JPH10245270A - Highly oriented silicon nitride sintered compact and production of the same - Google Patents

Highly oriented silicon nitride sintered compact and production of the same

Info

Publication number
JPH10245270A
JPH10245270A JP9060160A JP6016097A JPH10245270A JP H10245270 A JPH10245270 A JP H10245270A JP 9060160 A JP9060160 A JP 9060160A JP 6016097 A JP6016097 A JP 6016097A JP H10245270 A JPH10245270 A JP H10245270A
Authority
JP
Japan
Prior art keywords
silicon nitride
extrusion
molding
orientation
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9060160A
Other languages
Japanese (ja)
Inventor
Teizo Hase
貞三 長谷
Hidemitsu Sakamoto
秀光 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9060160A priority Critical patent/JPH10245270A/en
Publication of JPH10245270A publication Critical patent/JPH10245270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon nitride molding having extremely enhanced strength, toughness and coefficient of thermal conductivity in oriented direction by extrusion molding of a mixture of β-silicon nitride cylindrical particle and α-silicon nitride spherical particle in a specific ratio incorporated with a sintering aid and sintering the molding in which the β-silicon nitride cylindrical particle is uniaxially oriented. SOLUTION: The molding raw material is obtained by adding the sintering aid to the mixture of the β-silicon nitride cylindrical particle and α-silicon nitride spherical particle mixed so that the ratio of α-silicon nitride spherical particle is 5-95wt.%. This material is extrusion molded to afford the molding in which the β-silicon nitride cylindrical particle is uniaxially oriented, and the molding is sintered. High orientation is obtained by carrying out the extrusion using an extrusion molding form having extrusion nozzle thickness of <=3mm, extrusion nozzle length of >=5mm, at an extrusion rate >=5cm/min. A highly oriented sintered compact having more than 70% of orientation degree, 100W/m.K of coefficient of thermal conductivity can be produced in this process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高配向窒化珪素焼
結体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly oriented silicon nitride sintered body and a method for producing the same.

【0002】[0002]

【従来の技術】窒化珪素(Si3N4 )焼結体は、自動車エ
ンジン部材等の高温構造材料や電子回路基板等の伝熱性
絶縁材料等として近年開発が進められている。このよう
な構造用材料としての窒化珪素焼結体において、強度、
靱性および熱伝導率は特に重要な性質である。先ず強度
・靱性は構造用材料としての実用性あるいは応用範囲を
決める基本的な性質であり、また熱伝導率は、例えば放
熱性が必要な回路基板等の用途で直接必要な性質である
ばかりでなく、局部的な熱応力の発生を軽減し実用強度
を向上させる上でも重要な性質である。窒化珪素焼結体
はセラミックス焼結体のなかでは最も高靱性の部類に入
るが、それでも金属材料に比べると破壊靱性(KIC)値
は10分の1以下であり、靱性をできるだけ高めること
は構造用セラミックスの開発において長年の課題であ
る。また、熱応力あるいは熱衝撃をできるだけ軽減して
靱性の低さを補うために、熱伝導率もできるだけ高める
必要がある。
2. Description of the Related Art In recent years, silicon nitride (Si 3 N 4 ) sintered bodies have been developed as high-temperature structural materials for automobile engine members and the like and heat conductive insulating materials for electronic circuit boards and the like. In such a silicon nitride sintered body as a structural material, strength,
Toughness and thermal conductivity are particularly important properties. First, strength and toughness are basic properties that determine the practicality or range of application as structural materials, and thermal conductivity is a property directly required in applications such as circuit boards that require heat dissipation. It is also an important property in reducing the occurrence of local thermal stress and improving practical strength. Silicon nitride sintered bodies are among the highest toughness classes among ceramic sintered bodies, but still have a fracture toughness (K IC ) value of 1/10 or less as compared with metal materials. It has been a long-standing issue in the development of structural ceramics. Further, in order to reduce thermal stress or thermal shock as much as possible to compensate for low toughness, it is necessary to increase thermal conductivity as much as possible.

【0003】従来、窒化珪素焼結体を高靱化する手段と
して、組織中に柱状の粒子を分散させる方法や第2相粒
子としてSiC粒子等を分散させる方法等が報告されて
いる。これらは、亀裂進展中のブリッジング効果や引き
抜き効果を利用して高靱化するものである。しかしこれ
らの方法では、添加した粒子が欠陥としても作用するた
め、強度低下を引き起こしてしまい、強度と靱性を高い
レベルで兼備する焼結体の実現は困難であった。
Conventionally, methods for increasing the toughness of a silicon nitride sintered body include a method of dispersing columnar particles in a structure and a method of dispersing SiC particles or the like as second phase particles. These are toughened by utilizing the bridging effect and the drawing effect during crack propagation. However, in these methods, since the added particles also act as defects, the strength is reduced, and it is difficult to realize a sintered body having both high strength and toughness.

【0004】一般に窒化珪素焼結体は、球状のα−Si3N
4 に焼結助剤を加えて混合したものを成形し、焼結して
製造される。この焼結過程において、α−Si3N4 球状粒
子が溶解し、β−Si3N4 柱状粒子として析出し種々の方
向に成長して最終的に柱状粒子が三次元的に絡み合った
状態になる。これに対して、β−Si3N4 柱状粒子を特定
の方向に配向させ、この配向方向において高強度と高靱
性とを同時に発現させることが提案されている。すなわ
ち特開平8−143400号公報には、窒化珪素粉末と
焼結助剤よりなる混合物に、単結晶β−Si3N4 柱状粒子
を種結晶として0.1〜10 vol%添加し、シート成形
あるいは押出成形等によりβ−Si3N4 柱状粒子を特定方
向に配向させた成形体を作製し、焼結する技術が開示さ
れており、これにより強度が1100MPa以上で破壊
靱性(KIC)が11MPa・m1/2 以上の窒化珪素焼結
体が得られると記載されている。ただし、成形体の成形
方法として具体的に開示されているのはドクターブレー
ド法によるシート成形のみであり、押出成形については
単にその名称に言及しているのみであり何ら具体的な開
示はない。
In general, a silicon nitride sintered body is formed of a spherical α-Si 3 N
The mixture obtained by adding a sintering aid to 4 is molded and sintered. In this sintering process, α-Si 3 N 4 spherical particles are dissolved, precipitated as β-Si 3 N 4 columnar particles, grown in various directions, and finally in a state where the columnar particles are three-dimensionally entangled. Become. On the other hand, it has been proposed that β-Si 3 N 4 columnar particles are oriented in a specific direction, and high strength and high toughness are simultaneously developed in this orientation direction. That is, Japanese Patent Application Laid-Open No. 8-143400 discloses that a single crystal β-Si 3 N 4 columnar particle is added as a seed crystal to a mixture of silicon nitride powder and a sintering aid in an amount of 0.1 to 10 vol% to form a sheet. Alternatively, there has been disclosed a technique in which a molded body in which β-Si 3 N 4 columnar particles are oriented in a specific direction by extrusion molding or the like and a sintering technique is performed, whereby the strength is 1100 MPa or more and the fracture toughness (K IC ) is improved. It is described that a silicon nitride sintered body of 11 MPa · m 1/2 or more can be obtained. However, only the sheet molding by the doctor blade method is specifically disclosed as a molding method of the molded article, and the extrusion molding merely refers to its name, and there is no specific disclosure.

【0005】上記公報に唯一具体的に開示されている成
形法であるドクターブレード法によるシート成形では、
スラリーを100μm程度の厚さのシート状に取り出す
ことによって柱状粒子はシート面と平行な面内において
二次元的には配向するが、一次元的すなわち一軸方向に
配向させることは原理的に困難であり、配向方向におけ
る強度、靱性および熱伝導率の向上にも限界があった。
In the sheet forming by the doctor blade method, which is the only forming method specifically disclosed in the above publication,
By extracting the slurry into a sheet having a thickness of about 100 μm, the columnar particles are two-dimensionally oriented in a plane parallel to the sheet surface, but it is difficult in principle to orientate one-dimensionally, that is, uniaxially. There was a limit to the improvement in strength, toughness and thermal conductivity in the orientation direction.

【0006】[0006]

【発明が解決しようとする課題】本発明は、高度の一軸
配向を実現することにより、配向方向における強度、靱
性および熱伝導率を著しく向上させた高配向窒化珪素焼
結体およびその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a highly-oriented silicon nitride sintered body which achieves a high degree of uniaxial orientation, thereby significantly improving strength, toughness and thermal conductivity in the orientation direction, and a method for producing the same. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記の目的は、本発明に
よれば、β−窒化珪素柱状粒子とα−窒化珪素球状粒子
とをα−窒化珪素球状粒子の割合が5〜95wt%になる
ように混合した混合物に焼結助剤を添加して成形原料と
し、この成形原料を押出成形することによりβ−窒化珪
素柱状粒子が一軸配向した成形体を作製し、この成形体
を焼成することを特徴とする高配向窒化珪素焼結体の製
造方法によって達成される。
SUMMARY OF THE INVENTION According to the present invention, there is provided, according to the present invention, a mixture of β-silicon nitride columnar particles and α-silicon nitride spherical particles in which the proportion of α-silicon nitride spherical particles is 5 to 95 wt%. A sintering aid is added to the mixture thus mixed to form a forming raw material, and the forming raw material is extruded to produce a formed body in which β-silicon nitride columnar particles are uniaxially oriented, and firing the formed body. This is achieved by a method for producing a highly oriented silicon nitride sintered body characterized by the following.

【0008】本発明の方法においては、β−窒化珪素柱
状粒子とα−窒化珪素球状粒子との混合物に焼結助剤を
添加した成形原料を押出成形することにより、成形過程
においてβ−窒化珪素柱状粒子を一軸配向させる。この
状態の押出成形体を通常用いられる条件により焼成する
と、α−窒化珪素からβ−窒化珪素への転移を含む焼結
過程により、成型時と同じ方向にβ−窒化珪素柱状粒子
が一軸配向した高配向窒化珪素焼結体が得られる。
In the method of the present invention, a mixture of columnar particles of β-silicon nitride and spherical particles of α-silicon nitride to which a sintering aid is added is extruded to form a mixture of β-silicon nitride in a molding process. The columnar particles are uniaxially oriented. When the extruded body in this state was fired under the conditions generally used, the β-silicon nitride columnar particles were uniaxially oriented in the same direction as the molding due to the sintering process including the transition from α-silicon nitride to β-silicon nitride. A highly oriented silicon nitride sintered body is obtained.

【0009】このように本発明においては、成形手段と
して押出成形を用いることにより、成形段階でβ−柱状
粒子を高度に一軸配向させることが非常に重要である。
押出前は、成形原料内部でβ−柱状粒子がランダムな方
向を向いている無配向の状態である。これを押出成形す
ると、押出により生起される成形原料の流れには成形型
からの抵抗力が作用するため、流れの横断方向に沿って
流速勾配あるいは流速分布が生じる。
As described above, in the present invention, it is very important that β-columnar particles are highly uniaxially oriented at the molding stage by using extrusion molding as the molding means.
Before extrusion, the β-columnar particles are in a non-oriented state in which random directions are oriented inside the forming raw material. When this is extruded, a resistance force from a mold acts on the flow of the molding raw material generated by the extrusion, so that a flow velocity gradient or a flow velocity distribution is generated along the transverse direction of the flow.

【0010】この流速分布をマクロ的に見ると、成形原
料の流れは成形型と接触する側縁部では成形型から直接
抵抗力を受けるため流速が最も遅く、流れの中心部に近
ずくにつれて成形型からの抵抗力の作用が小さくなるた
め流速が速くなる。成形型からの抵抗力の作用が流れの
中心部まで到達する場合には、流れの側縁部から中心部
まで流速が連続的に増加する流速分布、すなわち中心部
をピークとする山形の流速分布になる。
[0010] Macroscopically, the flow of the molding material has the lowest flow velocity because the flow of the molding raw material is directly resisted by the molding die at the side edge in contact with the molding die. Since the action of the resistance force from the mold is reduced, the flow velocity is increased. When the action of the resistance force from the mold reaches the center of the flow, the flow velocity distribution in which the flow velocity continuously increases from the side edge of the flow to the center, that is, a mountain-shaped flow distribution with a peak at the center become.

【0011】このような流速分布を持つ流れの中で、流
れの方向に対して傾斜している柱状粒子は、流れの側縁
部寄りにある粒子端の進行が遅いのに対して流れの中心
部寄りにある粒子端の進行が速くなり、結局その粒子の
向きは流れの進行に伴い流れの方向へ偏向させられる。
このようにして流れの中にある全ての柱状粒子の向きが
流れの方向に偏向させられる。その結果、押出成形され
た成形体の内部ではβ−柱状粒子が押出方向(流れの方
向)に沿って一軸配向した状態が達成される。
In a flow having such a flow velocity distribution, columnar particles inclined with respect to the direction of flow have a slow progress at the particle end near the side edge of the flow, whereas the center of the flow has The movement of the particle end near the part becomes faster, and eventually the direction of the particle is deflected in the direction of the flow as the flow proceeds.
In this way, the orientation of all columnar particles in the flow is deflected in the direction of the flow. As a result, a state is achieved in which the β-columnar particles are uniaxially oriented in the extrusion direction (flow direction) inside the extruded molded body.

【0012】本発明に用いる押出成形による配向作用
は、前記公報記載の従来技術で用いているドクターブレ
ード法による配向作用とは、次の点で顕著に相違する。
先ず、ドクターブレード法で用いる成形原料の状態はス
ラリーであり、自重に抗して一定形態を維持し自立でき
る状態ではなく、固体よりもむしろ液体に近い状態であ
る。これに対して、押出成形法で用いる成形原料の状態
は、例えばロクロ成形時の粘土よりも硬く、自重に抗し
て一定形態を維持し自立できる状態であり、殆ど固体と
言ってよい状態である。
The orientation effect by the extrusion molding used in the present invention is significantly different from the orientation effect by the doctor blade method used in the prior art described in the above publication in the following points.
First, the state of the forming raw material used in the doctor blade method is a slurry, which is not a state capable of maintaining a constant shape against its own weight and being self-sustaining, but a state closer to a liquid rather than a solid. On the other hand, the state of the molding raw material used in the extrusion molding method is, for example, a state in which it is harder than the clay at the time of potter's wheel molding, maintains a certain form against its own weight and can stand alone, and can be said to be almost solid. is there.

【0013】このように成形原料の状態が大きく相違す
るため、成形原料の流れの中にある柱状粒子に対して作
用する偏向力に大きな相違が生ずる。すなわち、ドクタ
ーブレード法では液体に近い状態のスラリー状成形原料
を特に密閉加圧することもなく解放状態でブレードに当
てるだけなので、流れに対して作用する抵抗力は実質的
にブレードから流れの厚さ方向に作用するもののみであ
り、流れの幅方向に作用する偏向力は存在しないため、
成形されたシートはシート面に沿った二次元的な配向は
なされるものの、面内での柱状粒子の傾斜を更にシート
長手方向に沿って偏向させる一次元的な配向すなわち一
軸配向はなされない。この点が本発明に用いる押出成形
との最大の相違点である。
As described above, since the state of the forming raw material is largely different, a large difference occurs in the deflection force acting on the columnar particles in the flow of the forming raw material. That is, in the doctor blade method, since the slurry-like raw material in a state close to a liquid is merely applied to the blade in an open state without particularly pressurizing tightly, the resistance force acting on the flow is substantially the thickness of the flow from the blade. Direction, and there is no deflecting force acting in the width direction of the flow.
Although the formed sheet is two-dimensionally oriented along the sheet surface, it is not one-dimensionally or uniaxially oriented to further deflect the inclination of the columnar particles in the plane along the sheet longitudinal direction. This is the biggest difference from the extrusion molding used in the present invention.

【0014】また、上記のように液体に近いスラリーを
解放状態でブレードに当てるだけなので、ブレードから
スラリーの流れに作用する抵抗力は小さい。そのため、
流速勾配はブレード等の壁部に接触する極く薄い表層部
のみに発生するに過ぎず、流速勾配に基づく偏向力も表
層部から離れると急速に低下する。その結果、成形シー
トの厚さ中心部まで確実に配向させるには、シート厚さ
は非常に薄くせざるを得ず、前記公報に記載された例で
は成形シートは僅か150μmという薄さである。
Further, since the slurry close to the liquid is merely applied to the blade in the released state as described above, the resistance acting on the flow of the slurry from the blade is small. for that reason,
The flow velocity gradient is generated only in a very thin surface layer that comes into contact with the wall of the blade or the like, and the deflection force based on the flow velocity gradient is rapidly reduced when leaving the surface layer. As a result, the thickness of the sheet must be very small in order to reliably orient it to the center of the thickness of the formed sheet. In the example described in the above-mentioned publication, the formed sheet is as thin as 150 μm.

【0015】これに対して本発明に用いる押出成形は、
固体に近い状態の硬い成形原料を成形型内に入れ、押出
口を成形原料自体で閉じた疑似的な密閉状態とも言える
状態で、この硬い原料を押し出すのに十分な大きさの力
を負荷して成形するので、流れの厚さ方向は勿論、幅方
向についても成形型からの抵抗力が有効に作用し、流れ
の方向に沿って一次元的な配向すなわち一軸配向が達成
される。
On the other hand, the extrusion molding used in the present invention is:
A hard molding material in a state close to a solid is placed in a molding die, and a force large enough to extrude the hard material is applied in a state that can be said to be a pseudo-closed state in which the extrusion port is closed with the molding material itself. Therefore, the resistive force from the mold effectively acts not only in the thickness direction of the flow but also in the width direction, and one-dimensional orientation, that is, uniaxial orientation, is achieved along the flow direction.

【0016】また、上記のように硬い成形材料を擬似的
な密閉状態で負荷するので、成形型から成形原料の流れ
に対して作用する抵抗力を非常に大きくすることがで
き、流れの表層部のみでなく中心部にまで流速勾配を形
成することができる。その結果、厚さ3mmまでであれ
ば配向度70%以上の高度の一軸配向を得ることができ
る。
Further, since the hard molding material is loaded in a pseudo closed state as described above, the resistance acting on the flow of the molding material from the molding die can be greatly increased, and the surface layer of the flow can be increased. The flow velocity gradient can be formed not only at the center but also at the center. As a result, if the thickness is up to 3 mm, a high degree of uniaxial orientation with an orientation degree of 70% or more can be obtained.

【0017】このように押出成形を用いた本発明の方法
は、従来のドクターブレード法による方法に比べて、高
度の配向を達成できる。またドクターブレード法におい
ては、スラリーの温度調節、粘度管理、濃度管理等を含
め成形条件の制御を非常に厳密に行う必要があるが、押
出成形においてはそのような煩雑な制御を必要としない
点も実用上の大きな利点である。
As described above, the method of the present invention using extrusion molding can achieve a high degree of orientation as compared with the conventional method using a doctor blade method. Also, in the doctor blade method, it is necessary to control the molding conditions including temperature control, viscosity control, concentration control, etc. of the slurry very strictly, but such complicated control is not required in extrusion molding. This is also a great practical advantage.

【0018】本発明の押出成形によりβ−柱状粒子の一
軸配向を実現するには、β−柱状粒子とα−球状粒子と
の混合物におけるα−球状粒子の割合を5〜95wt%の
範囲内にする必要がある。単なる混合物である押出用成
形原料内では、β−柱状粒子はランダムな方向を向いて
互いに絡み合っている。押出成形によりこのβ−柱状粒
子を一軸配向させるには、このβ−柱状粒子同士の絡み
合いを解きほぐす必要がある。この絡み合いはβ−柱状
粒子の存在密度が高い程強くなり、解きほぐすのが困難
になる。β−柱状粒子にα−球状粒子を混在させてβ−
柱状粒子の存在密度をある程度以下に希釈することによ
り、絡み合いが軽減され、解きほぐすのが容易になる。
このようにβ−柱状粒子の絡み合いの解きほぐしを容易
にして、押出により一軸配向を実現可能とするために
は、α−球状粒子の割合を5wt%以上とする必要があ
る。一方、焼成により高度の一軸配向状態が得られる程
度に、成形段階でβ−柱状粒子の一軸配向を行うには、
成形原料中に5wt%以上のβ−柱状粒子が存在する必要
があり、すなわちα−球状粒子の割合は95wt%以下と
する必要がある。
In order to realize the uniaxial orientation of β-columnar particles by the extrusion molding of the present invention, the ratio of α-sphere particles in the mixture of β-columnar particles and α-spherical particles should be within the range of 5 to 95% by weight. There is a need to. In extrusion molding raw materials, which are merely mixtures, the β-columnar particles are entangled with one another in random directions. In order for the β-columnar particles to be uniaxially oriented by extrusion, it is necessary to disentangle the β-columnar particles. This entanglement becomes stronger as the density of the β-columnar particles increases, and it becomes difficult to unravel. β-columnar particles mixed with α-spherical particles
By diluting the existing density of the columnar particles to a certain level or less, the entanglement is reduced, and it becomes easy to disentangle.
As described above, in order to facilitate the untangling of the entanglement of the β-columnar particles and to realize the uniaxial orientation by extrusion, the proportion of the α-spherical particles needs to be 5% by weight or more. On the other hand, to the extent that a high degree of uniaxial orientation can be obtained by firing, to perform uniaxial orientation of β-columnar particles in the molding stage,
It is necessary that at least 5 wt% of β-columnar particles be present in the forming raw material, that is, the proportion of α-spherical particles must be at most 95 wt%.

【0019】本発明においては、このように成形原料中
のα−窒化珪素球状粒子の割合を5〜95wt%の範囲と
することにより、配向度70%以上の窒化珪素焼結体が
得られる。更に、α−窒化珪素球状粒子の割合を20〜
80wt%に限定すれば、配向度80%以上を確保するこ
とができる。また、押出条件については、押出口厚さが
3mm以下で押出口長さが5mm以上の押出成形型を用
い、5cm/分以上の押出速度で押出成形を行うことに
より配向度70%以上を確保することができる。更に、
押出速度を40cm/分以上に限定すれば、配向度80
%以上を確保できる。
In the present invention, a silicon nitride sintered body having a degree of orientation of 70% or more can be obtained by setting the proportion of α-silicon nitride spherical particles in the forming raw material in the range of 5 to 95% by weight. Further, the ratio of α-silicon nitride spherical particles is 20 to
If it is limited to 80% by weight, an orientation degree of 80% or more can be secured. As for the extrusion conditions, an extrusion mold having an extrusion opening thickness of 3 mm or less and an extrusion opening length of 5 mm or more is used to perform extrusion molding at an extrusion speed of 5 cm / min or more to secure an orientation degree of 70% or more. can do. Furthermore,
If the extrusion speed is limited to 40 cm / min or more, the degree of orientation is 80
% Or more can be secured.

【0020】本発明の方法により、β−窒化珪素柱状粒
子の配向度が70%以上で、熱伝導率が100W/m・
K以上である高配向窒化珪素焼結体を製造することがで
きる。熱伝導は、金属においては伝導電子により実現さ
れるが、セラミックス焼結体には伝導電子を非常に僅か
しか持たないイオン結晶や共有結合性結晶であるため、
格子振動(フォノン)による熱伝導が主体となる。セラ
ミックスに不純物や結晶格子の乱れあるいは気孔等が存
在すると、フォノンの散乱が増加して熱伝導率が低下す
る要因となる。窒化珪素の場合、結晶格子の乱れに加
え、粒界相にあるアモルファス相が熱伝導率を低下させ
る主な要因となっている。したがって、一軸配向させる
ことにより、特に結晶のC軸方向に対して粒界相の影響
が少なくなり、熱伝導率も向上する。
According to the method of the present invention, the β-silicon nitride columnar particles have an orientation degree of 70% or more and a thermal conductivity of 100 W / m ·
A highly oriented silicon nitride sintered body having a temperature of K or more can be manufactured. Heat conduction is realized by conduction electrons in metals, but ceramic sintered bodies are ionic crystals or covalent crystals that have very few conduction electrons.
Heat conduction mainly by lattice vibration (phonon). If impurities, disordered crystal lattices, or pores are present in the ceramics, the scattering of phonons increases, causing a decrease in thermal conductivity. In the case of silicon nitride, in addition to the disorder of the crystal lattice, the amorphous phase in the grain boundary phase is a main factor in lowering the thermal conductivity. Therefore, by performing uniaxial orientation, the influence of the grain boundary phase is reduced particularly in the C-axis direction of the crystal, and the thermal conductivity is also improved.

【0021】以下に、添付図面を参照して、実施例によ
り本発明を更に詳細に説明する。
Hereinafter, the present invention will be described in more detail by way of examples with reference to the accompanying drawings.

【0022】[0022]

【実施例】本発明により、以下の手順で窒化珪素焼結体
を作製した。 (1) β−Si3N4 柱状粒子の作成 シリコンジイミドの熱分解法または金属シリコンの窒化
法により生成されたSi3N4 粉末(純度99%以上)に、
焼結助剤としてY2O3粉末(平均粒径0.3μm、純度9
9.9%)を5wt%添加し、Si3N4 製ボールミル内で媒
液としてエチルアルコールを用い60rpmで72時間
混合・粉砕した。
EXAMPLE According to the present invention, a silicon nitride sintered body was manufactured in the following procedure. (1) Preparation of β-Si 3 N 4 columnar particles Si 3 N 4 powder (purity 99% or more) produced by the thermal decomposition method of silicon diimide or the nitriding method of metallic silicon,
Y 2 O 3 powder (average particle size 0.3 μm, purity 9
(9.9%) was added and mixed and pulverized at 60 rpm for 72 hours in a Si 3 N 4 ball mill using ethyl alcohol as a solvent.

【0023】90〜95℃の湯浴でエチルアルコールを
蒸発除去してから、乾燥機で90℃×20時間の乾燥を
行った後、Al2O3 製乳鉢内で砕解して目開き425μm
のメッシュを通過する粒度に調整した。この粉末を焼成
容器内に約1cmの厚さに詰め、0.93MPaのN2
ガス雰囲気中にて1600℃〜1850℃の範囲の所定
温度で4時間焼成し、β−Si3N4 柱状粒子を得た。
After the ethyl alcohol is removed by evaporation in a hot water bath at 90 to 95 ° C., drying is performed at 90 ° C. × 20 hours with a dryer, and then crushed in a mortar made of Al 2 O 3 to obtain an opening of 425 μm.
Was adjusted to a particle size that passes through the mesh. This powder was packed in a firing vessel to a thickness of about 1 cm, and 0.93 MPa of N 2
It was fired at a predetermined temperature in the range of 1600 ° C. to 1850 ° C. for 4 hours in a gas atmosphere to obtain β-Si 3 N 4 columnar particles.

【0024】次にフッ酸で処理して個々の粒子を分離し
た。 (2) 成形原料の調製 上記のβ−Si3N4 柱状粒子粉末に、種々の割合で市販の
α−Si3N4 球状粒子粉末(純度99%)を加え、更に焼
結助剤として上記と同じY2O3粉末およびMg2Al2O4粉末
(平均粒径0.3μm、純度99.9%)を添加し、ポ
リポット内でφ5.3mmのSi3N4 ボールを用いて混合
およびアルコール除去を行った後、乾燥して混合粉末と
した。これにバインダー(メチルセルロース主体、20
wt%)と水(30wt%)を加えて双腕型ニーダにて混練
して成形原料とした。
Next, individual particles were separated by treatment with hydrofluoric acid. (2) Preparation of forming raw material Commercially available α-Si 3 N 4 spherical particles (purity: 99%) were added at various ratios to the above β-Si 3 N 4 columnar particles, and further, The same Y 2 O 3 powder and Mg 2 Al 2 O 4 powder (average particle size 0.3 μm, purity 99.9%) as above were added, and mixed and mixed using a 5.3 mm Si 3 N 4 ball in a polypot. After removing the alcohol, it was dried to obtain a mixed powder. A binder (mainly methylcellulose, 20
wt.) and water (30 wt.%) were added and kneaded with a double-arm kneader to obtain a forming raw material.

【0025】(3) 押出成形 押出速度を広範囲に変えられるシリンダー式押出成形機
を用いて押出成形を行った。押出速度は4〜490cm
/分の範囲で種々に変えた。成形用金型には、押出口厚
さ0.5〜4mm、押出口長さ4〜300mmの範囲の
種々の金型を用い、図1に示したように平板状に押し出
した。
(3) Extrusion molding Extrusion was performed using a cylinder type extruder capable of changing the extrusion speed in a wide range. Extrusion speed is 4-490cm
/ Min range. As a molding die, various types of dies having an extrusion port thickness of 0.5 to 4 mm and an extrusion port length of 4 to 300 mm were used, and were extruded into a flat plate as shown in FIG.

【0026】(4) 焼成 押出成形体を所定の厚さに重ね合わせて圧着し、90℃
×12時間の乾燥後、500℃×2時間の脱脂処理を行
った。これを、0.93MPaのN2 ガス雰囲気中で、
1600〜1900℃の範囲内の所定温度で40MPa
の加圧によりホットプレス焼結を行った。
(4) Firing The extruded product is laminated to a predetermined thickness and pressure-bonded.
After drying for 12 hours, a degreasing treatment was performed at 500 ° C for 2 hours. In a 0.93 MPa N 2 gas atmosphere,
40 MPa at a predetermined temperature in the range of 1600 to 1900 ° C.
Hot press sintering was performed by applying pressure.

【0027】得られた焼結体について、配向度、強度、
破壊靱性(KIC)、熱伝導率を測定した。配向度は焼結
体のC軸に垂直な面のX線回折結果から次式により求め
た。 配向度=(P−P0 )/(1−P0 ) ここで、 P:試料の(002面)および(101)面のX線回折
強度の割合、 P0 :配向していない基準試料としてβ−Si3N4 粉末の
(002)面および(101)面のX線回折強度の割
合、 であり、いずれも下式により定義される。
The degree of orientation, strength,
Fracture toughness (K IC ) and thermal conductivity were measured. The degree of orientation was determined from the X-ray diffraction result of a plane perpendicular to the C-axis of the sintered body according to the following equation. Degree of orientation = (P−P 0 ) / (1−P 0 ) where: P: ratio of X-ray diffraction intensities of (002 plane) and (101) plane of sample; P 0 : as reference sample not oriented The ratio of the X-ray diffraction intensities of the (002) plane and the (101) plane of the β-Si 3 N 4 powder, both of which are defined by the following equations.

【0028】PおよびP0 =(I(002) + I(101) ) /
(I(002) +I(200) +I(210) (201) +I(301)
(101) ) 強度および破壊靱性(KIC)は、押出方向に平行に切り
出したt3×W4×L36の試験片を用い、4点曲げ試
験により押出方向(配向方向)についての値を測定し
た。
P and P 0 = (I (002) + I (101) ) /
(I (002) + I (200) + I (210) + (201) + I (301) +
I (101) ) The strength and fracture toughness (K IC ) were measured in the extrusion direction (orientation direction) by a four-point bending test using a test piece of t3 × W4 × L36 cut in parallel with the extrusion direction. .

【0029】熱伝導率は、φ10×t3の試料を用い、
押出方向(配向方向)についての値を測定した。表1
に、本発明の規定範囲内の配合組成と望ましい押出成形
条件で作製した高配向試料について、成形原料の配合組
成、押出成形条件、焼結温度と、上記測定した各特性値
とをまとめて示す。
The thermal conductivity of a sample of φ10 × t3 was used.
The value in the extrusion direction (orientation direction) was measured. Table 1
The composition of the forming material within the specified range of the present invention and the highly oriented sample prepared under the desired extrusion molding conditions, the composition of the molding raw material, the extrusion molding conditions, the sintering temperature, and the above-described measured characteristic values are shown together. .

【0030】表2に、本発明の規定範囲外の配合組成ま
たは望ましい押出成形条件範囲外で作製した低配向試料
について同様の項目を示す。なお、表2中の試料No.
8,9,10は、成形を押出成形ではなく金型プレス成
形により行ったものである。
Table 2 shows the same items for low-orientation samples prepared outside the specified range of the composition of the present invention or outside the range of desirable extrusion molding conditions. The sample No. in Table 2
Nos. 8, 9, and 10 are formed by die press molding instead of extrusion molding.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表1に示した高配向試料では、71%〜9
6%の高い配向度が得られており、4点曲げ強度880
MPa〜1350MPaに対してKIC12.0〜14.
1MPam1/2 という高レベルの強度・靱性の組み合わ
せが得られている。特に試料No. 9,10に見られるよ
うに、1300MPaを超える強度と12MPam1/2
を超える靱性を同時に発現する窒化珪素焼結体は従来報
告されておらず、本発明により始めて達成されたもので
ある。また熱伝導率についても、106〜154W/m
・Kという高い値が得られている。これは、従来の配向
しない窒化珪素焼結体で得られる熱伝導率の3〜4倍に
相当する。従来、2000℃以上で焼結することにより
粗大粒子を形成させ熱伝導率120Wm・Kを得た例が
報告されているが、本発明では高度に一軸配向させるこ
とによって1800〜1900℃で焼結しても上記のよ
うに高い熱伝導率が得られる。
In the highly oriented sample shown in Table 1, 71% to 9%
A high degree of orientation of 6% was obtained, and a four-point bending strength of 880.
K IC 12.0-14.
A combination of a high level of strength and toughness of 1 MPam 1/2 has been obtained. In particular, as seen in Sample Nos. 9 and 10, strength exceeding 1300 MPa and 12 MPam 1/2
A silicon nitride sintered body simultaneously exhibiting a toughness exceeding the above has not been reported so far, and has been achieved for the first time by the present invention. The thermal conductivity is also 106 to 154 W / m.
-A high value of K is obtained. This is equivalent to 3 to 4 times the thermal conductivity obtained with the conventional unoriented silicon nitride sintered body. Conventionally, there has been reported an example in which coarse particles are formed by sintering at 2000 ° C. or higher to obtain a thermal conductivity of 120 Wm · K. However, in the present invention, sintering at 1800 to 1900 ° C. is performed by highly uniaxial orientation. Even so, a high thermal conductivity can be obtained as described above.

【0034】これに対して表2の低配向試料では、成形
原料の配合組成が本発明の規定範囲外であるか、押出成
形条件が本発明の望ましい範囲を外るか、あるいは本発
明で規定する押出ではなくプレス成形を用いたため、配
向度が40〜70%と低く、強度は高配向試料と同等で
あるが靱性が5.9〜8.3MPam1/2 と低く、高強
度と高靱性を同時に発現することができない。また熱伝
導率も、53〜88W/m・Kと低い値である。
On the other hand, in the low-orientation sample of Table 2, the composition of the molding raw material is out of the specified range of the present invention, the extrusion molding condition is out of the desirable range of the present invention, or the present invention is not specified. Because of the use of press molding instead of extrusion, the degree of orientation is as low as 40 to 70% and the strength is equivalent to the highly oriented sample, but the toughness is as low as 5.9 to 8.3 MPam 1/2, and the high strength and high toughness are obtained. Cannot be expressed simultaneously. The thermal conductivity is also a low value of 53 to 88 W / m · K.

【0035】図2に、β−Si3N4 柱状粒子とα−Si3N4
球状粒子との混合粉末中のα−Si3N4 球状粒子の混合割
合(添加量)と、焼結体の配向度との関係を示す。押出
条件は、押出口厚さ1mm、押出口長さ100mm、押
出速度490cm/分とした。図2に示したように、α
−Si3N4 球状粒子を添加せず(混合割合=0)β−Si3N
4 柱状粒子のみの場合には、配向度は55%と低いが、
α−Si3N4 球状粒子を5wt%添加すると78%の高い配
向度が得られる。配向度はα−Si3N4 球状粒子の混合割
合が50wt%のときに最大の93%となり、混合割合を
更に増加させるのに伴って配向度は低下していき、混合
割合が95wt%を超えると急激に低下する。
FIG. 2 shows that β-Si 3 N 4 columnar particles and α-Si 3 N 4
The relationship between the mixing ratio (addition amount) of α-Si 3 N 4 spherical particles in the mixed powder with the spherical particles and the degree of orientation of the sintered body is shown. The extrusion conditions were as follows: extrusion port thickness 1 mm, extrusion port length 100 mm, and extrusion rate 490 cm / min. As shown in FIG.
-Si 3 N 4 without adding spherical particles (mixing ratio = 0) β-Si 3 N
In the case of only four columnar particles, the degree of orientation is as low as 55%,
When 5 wt% of α-Si 3 N 4 spherical particles are added, a high degree of orientation of 78% can be obtained. The degree of orientation reaches a maximum of 93% when the mixing ratio of the α-Si 3 N 4 spherical particles is 50% by weight, and the degree of orientation decreases as the mixing ratio is further increased. If it exceeds, it decreases rapidly.

【0036】この結果から、配向させるのに最も適した
α−Si3N4 球状粒子の混合割合は50wt%である。α−
Si3N4 球状粒子の混合割合が少なすぎると、β−Si3N4
柱状粒子同士の絡み合いが十分に解きほぐれず絡み合い
の状態を残して押し出されるため、配向度が低い。逆に
α−Si3N4 球状粒子の混合割合が多すぎると、β−Si3N
4 柱状粒子は押出時に一軸配向はするがその量が少なす
ぎるため、焼成時にα−Si3N4 球状粒子の転移・成長へ
の影響が小さく、α−Si3N4 球状粒子は任意の方向に成
長するため、焼結後の配向度は低くなる。
From this result, the mixing ratio of α-Si 3 N 4 spherical particles most suitable for orientation is 50 wt%. α-
If the mixing ratio of the Si 3 N 4 spherical particles is too small, β-Si 3 N 4
Since the entanglement between the columnar particles is not sufficiently unraveled and extruded while leaving the entangled state, the degree of orientation is low. Conversely, if the mixing ratio of α-Si 3 N 4 spherical particles is too large, β-Si 3 N
(4) The columnar particles are uniaxially oriented at the time of extrusion, but the amount is too small.Therefore, the influence on the transition and growth of the α-Si 3 N 4 spherical particles during firing is small, and the α-Si 3 N 4 spherical particles can be oriented in any direction. Therefore, the degree of orientation after sintering becomes low.

【0037】一般に窒化珪素の焼結過程では、α−Si3N
4 が溶解し、β−Si3N4 として析出した後に、転移によ
る自由エネルギーの減少を駆動力としてβ−Si3N4 粒子
の粒成長が起こると考えられている。また、成長したβ
−Si3N4 粒子は周囲のα−Si3N4 粒子を一部吸収しなが
ら更に成長すると考えられている。本発明においても、
成形体中に存在するβ−Si3N4 粒子が周囲のα−Si3N4
粒子を一部吸収しながら成長すると考えられる。その他
のα−Si3N4 粒子は周辺のβ−Si3N4 柱状粒子上にβ−
Si3N4 として析出し、そのβ−Si3N4 柱状粒子に成長方
向を拘束される形で同じ方向に成長していくと考えられ
る。そのため、α−Si3N4 粒子の混合割合が多すぎた場
合、最初に存在するβ−Si3N4 柱状粒子が少ないため、
成長方向を拘束する影響が少なく、配向度が低いと考え
られる。
Generally, in the sintering process of silicon nitride, α-Si 3 N
4 dissolves, after precipitated as β-Si 3 N 4, are believed to beta-Si 3 N 4 grain growth of the particles occurs as a driving force reduction in free energy due to metastasis. Also, the grown β
-Si 3 N 4 particles is believed to further grow while absorbing a portion around the α-Si 3 N 4 particles. In the present invention,
Β-Si 3 N 4 particles present in the molded body surrounding α-Si 3 N 4
It is considered that the particles grow while absorbing some of the particles. Other α-Si 3 N 4 particles have β-Si 3 N 4 on the surrounding β-Si 3 N 4 columnar particles.
It is considered that Si 3 N 4 precipitates and grows in the same direction while the growth direction is restricted by the β-Si 3 N 4 columnar particles. Therefore, if the mixing ratio of α-Si 3 N 4 particles is too large, β-Si 3 N 4 columnar particles that are present first are small,
It is considered that the influence of restricting the growth direction is small and the degree of orientation is low.

【0038】既に説明したように、押出成形により柱状
粒子を一軸配向させるためには、成形原料に適度な流れ
を発生させ、また金型との抵抗を流れの中心部まで伝達
することが重要である。成形条件のうちで特に押出速度
の影響が強く、押出速度が速い程配向度が高まる。加え
て、金型の形状も重要であり、押出口厚さが大きすぎる
と金型との抵抗が流れの中心部まで伝達されず配向度が
低下する。また、押出口長さが長い程抵抗が大きくなり
配向度が高まる。
As described above, in order for the columnar particles to be uniaxially oriented by extrusion, it is important to generate an appropriate flow in the molding material and to transmit the resistance to the mold to the center of the flow. is there. Among the molding conditions, the influence of the extrusion speed is particularly strong, and the higher the extrusion speed, the higher the degree of orientation. In addition, the shape of the mold is also important. If the thickness of the extrusion port is too large, the resistance with the mold is not transmitted to the center of the flow, and the degree of orientation decreases. Also, the longer the extrusion opening length, the higher the resistance and the higher the degree of orientation.

【0039】図3に、押出速度と配向度との関係を示
す。α−Si3N4 の混合割合50wt%、押出口厚さ1m
m、押出口長さ100mmでそれぞれ一定とし、押出速
度を4〜490cm/分の範囲で変化させた。同図の結
果から、押出速度5cm/分以上で配向度70%以上が
得られ、更に押出速度40cm/分に限定すれば配向度
80%以上が得られる。
FIG. 3 shows the relationship between the extrusion speed and the degree of orientation. α-Si 3 N 4 mixing ratio 50wt%, extrusion port thickness 1m
m and the extrusion opening length were 100 mm, respectively, and the extrusion speed was changed in the range of 4 to 490 cm / min. From the results shown in the figure, an orientation degree of 70% or more can be obtained at an extrusion rate of 5 cm / min or more, and an orientation degree of 80% or more can be obtained if the extrusion rate is limited to 40 cm / min.

【0040】本実施例を含めこれまでに得られた結果か
らは、最適の押出条件は、押出速度350cm/分以
上、押出口厚さ1mm、押出口長さ100mmであっ
た。押出速度は高い程配向度が向上するが、図3からも
分かるように350cm/分以上では配向度の向上が飽
和する。押出口厚さも小さい程配向度が高まるが、余り
小さすぎると押出抵抗が大きくなりすぎて押出自体が困
難になる。また押出口長さについては、長さ300mm
まで長くしても得られる配向度は100mmの場合と同
等であった。
From the results obtained so far including this example, the optimal extrusion conditions were an extrusion speed of 350 cm / min or more, an extrusion port thickness of 1 mm, and an extrusion port length of 100 mm. The higher the extrusion speed, the higher the degree of orientation improves. However, as can be seen from FIG. 3, at 350 cm / min or more, the improvement in degree of orientation saturates. The degree of orientation increases as the extrusion opening thickness decreases, but if it is too small, the extrusion resistance becomes too large and extrusion itself becomes difficult. In addition, about the extrusion port length, length 300mm
Even if the length was increased, the degree of orientation obtained was equivalent to that of 100 mm.

【0041】図4に、本発明による高配向窒化珪素焼結
体の典型的な一軸配向組織を示す。同図の(A)はC軸
(押出方向)に垂直な断面、(B)はC軸に平行な断面
の組織であり、C軸に沿って高度に一軸配向した組織で
あることが分かる。
FIG. 4 shows a typical uniaxially oriented structure of a highly oriented silicon nitride sintered body according to the present invention. (A) in the figure is a cross section perpendicular to the C axis (extrusion direction), and (B) is a cross section parallel to the C axis. It can be seen that the structure is highly uniaxially oriented along the C axis.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
高度の一軸配向を実現することにより、配向方向におけ
る強度、靱性および熱伝導率を著しく向上させた高配向
窒化珪素焼結体およびその製造方法が提供される。特
に、成形原料中のα−窒化珪素球状粒子の割合をβ−粒
子とα−粒子との合計量に対して5〜95wt%の範囲と
することにより、配向度70%以上の窒化珪素焼結体が
得られ、更に、α−窒化珪素球状粒子の割合を20〜8
0wt%に限定すれば、配向度80%以上を確保できる。
As described above, according to the present invention,
By providing a high degree of uniaxial orientation, a highly oriented silicon nitride sintered body having significantly improved strength, toughness, and thermal conductivity in the orientation direction and a method for producing the same are provided. In particular, by setting the proportion of the α-silicon nitride spherical particles in the forming raw material in the range of 5 to 95 wt% with respect to the total amount of the β-particles and the α-particles, the silicon nitride sintered body having an orientation degree of 70% or more And a ratio of α-silicon nitride spherical particles of 20 to 8
If it is limited to 0 wt%, an orientation degree of 80% or more can be secured.

【0043】また、押出条件については、押出口厚さが
3mm以下で押出口長さが5mm以上の押出成形型を用
い、5cm/分以上の押出速度で押出成形を行うことに
より配向度70%以上を確保することができる。更に、
押出速度を40cm/分以上に限定すれば、配向度80
%以上を確保できる。本発明の方法により、β−窒化珪
素柱状粒子の配向度が70%以上で、熱伝導率が100
W/m・K以上である高配向窒化珪素焼結体が得られ
る。
The extrusion conditions were as follows: an extrusion mold having an extrusion opening thickness of 3 mm or less and an extrusion opening length of 5 mm or more was used and extrusion was performed at an extrusion speed of 5 cm / min or more to obtain an orientation degree of 70%. The above can be secured. Furthermore,
If the extrusion speed is limited to 40 cm / min or more, the degree of orientation is 80
% Or more can be secured. According to the method of the present invention, the β-silicon nitride columnar particles have an orientation degree of 70% or more and a thermal conductivity of 100%.
A highly oriented silicon nitride sintered body having W / m · K or more can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の押出成形に用いる押出成形機
の構成を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a configuration of an extruder used for extrusion of the present invention.

【図2】図2は、β−Si3N4 粒子とα−Si3N4 粒子との
混合粉末中のα−Si3N4 粒子混合割合と焼結体の配向度
との関係を示すグラフである。
Figure 2 shows the relationship between the degree of orientation of β-Si 3 N 4 particles and α-Si 3 N 4 α- Si 3 N 4 particles mixing ratio and sintered body of the mixed powder of particles It is a graph.

【図3】図3は、押出速度と焼結体の配向度との関係を
示すグラフである。
FIG. 3 is a graph showing a relationship between an extrusion speed and a degree of orientation of a sintered body.

【図4】図4(A)および(B)は、本発明による高配
向窒化珪素焼結体の典型的な一軸配向組織を示す(A)
C軸に垂直な断面および(B)C軸に平行な断面の顕微
鏡写真である。
FIGS. 4A and 4B show a typical uniaxially oriented structure of a highly oriented silicon nitride sintered body according to the present invention (A).
It is a micrograph of the cross section perpendicular | vertical to a C-axis and (B) the cross section parallel to a C-axis.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 β−窒化珪素柱状粒子とα−窒化珪素球
状粒子とをα−窒化珪素球状粒子の割合が5〜95wt%
になるように混合した混合物に焼結助剤を添加して成形
原料とし、この成形原料を押出成形することによりβ−
窒化珪素柱状粒子が一軸配向した成形体を作製し、この
成形体を焼成することを特徴とする高配向窒化珪素焼結
体の製造方法。
The ratio of α-silicon nitride spherical particles to α-silicon nitride spherical particles is 5 to 95% by weight.
A sintering aid is added to the mixture mixed so as to obtain a molding raw material, and the molding raw material is extruded to form a β-
A method for producing a highly oriented silicon nitride sintered body, characterized in that a molded body in which columnar particles of silicon nitride are uniaxially oriented is produced, and the molded body is fired.
【請求項2】 上記α−窒化珪素球状粒子の割合が20
〜80wt%であることを特徴とする請求項1記載の方
法。
2. The method according to claim 1, wherein the ratio of the α-silicon nitride spherical particles is 20.
2. The method according to claim 1, wherein the amount is about 80% by weight.
【請求項3】 押出口厚さが3mm以下で押出口長さが
5mm以上の押出成形型を用い、5cm/分以上の押出
速度で上記押出成形を行うことを特徴とする請求項1ま
たは2記載の方法。
3. The extrusion molding according to claim 1, wherein the extrusion molding is performed at an extrusion speed of 5 cm / min or more using an extrusion die having an extrusion opening thickness of 3 mm or less and an extrusion opening length of 5 mm or more. The described method.
【請求項4】 上記押出速度が40cm/分以上である
ことを特徴とする請求項3記載の方法。
4. The method according to claim 3, wherein the extrusion speed is 40 cm / min or more.
【請求項5】 請求項1から4までのいずれか1項記載
の方法により製造された高配向窒化珪素焼結体におい
て、β−窒化珪素柱状粒子の配向度が70%以上で、熱
伝導率が100W/m・K以上であることを特徴とする
高配向窒化珪素焼結体。
5. The highly oriented silicon nitride sintered body produced by the method according to claim 1, wherein the β-silicon nitride columnar particles have an orientation degree of 70% or more and a thermal conductivity of at least 70%. Is 100 W / m · K or more.
JP9060160A 1997-02-28 1997-02-28 Highly oriented silicon nitride sintered compact and production of the same Pending JPH10245270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9060160A JPH10245270A (en) 1997-02-28 1997-02-28 Highly oriented silicon nitride sintered compact and production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9060160A JPH10245270A (en) 1997-02-28 1997-02-28 Highly oriented silicon nitride sintered compact and production of the same

Publications (1)

Publication Number Publication Date
JPH10245270A true JPH10245270A (en) 1998-09-14

Family

ID=13134131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9060160A Pending JPH10245270A (en) 1997-02-28 1997-02-28 Highly oriented silicon nitride sintered compact and production of the same

Country Status (1)

Country Link
JP (1) JPH10245270A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210016A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Protective pipe
US10889900B2 (en) 2016-03-01 2021-01-12 Nippon Steel Corporation Ceramic laminate
JP2022027444A (en) * 2020-07-29 2022-02-10 日本ファインセラミックス株式会社 Silicon nitride substrate and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210016A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Protective pipe
US10889900B2 (en) 2016-03-01 2021-01-12 Nippon Steel Corporation Ceramic laminate
JP2022027444A (en) * 2020-07-29 2022-02-10 日本ファインセラミックス株式会社 Silicon nitride substrate and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Kusunose et al. Fabrication and microstructure of silicon nitride/boron nitride nanocomposites
JP5060092B2 (en) Semiconductor device heat sink
JPWO2011136136A1 (en) Oriented MAX phase ceramic and method for producing the same
Cho et al. Strength and fracture toughness of in situ-toughened silicon carbide
JP3540343B2 (en) Method of manufacturing whisker reinforced ceramic body
JP2882575B2 (en) High thermal conductive silicon nitride ceramics and method for producing the same
JP6436905B2 (en) Boron carbide ceramics and manufacturing method thereof
US5674793A (en) Method for producing a high-strength, high-toughness silicon nitride sinter
SUGAWARA et al. Fabrication of‹ 111› Oriented BaTiO3 Bulk Ceramic by Reactive Templated Grain Growth Method
JP3648541B2 (en) High thermal conductivity silicon nitride ceramics and method for producing the same
Akimune et al. Influence of starting powder characteristics on mechanical properties of SiC-particle/Si3N4 composites
JP3472585B2 (en) Aluminum nitride sintered body
US5240659A (en) Process for producing shaped article of oriented calcium phosphate type compound
JPH10245270A (en) Highly oriented silicon nitride sintered compact and production of the same
Xie et al. Texture development in silicon nitride–silicon oxynitride in situ composites via superplastic deformation
JP2744938B2 (en) Porous high-strength low thermal conductive silicon nitride ceramics and method for producing the same
Cheng et al. Boron nitride–aluminum nitride ceramic composites fabricated by transient plastic phase processing
JP3603115B2 (en) Sintering and forming method for anisotropic porous silicon nitride ceramics
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
JP3126059B2 (en) Alumina-based composite sintered body
JP4070254B2 (en) Composite sintered body of silicon nitride and silicon carbide and method for producing the same
JP4702978B2 (en) Aluminum nitride sintered body
JP3112286B2 (en) Manufacturing method of dense machinable ceramics
JP2846654B2 (en) Composite ceramic products and their manufacturing method
KR101350542B1 (en) Fabrication method of porous sic platelet ceramics