa
Cと反応しやすいC0、H2 0の発生量をできる限り少
なくするために、10-4Pa/g以下が望ましい。
The gas discharge pressure based on 1000 ° C. is 10 -4.
Pa / g or less. H 2 ,
CH 4 , C 0, C 0 2 , H 2 0, etc.
To minimize the amount of generated reacts with C easy C0, H 2 0, the following is desirable 10 -4 Pa / g.

【0018】不純物の含有量がAl<0.3ppm、
Fe<1.0ppm、Mg<0.1ppm、Si<0.
1ppmで、灰分が10ppm以下である。不純物の量
がこの範囲を超えると、高温下におけるTaCとの化学
反応により黒鉛基材とTaC皮膜の界面が剥離しやすく
なるため、これを防止するためである。
When the content of impurities is Al <0.3 ppm,
Fe <1.0 ppm, Mg <0.1 ppm, Si <0.
At 1 ppm, the ash content is 10 ppm or less. If the amount of the impurities exceeds this range, the interface between the graphite base material and the TaC film tends to peel off due to a chemical reaction with TaC at a high temperature, so that this is prevented.

【0019】従って、本発明の複合材料1を高温の還元
性ガス、例えばアンモニア雰囲気下に晒しても、TaC
被膜3としては微粒子が緻密に積層した結晶組織である
ために、たとえ黒鉛基材2中の不純物(Fe、Al等)
が拡散してTaC被膜3の下層に到達しても、柱状又は
繊維柱状結晶組織と異なり微粒子状結晶組織のTaC被
膜3内の抜け出しは非常に困難となる。また、高温でT
aC被膜にピンホール及びクラックが生じるまでの時間
を非常に長く延ばすことができる。
Therefore, even when the composite material 1 of the present invention is exposed to a high-temperature reducing gas, for example, an ammonia atmosphere, TaC
Since the coating 3 has a crystal structure in which fine particles are densely stacked, even if impurities (Fe, Al, etc.) in the graphite substrate 2
Is diffused and reaches the lower layer of the TaC coating 3, unlike the columnar or fiber columnar crystal structure, it is very difficult for the fine crystal structure to escape from the TaC coating 3. In addition, T
The time until pinholes and cracks occur in the aC coating can be extended very long.

【0020】また、本発明に係る黒鉛基材2の場合は、
上記不純物そのものが当初から極めて少なく、特有の細
孔構造を有するため、拡散するガスも非常に少ない。従
って、そのような黒鉛基材2上に被覆したTaC被膜3
は、黒鉛基材2との密着性が良く、しかも高温で黒鉛基
材2から放出されるガスが少ないため、TaC被膜3の
劣化やピンホール及びクラックが生じにくくなってい
る。さらに、TaC被膜3と黒鉛基材2との熱膨張係数
差は相対的に±2.0×10-6/K以内に抑えられてお
り、熱膨張係数差に起因したTaC被膜3自体の黒鉛基
材2からの剥離は回避することができる。従って、従来
品のようにピンホール及びクラックの促進に起因した剥
離という現象も生じないため、この点も一層の相乗効果
を生み、上記ピンホール及びクラックが無い、TaC被
膜と黒鉛基材の密着性が良い状態となっている。
In the case of the graphite substrate 2 according to the present invention,
Since the impurities themselves are extremely small from the beginning and have a unique pore structure, the amount of diffused gas is also very small. Accordingly, the TaC coating 3 coated on such a graphite substrate 2
Has good adhesion to the graphite substrate 2 and less gas is released from the graphite substrate 2 at high temperatures, so that the TaC coating 3 is less likely to deteriorate, and pinholes and cracks are less likely to occur. Further, the difference in thermal expansion coefficient between the TaC coating 3 and the graphite substrate 2 is relatively suppressed within ± 2.0 × 10 −6 / K, and the graphite of the TaC coating 3 itself caused by the difference in thermal expansion coefficient is used. Peeling from the substrate 2 can be avoided. Therefore, unlike the conventional product, the phenomenon of peeling due to the promotion of pinholes and cracks does not occur, and this point also produces a further synergistic effect, and the adhesion between the TaC coating and the graphite substrate without the pinholes and cracks. The state is good.

【0021】結局、本発明の複合材料1の場合は、ピン
ホール及びクラックが生じるまではTaCの本来有する
好ましい特長がそのまま生かされることになる。即ち、
高耐熱性及び高温還元性ガスに対する化学的安定性(例
えば、アンモニアガスの場合1500℃でも安定し、水
素ガスの場合2000℃でも安定した性質)を有効に発
揮して、複合材料1の寿命を従来品よりも大きく延ばす
ことができる。
After all, in the case of the composite material 1 of the present invention, the inherently desirable features of TaC are utilized as they are until pinholes and cracks occur. That is,
Effectively exhibit high heat resistance and chemical stability against high-temperature reducing gas (for example, ammonia gas is stable even at 1500 ° C., and hydrogen gas is stable even at 2000 ° C.) to extend the life of the composite material 1 It can be extended more than conventional products.

【0022】また、TaC被膜3は、その厚みが5〜1
00μm、望ましくは10〜90μmとなるように形成
しておくことが望ましい。TaC被膜3を黒鉛基材2の
表面に支承なく形成するためには、少なくとも5μmは
必要となる一方、100μmを超えると、TaC被膜3
と黒鉛基材2との剥離が生じやすくなるからである。T
aC被膜3の厚みをこのように最適な範囲に設定するこ
とにより、還元性ガス反応抑制効果を十分に発揮させつ
つも、必要以上の被膜形成に要するコストの無駄を省
き、製品コストの上昇を防止することができる。
The TaC coating 3 has a thickness of 5 to 1
It is desirable that the thickness is set to be 00 μm, preferably 10 to 90 μm. In order to form the TaC coating 3 on the surface of the graphite substrate 2 without any support, at least 5 μm is required.
This is because separation from the graphite substrate 2 easily occurs. T
By setting the thickness of the aC film 3 in such an optimum range, the effect of suppressing the reducing gas reaction can be sufficiently exhibited, but the cost required for forming the film more than necessary can be omitted, and the cost of the product can be increased. Can be prevented.

【0023】次に、本発明の製造方法の一例を図2及び
図3を参照しつつ説明する。まず、黒鉛基材2を洗浄部
4へ導入して、有機溶剤で表面を清浄にする。清浄化し
た黒鉛基材2をAIP工程に導き該工程内で黒鉛基材2
の表面にTaCを被覆する。AIP工程は通常図3に示
すようなAIP装置を使用して図2の一点鎖線枠内に示
すような手順(真空引き→加熱→下地処理→コーティン
グ→冷却)で行う。即ち、清浄化した黒鉛基材2をチャ
ンバ5内の回転テーブル6に1個又は複数個載置した
後、チャンバ5内を10-5Torr程度まで真空引き
し、次いでチャンバ5内を400〜600℃程度に加熱
する。
Next, an example of the manufacturing method of the present invention will be described with reference to FIGS. First, the graphite substrate 2 is introduced into the cleaning unit 4 and the surface is cleaned with an organic solvent. The cleaned graphite substrate 2 is led to an AIP process, and the graphite substrate 2 is
Is coated with TaC. The AIP process is usually performed by using an AIP apparatus as shown in FIG. 3 in a procedure (evacuation → heating → undercoating → coating → cooling) as shown in a dashed-dotted frame in FIG. That is, after one or a plurality of the cleaned graphite substrates 2 are placed on the rotary table 6 in the chamber 5, the inside of the chamber 5 is evacuated to about 10 −5 Torr, and then the inside of the chamber 5 is 400 to 600 Torr. Heat to about ° C.

【0024】次に、供給口7からArガスをチャンバ5
内に導入し、−600Vのバイアス電源8を負荷させな
がらArスパッタリングによるドライエッチングを行
う。いわゆる下地処理である。この後、コーティング操
作に入り、ターゲット材(金属Ta)10に通電するア
ーク電源11及びバイアス電源8をそれぞれ所定の電流
及び電圧に設定すると共に、供給口7からCH4 ガス等
の反応ガスを所定の流量で供給し、ターゲット材10か
ら飛び出したTa微粒子を反応ガス粒子と共に黒鉛基材
2の表面にTaC微粒子として付着させる。このコーテ
ィング操作を所定時間保持することにより、黒鉛基材2
の表面にTaC微粒子が緻密かつ均質に積層した結晶組
織のTaC被膜を5〜100μmの範囲で必要な厚みだ
け自在に形成することができる。
Next, Ar gas is supplied from the supply port 7 to the chamber 5.
And dry etching by Ar sputtering is performed while applying a bias power supply 8 of −600 V. This is a so-called ground treatment. Thereafter, the coating operation is started, the arc power supply 11 and the bias power supply 8 for energizing the target material (metal Ta) 10 are set to predetermined currents and voltages, respectively, and a reaction gas such as CH 4 gas is supplied from the supply port 7 to a predetermined level. And the Ta fine particles jumping out of the target material 10 are attached to the surface of the graphite substrate 2 as TaC fine particles together with the reactive gas particles. By holding this coating operation for a predetermined time, the graphite substrate 2
A TaC coating having a crystal structure in which TaC fine particles are densely and uniformly laminated on the surface of the substrate can be freely formed in a required thickness in a range of 5 to 100 μm.

【0025】コーティング操作が終了すれば、チャンバ
5内を所定温度まで冷却した後、製品としてのTaC被
膜黒鉛材料をチャンバ5から取り出す。
When the coating operation is completed, the inside of the chamber 5 is cooled to a predetermined temperature, and then the TaC-coated graphite material as a product is taken out of the chamber 5.

【0026】[0026]

【実施例】【Example】

(実施例1)図4に示す円筒型スリット型(φ100m
m×t5mm)の形状寸法からなる黒鉛製ヒーターであ
って、第1表に示す特性値を有する高純度等方性黒鉛
(基材No. 〜)に対してAIP処理を行い、黒鉛製
ヒーターの表面にTaC被膜を形成した。TaC被膜の
組成比(Ta/C)=1とし、膜厚の変更は蒸着時間を
調整することにより行った。AIP条件は、次の通りで
ある。 ターゲット材:金属Ta 反応ガス :CH4 熱処理温度 :400〜600℃ ベース圧力 :1×10-5Torr 蒸着圧力 :20mTorr 蒸着電流 :200A 蒸着電圧 :43V バイアス電圧:−20V 蒸着時間 :25分(5μm)〜500分(100
μm) 得られたTaC被膜の嵩密度は14.30g/cm3
上であった。
(Example 1) A cylindrical slit type shown in FIG.
m.times.t5 mm), wherein AIP treatment is performed on high-purity isotropic graphite (base material No.〜) having the characteristic values shown in Table 1 to obtain a graphite heater. A TaC film was formed on the surface. The composition ratio (Ta / C) of the TaC film was set to 1, and the film thickness was changed by adjusting the deposition time. The AIP conditions are as follows. Target material: Metal Ta Reaction gas: CH 4 Heat treatment temperature: 400 to 600 ° C. Base pressure: 1 × 10 −5 Torr Deposition pressure: 20 mTorr Deposition current: 200 A Deposition voltage: 43 V Bias voltage: −20 V Deposition time: 25 minutes (5 μm) ) To 500 minutes (100
μm) The bulk density of the obtained TaC coating was 14.30 g / cm 3 or more.

【0027】上記のAIP処理によって得られた製品と
してのアンモニア雰囲気炉用ヒーターをそれぞれ使用し
て、1200℃のアンモニア雰囲気下にある半導体薄膜
成膜炉での成膜実験を順次、繰り返して行った。断線し
た時点をもってヒーターの寿命とした。その結果を、表
1に併せて示す。
Using each of the ammonia atmosphere furnace heaters as products obtained by the above-described AIP treatment, film formation experiments in a semiconductor thin film formation furnace in an ammonia atmosphere at 1200 ° C. were sequentially and repeatedly performed. . The life of the heater was defined as the time of disconnection. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】(比較例1)実施例1(基材No. 〜)
と同一の形状寸法及び特性からなるそれぞれの黒鉛製ヒ
ーターに対してCVD処理を行い、ヒーターの表面にS
iC被膜を20μmの厚みで形成した。得られた従来型
製品としてのアンモニア雰囲気炉用ヒーターを使用し
て、実施例1と同様にして同一条件下にある半導体薄膜
の成膜炉でのGaN成膜実験を繰り返し行い、断線した
時点をもってヒーターの寿命とした。結果は、表1に併
せて示す。表1からも明らかなように、従来型ヒーター
の場合はすべて50回の繰り返し使用で(延べ時間にし
て150時間の使用で)断線したのに対し、本発明に係
るヒーターの場合は、500回繰り返し使用しても(延
べ時間にして1500時間使用しても)、断線は起こら
なかった。
Comparative Example 1 Example 1 (Base No.)
CVD treatment is performed on each graphite heater having the same shape, dimensions and characteristics as above, and S
An iC coating was formed with a thickness of 20 μm. Using the obtained heater for an ammonia atmosphere furnace as a conventional product, a GaN film-forming experiment was repeatedly performed in a film-forming furnace for semiconductor thin films under the same conditions as in Example 1 at the time of disconnection. The heater life was determined. The results are shown in Table 1. As is clear from Table 1, in the case of the heater according to the present invention, 500 times were repeated in the case of the heater according to the present invention, whereas in the case of the conventional heater, all 50 times were used repeatedly (using 150 hours in total). Even after repeated use (even when used for a total of 1500 hours), no disconnection occurred.

【0030】なお、熱処理(成膜実験)後における実施
例(基材No. )及び実施例(基材No. )のそれぞれ
のTaC被膜について、走査型電子顕微鏡で観察した結
果が図6(a)、(b)に示すSEM写真である。この
SEM写真からも、黒鉛基材の特性が本発明の要件を満
たす(基材No. )場合は、クラックの発生が認められ
ず(図6(a))、要件を外れる場合(基材No. )
は、クラックが進行している様子が分かる(図6
(b))。
FIG. 6 (a) shows the results of observing the respective TaC coatings of the example (base material No.) and the example (base material No.) after the heat treatment (film formation experiment) with a scanning electron microscope. 4) and (b) are SEM photographs. Also from this SEM photograph, when the characteristics of the graphite base material satisfy the requirements of the present invention (base material No.), no cracks are observed (FIG. 6 (a)), and when the requirements are not satisfied (base material No.). .)
Shows that cracks are progressing (Fig. 6
(B)).

【0031】次に、実施例(基材No. )と同一の黒鉛
基材に対してAIP処理を行い、黒鉛製ヒーターの表面
に表2に示すように膜厚を5〜100μmまで種々変え
てTaC被膜を形成した。それぞれのヒーターを使用し
て、実施例1と同様に1200℃のアンモニア雰囲気下
にある半導体薄膜成膜炉での成膜実験を順次、繰り返し
て行った。断線した時点をもってヒーターの寿命とし
た。その結果を、表2に併せて示す。
Next, the same graphite substrate as in the example (substrate No.) was subjected to AIP treatment, and the surface of the graphite heater was variously changed in thickness from 5 to 100 μm as shown in Table 2. A TaC coating was formed. Using each of the heaters, a film forming experiment in a semiconductor thin film forming furnace in an ammonia atmosphere at 1200 ° C. was sequentially and repeatedly performed in the same manner as in Example 1. The life of the heater was defined as the time of disconnection. The results are also shown in Table 2.

【0032】[0032]

【表2】 [Table 2]

【0033】(比較例1)実施例1(基材No. )と同
一の形状寸法及び特性からなる黒鉛製ヒーターに対して
CVD処理を行い、ヒーターの表面にSiC被膜を10
0μmの厚みで形成した。得られた従来型製品としての
アンモニア雰囲気炉用ヒーターを使用して、実施例1
(基材No. )と同様にして同一条件下にある半導体薄
膜成膜炉でのGaN成膜実験を繰り返し行い、断線した
時点をもってヒーターの寿命とした。結果は、表2に併
せて示す。表2からも明らかなように、従来型ヒーター
の場合は50回の繰り返し使用で(延べ時間にして15
0時間の使用で)断線したのに対し、本発明に係るヒー
ターの場合は、すべて500回繰り返し使用しても(延
べ時間にして1500時間使用しても)、断線は起こら
なかった。
(Comparative Example 1) A graphite heater having the same shape, dimensions, and characteristics as in Example 1 (base material No.) was subjected to CVD treatment, and a SiC film was formed on the heater surface.
It was formed with a thickness of 0 μm. Example 1 was obtained using the obtained heater for an ammonia atmosphere furnace as a conventional product.
A GaN film formation experiment was repeated in a semiconductor thin film formation furnace under the same conditions as in the case of (base material No.). The results are shown in Table 2. As is clear from Table 2, in the case of the conventional heater, 50 times of repeated use (15 times in total time)
In contrast, in the case of the heater according to the present invention, no disconnection occurred even when the heater according to the present invention was repeatedly used 500 times (even when used for a total of 1500 hours).

【0034】[0034]

【発明の効果】本発明によれば、以下の利益(〜)
を享受することができる。 本発明の複合材料は、微粒子状の緻密で均質な積層結
晶組織を有するTaC被膜を黒鉛基材の表面に被覆した
構成であるため、高温の還元性雰囲気下で黒鉛基材中の
不純物(Fe、Al等)が拡散してTaC被膜に到達し
ても、TaC被膜内からの抜け出しは非常に困難とな
り、ピンホールが生じるまでの時間を非常に長く延ばす
ことができる。
According to the present invention, the following advantages (~)
Can be enjoyed. Since the composite material of the present invention has a structure in which the surface of the graphite base material is coated with a fine-grained dense and homogeneous laminated crystal structure on the surface of the graphite base material, the impurity (Fe) in the graphite base material under a high-temperature reducing atmosphere is used. , Al, etc.) diffuse and reach the TaC film, it is very difficult to escape from the TaC film, and the time until pinholes can be extended very long.

【0035】また、本発明に係る黒鉛基材の場合は、上
記不純物そのものが当初から極めて少なく、特有の細孔
構造を有するため、拡散するガスも非常に少ない。従っ
て、そのような黒鉛基材上に被覆したTaC皮膜は、黒
鉛基材との密着性が良く、しかも高温で黒鉛基材から放
出されるガスが少ないため、TaC被膜の劣化やピンホ
ール及びクラックを生じにくくなっている。さらに、T
aC被膜と黒鉛基材との熱膨張係数差は相対的に±2.
0×10-6/K以内に抑えられており、熱膨張係数差に
起因したTaC被膜自体の黒鉛基材からの剥離は回避す
ることができる。従って、従来品のようにピンホール及
びクラックの促進に起因した剥離という現象も生じない
ため、この点も一層の相乗効果を生み、上記ピンホール
及びクラックが無く、TaC被膜と黒鉛基材の密着性が
良い状態となっている。結局、上記の結晶組織面からの
改善と黒鉛基材そのものの改善(好ましい基材の選択)
とが相まって、ピンホール及びクラックが生じるまでは
TaCの本来有する好ましい特長である高耐熱性及び化
学的安定性が有効に発揮され、複合材料からなる製品の
寿命を従来品よりも大きく延ばすことができる。
Further, in the case of the graphite substrate according to the present invention, since the impurities themselves are extremely small from the beginning and have a specific pore structure, the amount of gas diffused is also very small. Therefore, such a TaC film coated on a graphite substrate has good adhesion to the graphite substrate, and has a small amount of gas released from the graphite substrate at a high temperature. Is less likely to occur. Furthermore, T
The thermal expansion coefficient difference between the aC coating and the graphite substrate is relatively ± 2.
It is suppressed within 0 × 10 −6 / K, and it is possible to prevent the TaC coating itself from peeling off from the graphite substrate due to the difference in thermal expansion coefficient. Therefore, the phenomenon of peeling due to the promotion of pinholes and cracks unlike the conventional product does not occur, and this point also produces a further synergistic effect. The state is good. After all, the above-mentioned improvement from the crystal structure side and the improvement of the graphite base material itself (selection of a preferable base material)
In combination with this, TaC effectively exhibits high heat resistance and chemical stability, which are inherently desirable features inherent in TaC, until pinholes and cracks are generated. it can.

【0036】また、TaC被膜の厚みを5〜100μ
m、望ましくは10〜90μmとなるように形成してお
くことにより、上記の効果を十分に発揮させつつも、
必要以上の被膜形成に要するコストの無駄を省き、製品
コストの上昇を防止することができる。 本発明の複合材料を半導体薄膜の成膜炉用ヒーターに
適用した場合には、このヒーターの著しい延命化によ
り、半導体薄膜の成膜に要するコストの低減化を図るこ
とができる。 TaC被膜の形成には、コンパクトな汎用装置でもあ
るAIP装置を利用できるので、経済的である。
Further, the thickness of the TaC film is set to 5 to 100 μm.
m, desirably from 10 to 90 μm, while sufficiently exhibiting the above effects,
Waste of the cost required for forming a film more than necessary can be avoided, and an increase in product cost can be prevented. When the composite material of the present invention is applied to a heater for a semiconductor thin film deposition furnace, the life of the heater is remarkably prolonged, so that the cost required for forming the semiconductor thin film can be reduced. The formation of the TaC film is economical because an AIP device which is a compact general-purpose device can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る還元性雰囲気炉用炭素複合材料を
示す断面模式図である。
FIG. 1 is a schematic cross-sectional view showing a carbon composite material for a reducing atmosphere furnace according to the present invention.

【図2】本発明の製造方法の一例を示す工程図である。FIG. 2 is a process chart showing an example of the production method of the present invention.

【図3】AIP処理を実施するためのAIP装置を示す
原理説明図である。
FIG. 3 is a diagram illustrating the principle of an AIP device for performing an AIP process.

【図4】半導体薄膜の成膜炉用ヒーターの概略斜視図で
ある。
FIG. 4 is a schematic perspective view of a heater for a deposition furnace of a semiconductor thin film.

【図5】CVD法で成膜したTaC被膜の結晶組織を示
す要部断面模式図であり、(a)は結晶構造が繊維柱状
のもの、(b)は柱状のものを示す図である。
5A and 5B are schematic cross-sectional views of a principal part showing a crystal structure of a TaC film formed by a CVD method, wherein FIG. 5A is a diagram showing a fiber columnar structure, and FIG. 5B is a diagram showing a columnar crystal structure.

【図6】熱処理(GaN成膜実験)後における実施例
(基材No. )及び実施例(基材No. )のそれぞれの
TaC被膜についてのSEM写真であり、(a)は実施
例(基材No. )のもの、(b)は実施例(基材No.
)のものである。
FIG. 6 is an SEM photograph of each TaC film of the example (base material No.) and the example (base material No.) after the heat treatment (GaN film formation experiment). Material No.), (b) shows the example (base material No.
)belongs to.

【符号の説明】[Explanation of symbols]

1 本発明複合材料 2 黒鉛基材 3 TaC被膜 4 洗浄部 5 チャンバ 6 回転テーブル 7 供給口 8 バイアス電源 9 排気口 10 ターゲット材(金属Ta) 11 アーク電源 12 陽極 DESCRIPTION OF SYMBOLS 1 Composite material of this invention 2 Graphite base material 3 TaC coating 4 Cleaning part 5 Chamber 6 Rotary table 7 Supply port 8 Bias power supply 9 Exhaust port 10 Target material (metal Ta) 11 Arc power supply 12 Anode

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛基材の表面に、微粒子が緻密に積層
した結晶組織の炭化タンタルの被膜が形成され、かつ該
黒鉛基材の特性値として熱膨張係数が、前記炭化タンタ
ル被膜の熱膨張係数±2.0×10-6/Kの範囲内にあ
ることを特徴とする還元性雰囲気炉用炭素複合材料。
1. A tantalum carbide film having a crystal structure in which fine particles are densely stacked on a surface of a graphite substrate, and a thermal expansion coefficient as a characteristic value of the graphite substrate is a thermal expansion coefficient of the tantalum carbide film. A carbon composite material for a reducing atmosphere furnace, wherein the coefficient is within a range of ± 2.0 × 10 −6 / K.
【請求項2】 前記黒鉛基材がさらに特性値として、
0.01〜5μmの平均気孔半径、また1000℃基準
のガス放出圧力が10-4Pa/g以下であり、さらに不
純物の含有量がAl<0.3ppm、Fe<1.0pp
m、Mg<0.1ppm、Si<0.1ppmで、灰分
が10ppm以下の高純度等方性黒鉛基材である請求項
1記載の還元性雰囲気炉用炭素複合材料。
2. The method according to claim 1, wherein the graphite substrate further has a characteristic value
The average pore radius is 0.01 to 5 μm, the gas discharge pressure based on 1000 ° C. is 10 −4 Pa / g or less, and the content of impurities is Al <0.3 ppm and Fe <1.0 pp.
2. The carbon composite material for a reducing atmosphere furnace according to claim 1, wherein the carbon composite material is a high-purity isotropic graphite substrate having m, Mg <0.1 ppm, Si <0.1 ppm, and an ash content of 10 ppm or less.
【請求項3】 前記炭化タンタルの被膜の膜厚が5〜1
00μmである請求項1又は請求項2記載の還元性雰囲
気炉用炭素複合材料。
3. The film thickness of the tantalum carbide film is 5 to 1
The carbon composite material for a reducing atmosphere furnace according to claim 1 or 2, which has a thickness of 00 µm.
【請求項4】 前記還元性雰囲気炉がアンモニア雰囲気
炉である請求項1乃至請求項3のいずれか一項に記載の
還元性雰囲気炉用炭素複合材料。
4. The carbon composite material for a reducing atmosphere furnace according to claim 1, wherein the reducing atmosphere furnace is an ammonia atmosphere furnace.
【請求項5】 上記炭素複合材料が成膜炉用ヒーターで
ある請求項1乃至請求項4のいずれか一項に記載の還元
性雰囲気炉用炭素複合材料。
5. The carbon composite material for a reducing atmosphere furnace according to claim 1, wherein the carbon composite material is a heater for a film formation furnace.
【請求項6】 ターゲット材としての金属タンタル及び
反応ガスを使用してアークイオンプレーティング(AI
P)式反応性蒸着法により黒鉛基材の表面に炭化タンタ
ルの被膜を形成する還元性雰囲気炉用炭素複合材料の製
造方法であって、前記黒鉛基材の特性値としての熱膨張
係数が、前記炭化タンタル被膜の熱膨張係数±1.5×
10-6/Kの範囲内にあることを特徴とする還元性雰囲
気炉用炭素複合材料の製造方法。
6. An arc ion plating (AI) method using tantalum metal as a target material and a reaction gas.
P) A method for producing a carbon composite material for a reducing atmosphere furnace in which a tantalum carbide film is formed on the surface of a graphite substrate by a reactive vapor deposition method, wherein a thermal expansion coefficient as a characteristic value of the graphite substrate is Thermal expansion coefficient of the tantalum carbide coating ± 1.5 ×
A method for producing a carbon composite material for a reducing atmosphere furnace, which is within the range of 10 -6 / K.
【請求項7】 前記黒鉛基材がさらに特性値として、
0.01〜5μmの平均気孔半径、また1000℃基準
のガス放出圧力が10-4Pa/g以下であり、さらに不
純物の含有量がAl<0.3ppm、Fe<1.0pp
m、Mg<0.1ppm、Si<0.1ppmで、灰分
が10ppm以下の高純度等方性黒鉛基材である請求項
6記載の還元性雰囲気炉用炭素複合材料の製造方法。
7. The graphite substrate may further have a characteristic value
The average pore radius is 0.01 to 5 μm, the gas discharge pressure based on 1000 ° C. is 10 −4 Pa / g or less, and the content of impurities is Al <0.3 ppm and Fe <1.0 pp.
The method for producing a carbon composite material for a reducing atmosphere furnace according to claim 6, which is a high-purity isotropic graphite substrate having m, Mg <0.1 ppm, Si <0.1 ppm, and an ash content of 10 ppm or less.
JP06738597A 1997-03-04 1997-03-04 Carbon composite material for reducing atmosphere furnace and method for producing the same Expired - Lifetime JP4498477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06738597A JP4498477B2 (en) 1997-03-04 1997-03-04 Carbon composite material for reducing atmosphere furnace and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06738597A JP4498477B2 (en) 1997-03-04 1997-03-04 Carbon composite material for reducing atmosphere furnace and method for producing the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007195643A Division JP4641535B2 (en) 2007-07-27 2007-07-27 Carbon composite material for reducing atmosphere furnace and method for producing the same
JP2007195644A Division JP4641536B2 (en) 2007-07-27 2007-07-27 Carbon composite material for reducing atmosphere furnace and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10245285A true JPH10245285A (en) 1998-09-14
JP4498477B2 JP4498477B2 (en) 2010-07-07

Family

ID=13343490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06738597A Expired - Lifetime JP4498477B2 (en) 1997-03-04 1997-03-04 Carbon composite material for reducing atmosphere furnace and method for producing the same

Country Status (1)

Country Link
JP (1) JP4498477B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009515A1 (en) * 2002-06-28 2004-01-29 Ibiden Co., Ltd. Carbon composite material
US8211244B2 (en) 2003-08-01 2012-07-03 Toyo Tanso Co., Ltd. Tantalum carbide, method for producing tantalum carbide, tantalum carbide wiring and tantalum carbide electrode
US8216667B2 (en) 2005-02-14 2012-07-10 Toyo Tanso Co., Ltd. Tantalum carbide-coated carbon material and production method thereof
EP2520691A1 (en) * 2009-12-28 2012-11-07 Toyo Tanso Co., Ltd. Tantalum carbide-coated carbon material and manufacturing method for same
JP2013075814A (en) * 2011-09-14 2013-04-25 Toyota Central R&D Labs Inc High heat-resistant member, method for producing the same, graphite crucible and method for producing single crystal ingot
US9612215B2 (en) * 2004-07-22 2017-04-04 Toyo Tanso Co., Ltd. Susceptor
JP2018145022A (en) * 2017-03-01 2018-09-20 株式会社豊田中央研究所 High heat resistant member and manufacturing method thereof
JP2020011866A (en) * 2018-07-18 2020-01-23 株式会社豊田中央研究所 Tac-coated graphite member
KR20200074771A (en) * 2018-12-17 2020-06-25 주식회사 티씨케이 Carbonated tantalum coating material
JP2021084826A (en) * 2019-11-26 2021-06-03 株式会社豊田中央研究所 Heat-resistant member
US11268189B2 (en) 2017-12-19 2022-03-08 Tokai Carbon Korea Co., Ltd Method of manufacturing tantalum carbide coating layer using chemical vapor deposition and tantalum carbide manufactured using the same
CN115404452A (en) * 2022-07-29 2022-11-29 南京航空航天大学 Composite coating for improving surface performance of carbon-based electrode, graphite electrode and preparation method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009515A1 (en) * 2002-06-28 2004-01-29 Ibiden Co., Ltd. Carbon composite material
US8211244B2 (en) 2003-08-01 2012-07-03 Toyo Tanso Co., Ltd. Tantalum carbide, method for producing tantalum carbide, tantalum carbide wiring and tantalum carbide electrode
US9612215B2 (en) * 2004-07-22 2017-04-04 Toyo Tanso Co., Ltd. Susceptor
US8216667B2 (en) 2005-02-14 2012-07-10 Toyo Tanso Co., Ltd. Tantalum carbide-coated carbon material and production method thereof
US9322113B2 (en) 2009-12-28 2016-04-26 Toyo Tanso Co., Ltd. Tantalum carbide-coated carbon material and manufacturing method for same
EP2520691A1 (en) * 2009-12-28 2012-11-07 Toyo Tanso Co., Ltd. Tantalum carbide-coated carbon material and manufacturing method for same
EP2520691A4 (en) * 2009-12-28 2014-01-15 Toyo Tanso Co Tantalum carbide-coated carbon material and manufacturing method for same
JP2013075814A (en) * 2011-09-14 2013-04-25 Toyota Central R&D Labs Inc High heat-resistant member, method for producing the same, graphite crucible and method for producing single crystal ingot
US9315921B2 (en) 2011-09-14 2016-04-19 Kabushiki Kaisha Toyota Chuo Kenkyusho High heat-resistant member, method for producing the same, graphite crucible and method for producing single crystal ingot
JP2018145022A (en) * 2017-03-01 2018-09-20 株式会社豊田中央研究所 High heat resistant member and manufacturing method thereof
US11268189B2 (en) 2017-12-19 2022-03-08 Tokai Carbon Korea Co., Ltd Method of manufacturing tantalum carbide coating layer using chemical vapor deposition and tantalum carbide manufactured using the same
JP2020011866A (en) * 2018-07-18 2020-01-23 株式会社豊田中央研究所 Tac-coated graphite member
KR20200074771A (en) * 2018-12-17 2020-06-25 주식회사 티씨케이 Carbonated tantalum coating material
JP2020109049A (en) * 2018-12-17 2020-07-16 トカイ カーボン コリア カンパニー,リミティド Tantalum carbide coating material
US11780732B2 (en) 2018-12-17 2023-10-10 Tokai Carbon Korea Co., Ltd. Carbonated tantalum coating material
JP2021084826A (en) * 2019-11-26 2021-06-03 株式会社豊田中央研究所 Heat-resistant member
CN115404452A (en) * 2022-07-29 2022-11-29 南京航空航天大学 Composite coating for improving surface performance of carbon-based electrode, graphite electrode and preparation method

Also Published As

Publication number Publication date
JP4498477B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
EP2309039B1 (en) Seed crystal for growth of silicon carbide single crystal, process for producing the same, and process for producing silicon carbide single crystal by sublimation
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
CN101048531A (en) Protective coating on a substrate and method of making thereof
US5993770A (en) Silicon carbide fabrication
JPH10245285A (en) Carbon composite material for reducing atmosphere furnace, and its production
JP4641536B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4498476B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4641535B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4641533B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
EP0781739B1 (en) Jig for heat treatment and process for fabricating the jig
JP4690367B2 (en) Carbon composite material for reducing atmosphere furnace
KR100446563B1 (en) Method for producing composite material and composite material produced thereby
JP4641534B2 (en) Method for producing carbon composite material for reducing atmosphere furnace
JP2005060827A (en) Plasma resistant member
KR100361067B1 (en) Corrosion-resistant members against a chlorine-based gas
Liu et al. Effects of carbon content in iron catalyst coatings on the growth of vertically aligned carbon nanotubes on smooth silicon surfaces by thermal chemical vapor deposition
JP2002517084A (en) Resistor having low temperature coefficient of resistance and method of manufacturing the same
JP3808245B2 (en) Chamber component for semiconductor manufacturing
KR20000057917A (en) A process for preparing a member comprising aluminum and a member comprising aluminum
Liu et al. Effects of interfacial layers on thermal chemical vapour deposition of carbon nanotubes using iron catalyst
JP4028274B2 (en) Corrosion resistant material
JP4907017B2 (en) Method for producing carbon nanotube film body
JP3559195B2 (en) Surface nitriding reforming member
JPH0786379A (en) Semiconductor manufacturing suscepter
JPH0825825B2 (en) Silicon carbide coated graphite product and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070821

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070921

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term