JPH10244322A - Branch tube collar making device of t-type connecting tube - Google Patents

Branch tube collar making device of t-type connecting tube

Info

Publication number
JPH10244322A
JPH10244322A JP9049273A JP4927397A JPH10244322A JP H10244322 A JPH10244322 A JP H10244322A JP 9049273 A JP9049273 A JP 9049273A JP 4927397 A JP4927397 A JP 4927397A JP H10244322 A JPH10244322 A JP H10244322A
Authority
JP
Japan
Prior art keywords
branch pipe
roller
edge
pipe
around
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9049273A
Other languages
Japanese (ja)
Other versions
JP3154951B2 (en
Inventor
Tadahiko Shimono
忠彦 下野
Kengo Fujii
賢吾 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP04927397A priority Critical patent/JP3154951B2/en
Publication of JPH10244322A publication Critical patent/JPH10244322A/en
Application granted granted Critical
Publication of JP3154951B2 publication Critical patent/JP3154951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/28Making tube fittings for connecting pipes, e.g. U-pieces
    • B21C37/29Making branched pieces, e.g. T-pieces
    • B21C37/298Forming collars by flow-drilling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Duct Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a connecting collar to be made along an inclining angle being along the inclining angle of cos-curve of a branch tube circumference edge and along the outer circumferential curve face of a main tube. SOLUTION: The rotation and lift means of a machining table 15 is composed by installing the table 15 freely rotating and lifting with individual servo motors MY, MZ on a base stand 10. The branch tube P2 circumference edge inclining means of a machining roller 21 is composed by rotating an arm 19 on the base stand 10 around the center with the servo motor MT and inclining it along the moving direction around the branch tube edge. The inclining means along the outer circumferential face of the main tube of the machining roller is composed by inclining with rotating the machining roller around the line of crossing to the axial center of rotation of the arm with the servo motor MR. Respective servo motors are synchronized mutually and controlled, the machining roller is moved around the circumference edge of the branch tube P2 along its undulation, by being inclined to the slope and inclining angle of the undulation, the branch tube circumference edge is formed into the connecting allowance (collar) curved in a prescribed angle vertically and horizontally over the total circumference.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば空気ダク
トの分岐管を製造する際、そのダクト主管に分岐管たる
枝管を接続するための接続代を形成するためのT型接続
管の枝管鍔出し装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a branch pipe of a T-type connecting pipe for forming a connection margin for connecting a branch pipe as a branch pipe to a main pipe of the duct, for example, when manufacturing a branch pipe of an air duct. The present invention relates to a flange setting device.

【0002】[0002]

【従来の技術】例えば、空気ダクトの配管において、そ
の分岐配管は、図16に示すように、主管P1 の側面に
枝管P2 をT型に接続して行われる。この接続の際、枝
管P2の周縁(接続縁)にはその縁を外方に所要幅折り
曲げた鍔状の接続代aが形成され、この接続代aをスポ
ット溶接又はリベット接合などにより主管P1 に固定し
て枝管P2 を接続する。
BACKGROUND ART For example, in the piping of the air duct, the branch pipe, as shown in FIG. 16, is performed by connecting a branch pipe P 2 on T type on the side surface of the main pipe P 1. During this connection, the flange-shaped connection margin a by bending required width outward is formed its edges to the periphery of the lateral pipe P 2 (connection edge), the main pipe and the connection allowance a by spot welding or the like or rivet connecting the branch pipe P 2 is fixed to P 1.

【0003】このとき、上記枝管P2 の周縁は主管P1
の外周曲面に応じて起伏するcosカーブ(曲線)を呈
しており、両管P1 、P2 間に隙間のない接続をするに
はその周縁を外方に折り曲げた接続代aを、接続される
(当てがわれる)主管P1 の外周曲面に沿って、同図
(a)、(b)に示すように枝管軸心方向に対しα度
(以下、鍔の傾倒角度)、枝管周方向に対しβ度(以
下、鍔の傾斜角度)、それぞれ傾ける必要があり、その
角度α、βは、接続縁に沿って連続的に変化し、かつ、
両管P1 、P2 の径D、dによっても異なる。
[0003] At this time, the periphery of the branch pipe P 2 main pipe P 1
Has a cos curve (curve) that rises and falls in accordance with the outer peripheral curved surface of the pipe. In order to make a connection without gap between the two pipes P 1 and P 2 , a connection margin a whose outer edge is bent outward is connected. that (against cracking) along the outer circumference curved surface of the main pipe P 1, FIG. (a), (b) alpha degrees with respect to the branch pipe axial direction as shown in (hereinafter, tilt angle of the flange), the branch pipe circumference It is necessary to incline by β degrees (hereinafter, the inclination angle of the flange) with respect to the direction, and the angles α and β change continuously along the connection edge, and
It also differs depending on the diameters D and d of both tubes P 1 and P 2 .

【0004】このような複雑な形状の接続代(鍔)a
は、従来では、一対のローラに枝管P2 の周縁の所要幅
を挟み、そのローラを回転させるとともに、人手によっ
て枝管P2 を所要の角度α、βに傾けながら一定方向に
回すことにより形成したり、各枝管P2 の周縁(鍔)の
形状にそれぞれ合った金型をそれぞれ用意し、その金型
を用いて折曲げ加工して形成している。
[0004] Connection margin (flange) a of such a complicated shape
Is conventionally sandwiched required width of the periphery of the branch pipe P 2 a pair of rollers, with rotating the roller, the required angle branch P 2 manually alpha, by turning in a fixed direction while tilting in the β formation or, respectively prepared each in the shape suits mold periphery of each branch pipe P 2 (flange) is formed by bending using the mold.

【0005】しかしながら、一対のローラによる手段
は、ローラ回転力により枝管P2 が飛ぶなどの作業に危
険が伴うとともに、人の勘によって枝管P2 を傾むける
ため、仕上りが一定となりにくく、仕上り精度が悪い。
また、使用可能な接続代aを得るには熟練を要し、熟練
者が少なくなった今日では改善が望まれる。
However, the means by the pair of rollers, with accompanying risk for tasks such as fly branch P 2 by the roller rotational force, for directing inclined branch pipe P 2 by intuition human, finished hardly becomes constant, Poor finishing accuracy.
In addition, skill is required to obtain a usable connection allowance a, and improvement is desired today when the number of skilled workers is reduced.

【0006】また、金型を用いる手段は、比較的に熟練
を要せずに、一定の仕上り精度の接続代aを得ることは
できるが、主管P1 と枝管P2 の組合せの数だけ金型が
必要であり、例えば、P1 、P2 がともに14種類あれ
ば、14×14=196通りとなって、196個の金型
が必要となる。このように金型が多くなることは、金型
の製造コストが膨大となり、コスト的な負担が大きい。
Further, the means using molds, without requiring skilled relatively, although it is possible to obtain a connection margin a certain finishing accuracy, the number of combinations of the main pipe P 1 and the branch pipe P 2 A mold is required. For example, if there are 14 types of P 1 and P 2 , 14 × 14 = 196 patterns, and 196 molds are required. The increase in the number of dies increases the manufacturing cost of the dies and increases the cost burden.

【0007】このような実情の下、上記接続代aを自動
的に形成する技術として、特開平6−339732号公
報に記載のものがある。この技術は、枝管P2 の周縁を
挟持したローラを、その周縁に倣って移動させるととも
に、主管P1 の外周曲面に沿うべく、そのローラを所要
角度に傾けて、接続代aを連続的に管軸に対し所要角度
αに折り曲げる。
Under such circumstances, as a technique for automatically forming the connection margin a, there is a technique disclosed in Japanese Patent Application Laid-Open No. Hei 6-339732. This technique, a roller which sandwiches the periphery of the branch pipe P 2, is moved to follow the periphery thereof, so along the outer curved surface of the main pipe P 1, by inclining the roller to the desired angle, a continuous connection allowance a At the required angle α with respect to the tube axis.

【0008】[0008]

【発明が解決しようとする課題】上記公開公報記載の技
術は、接続代aを自動的に形成し得る点で優れてはいる
が、曲げローラが、上記の枝管周方向に対する角度βの
変化に対応していないため、曲げローラの転動が円滑に
なされず、作業性の円滑さに欠けるうえに、その対応し
ないことにより、接続代aが主管P1 の外周曲面にぴっ
たり沿わない問題がある。
The technique disclosed in the above-mentioned publication is excellent in that the connection margin a can be formed automatically, but the bending roller changes the angle β with respect to the branch pipe circumferential direction. because it does not support, the rolling bending roller is not smoothly performed, on top lacks workability smoothness, by not its corresponding, the problem of connecting margin a is not along snugly on the outer peripheral curved surface of the main pipe P 1 is there.

【0009】また、曲げローラは、一般に、枝管P2
周縁内面に当てがわれる加圧ローラと、その周縁外面に
当てがわれる受けローラとから成り、その加圧ローラを
受けローラに枝管周縁を介在して圧接する構成である。
この構成において、上記公開公報の技術は、その両ロー
ラの枝管周縁挟持時に、加圧ローラにより、その周縁を
一度に所要角度αに折り曲げており、折り曲げ精度、す
なわち、仕上げ精度も低いものとなっているうえに、管
厚が厚くなると、その折り曲げができなくなる。すなわ
ち接続代aが形成できなくなる。
Further, the bending roller generally consists of a pressure roller against cracking in the peripheral inner surface of the lateral pipe P 2, the receiving rollers against cracking in its peripheral outer surface, branch pipe in the roller receiving the pressure roller This is a configuration in which pressure contact is made with the peripheral edge interposed.
In this configuration, the technique disclosed in the above publication discloses that, when the peripheral edges of the branch pipes are clamped, the peripheral edge is bent at a time by a pressure roller to a required angle α, and the bending accuracy, that is, the finishing accuracy is low. In addition, when the tube thickness is increased, the tube cannot be bent. That is, the connection margin a cannot be formed.

【0010】この発明は、主管の外周曲面にぴったり沿
う接続代aを円滑に形成することを課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to form a connection margin a exactly along the outer peripheral curved surface of the main pipe.

【0011】[0011]

【課題を解決するための手段】上記課題を達成するため
に、この発明は、主管の側面にT型に接続される枝管の
その枝管の周縁を縁曲げローラで挟持し、その縁曲げロ
ーラを枝管周縁全周に亘り移動させ、その周縁を外方に
曲げて鍔出しする装置であって、上記縁曲げローラと上
記枝管の周縁とをその縁周りに相対的に移動させる回転
手段と、前記縁曲げローラと前記枝管とを相対的に上下
方向に移動させる昇降手段と、前記縁曲げローラを前記
縁周りの移動方向に沿って縦方向に傾ける縦傾動手段
と、前記縁曲げローラを前記縁周りの移動方向に対し横
方向に傾ける横傾動手段とを備え、上記縁曲げローラ
を、上記回転手段によって枝管の縁周りに沿って枝管周
縁と相対的に移動させるとともに、上記昇降手段によっ
て枝管と相対的に上下方向に移動させて前記周縁の起伏
に対応させ、かつ、上記縦傾動手段によって前記起伏の
傾斜角度に対応させて傾けるとともに、上記横傾動手段
によって上記主管の接続曲面に対応させて傾けて、その
縁曲げローラにより枝管周縁を全周に亘って所要幅で縦
横所要角度に曲げる構成としたのである(請求項1)。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a branch pipe which is connected to a side surface of a main pipe in a T-shape by clamping a peripheral edge of the branch pipe with a bending roller. An apparatus for moving a roller over the entire circumference of a branch pipe and bending the circumference outward to form a flange, wherein the rotation moves the edge bending roller and the circumference of the branch pipe relatively around the edge. Means, elevating means for vertically moving the edge bending roller and the branch pipe relatively, vertical tilting means for vertically tilting the edge bending roller along a moving direction around the edge, and the edge Lateral tilting means for tilting the bending roller in a direction transverse to the moving direction around the edge, wherein the edge bending roller is moved relative to the branch pipe periphery along the periphery of the branch pipe by the rotating means. Up and down relative to the branch pipe by the lifting means And tilted in accordance with the inclination angle of the undulation by the vertical tilting means, and tilted in accordance with the connecting curved surface of the main pipe by the horizontal tilting means. The configuration is such that the peripheral edge of the branch pipe is bent at a required width and a required angle over the entire circumference by the edge bending roller at a required width (claim 1).

【0012】このようにすれば、縁曲げローラが上記枝
管軸心方向に対する角度α及び枝管周方向に対する角度
βに対応して傾き、鍔(接続代a)を主管P1 の外周曲
面に沿った傾きのものとする。このとき、縁曲げローラ
の枝管軸心方向に対する角度αを徐々に所要の角度にす
ることにより、すなわち、段階的に縁曲げすることによ
り、その作用が円滑かつ正確に行うことができ、また、
厚手の枝管P2 でもその鍔形成が可能である。
In this manner, the edge bending roller is tilted corresponding to the angle α with respect to the branch pipe axial direction and the angle β with respect to the branch pipe circumferential direction, and the flange (connection margin a) is formed on the outer peripheral curved surface of the main pipe P 1. It must be inclined along. At this time, by gradually setting the angle α of the edge bending roller with respect to the branch pipe axis direction to a required angle, that is, by performing edge bending stepwise, the operation can be performed smoothly and accurately, and ,
Even thick branch P 2 are possible its collar formation.

【0013】[0013]

【発明の実施の形態】この発明の実施形態としては、上
記回転手段及び昇降手段が、基台上に、上記枝管の固定
テーブルをその枝管の軸心周りに回転自在及び昇降自在
に設け、その回転及び昇降をそれぞれ別々のサーボモー
タによりなして構成され、上記縦傾動手段が、上記基台
上の支柱から前方に延びたアームに上記縁曲げローラの
軸受を支持し、そのアームを、サーボモータにより前記
支柱のアームの支え点周りに回転させて、前記縁曲げロ
ーラを上記縁周りの移動方向に沿って縦方向に傾けるよ
うにして構成され、上記横傾動手段が、サーボモータに
より上記縁曲げローラを上記アームの回転軸心に直交す
る線周りに回転させて、上記横方向に傾けるようにして
構成され、上記各サーボモータは制御器により相互に同
期して制御されて、上記縁曲げローラが、枝管の縁周り
にその起伏に沿って移動されるとともに、その起伏の上
記傾斜角度及び上記主管の接続周曲面に対応させて傾け
られて、枝管周縁が全周に亘って所要幅で縦横所要角度
に曲げられて接続代が形成される構成を採用し得る(請
求項2)。
According to an embodiment of the present invention, the rotating means and the elevating means are provided on a base such that the fixed table for the branch pipe is rotatable and vertically movable about the axis of the branch pipe. The rotation and elevation are each performed by a separate servo motor, and the vertical tilting means supports a bearing of the edge bending roller on an arm extending forward from a support on the base, and the arm includes: The servo motor is configured to rotate around the support point of the arm of the column to tilt the edge bending roller in the vertical direction along the moving direction around the edge, and the lateral tilting means is driven by the servo motor. The edge bending roller is configured to rotate around a line perpendicular to the rotation axis of the arm and to be inclined in the lateral direction, and the servo motors are controlled by the controller in synchronization with each other. The edge bending roller is moved along the undulation around the edge of the branch pipe, and is tilted in accordance with the inclination angle of the undulation and the connecting peripheral curved surface of the main pipe, so that the peripheral edge of the branch pipe is formed all around. It is possible to adopt a configuration in which the connection margin is formed by being bent to a required length and width at a required width over the entire width (claim 2).

【0014】サーボモータによる位置(角度)制御はそ
の作用が正確であり、それゆえ、精度の高い鍔(接続
代)を得ることができる。
The operation of the position (angle) control by the servomotor is accurate, and therefore, a highly accurate flange (connection margin) can be obtained.

【0015】上記縁曲げローラの具体的態様としては、
枝管の周縁内面に当てがわれる加圧ローラと、枝管周縁
外面に当てがわれる受けローラとから成り、前記加圧ロ
ーラはその回転軸心が枝管の周縁内面に沿い、前記受け
ローラはその回転軸心が枝管の周縁外面に直交するよう
に位置されており、その両ローラの一方は他方に対し進
退可能となっている構成を採用し得る(請求項3)。
As a specific embodiment of the edge bending roller,
The pressure roller comprises a pressure roller applied to the inner peripheral surface of the branch pipe, and a receiving roller applied to the outer peripheral surface of the branch pipe.The pressure roller has a rotation axis along the inner peripheral surface of the branch pipe. A configuration may be adopted in which the rotation axis is positioned so as to be orthogonal to the outer peripheral surface of the branch pipe, and one of the two rollers can advance and retreat with respect to the other.

【0016】このように構成すると、加圧ローラは枝管
周縁を介在して受けローラに圧接されることとなるが、
その際、受けローラの受け面は枝管周縁の接線方向のフ
ラット面のため、その両ローラの挟持点も正確な位置に
なって、それゆえ、曲げ作用も精度よく行い得る。
With this configuration, the pressure roller is pressed against the receiving roller via the peripheral edge of the branch pipe.
At this time, since the receiving surface of the receiving roller is a flat surface in the tangential direction of the peripheral edge of the branch pipe, the pinching point of both rollers is also at an accurate position, and therefore, the bending operation can be performed with high accuracy.

【0017】[0017]

【実施例】図1に一実施例の概略斜視図、図2乃至図4
に同実施例の正面図、平面図及び右側面図をそれぞれ示
し、その各図において、基台10の前部にテーブル受台
11が固定され、この受台11にテーブル支持部材12
が回転不能に昇降自在に設けられている。支持部材12
はその軸受部12aがねじ軸13にねじ合っており、サ
ーボモータMY により無端ベルト14を介しそのねじ軸
13が回転することにより、支持部材12が昇降する。
テーブル支持部材12には加工テーブル(枝管P2 固定
テーブル)15が回転自在に設けられており、この加工
テーブル15上に枝管P2 が適宜手段によって同一軸で
固定される。この加工テーブル15はサーボモータMZ
によって、回転軸15a、無端ベルト15bを介して所
要角度に回転される。
FIG. 1 is a schematic perspective view of one embodiment, and FIGS.
1 shows a front view, a plan view, and a right side view of the embodiment. In each of these figures, a table support 11 is fixed to a front portion of a base 10, and a table support member 12 is mounted on the support 11.
Are provided so as to be liftable and non-rotatable. Support member 12
Is fit screws into the bearing portion 12a screw shaft 13, by the screw shaft 13 via the endless belt 14 is rotated by a servo motor M Y, the support member 12 moves up and down.
The table support member 12 and the processing table (branch pipe P 2 fixed table) 15 is rotatably provided, the branch pipe P 2 on the machining table 15 is fixed on the same shaft by suitable means. This machining table 15 has a servo motor M Z
As a result, it is rotated to a required angle via the rotation shaft 15a and the endless belt 15b.

【0018】基台10の後部には、支柱16が立設され
たスライド板17がレール18aを介して前後に移動自
在に設けられており、その支柱16下部の軸受16aに
はねじ軸18がねじ結合されて、このねじ軸18がサー
ボモータMX により回転されることにより、支柱16が
前後に移動する。支柱16の上部には軸受16bを介し
て前方に延びるハ字状のアーム19がその中央で回転自
在に取付けられており、このアーム19はサーボモータ
T によって図4のごとく所要角度(実施例では左右4
5度)に回転される。このサーボモータMT 及びアーム
19によって、請求の範囲記載の縦傾動手段が構成され
る。
At the rear of the base 10, a slide plate 17 on which a support 16 is provided is provided movably back and forth via a rail 18a, and a screw shaft 18 is mounted on a bearing 16a below the support 16. is screwed, by the screw shaft 18 is rotated by a servo motor M X, struts 16 to move back and forth. At the top of column 16 is rotatably mounted V-shape of the arm 19 extending forward through the bearing 16b is at the center, required angle (example as in FIG. 4 the arm 19 by the servo motor M T Then left and right 4
5 degrees). This servomotor M T and the arm 19, vertical tilting means is configured according the claims.

【0019】アーム19の両端間には軸受20aを介し
て傾倒シャフト20が回転自在に設けられており、この
シャフト20はサーボモータMR によって所要角度に回
転される。このシャフト20の中央は前記アーム19の
回転軸心上となって、この位置に加工ユニットUが設け
られている。このサーボモータMR 、軸受20a及びシ
ャフト20によって、請求の範囲記載の横傾動手段が構
成される。
[0019] Between the two ends of the arms 19 are inclined shaft 20 is rotatably provided through a bearing 20a, the shaft 20 is rotated to the required angle by the servo motor M R. The center of the shaft 20 is on the rotation axis of the arm 19, and the processing unit U is provided at this position. The servo motor M R , the bearing 20 a and the shaft 20 constitute a laterally tilting means described in the claims.

【0020】加工ユニットUは、加工ローラ21、その
受けローラ22、加工ローラ回転用サーボモータMS
受けローラ22の押圧用エアシリンダ23とから成る。
サーボモータMS はケーシング24に固定されて、その
中を通る軸21aを介して加工ローラ21を所要速度で
回転する。受けローラ22はT字状の揺動体25に回転
自在に取付けられており、この揺動体25をエアシリン
ダ23のロッド23aで押すことにより、受けローラ2
2が加圧ローラ21に近づけられる(圧接される)(図
5(b)参照)。常時は、受けローラ22は図示しない
ばねにより後退して、加工ローラ21との間には枝管P
2 の周縁がスムースに入り得る間隙が形成される(同図
(a)参照)。
The processing unit U includes a processing roller 21, a receiving roller 22, a processing roller rotating servomotor M S ,
And an air cylinder 23 for pressing the receiving roller 22.
Servomotor M S is fixed to the casing 24, to rotate the working roller 21 at a predetermined speed via a shaft 21a therethrough. The receiving roller 22 is rotatably mounted on a T-shaped oscillating body 25, and the oscillating body 25 is pushed by a rod 23 a of an air cylinder 23 so that the receiving roller 2 is rotated.
2 is brought close to (pressed against) the pressure roller 21 (see FIG. 5B). Normally, the receiving roller 22 is retracted by a spring (not shown), and a branch pipe P is provided between the receiving roller 22 and the processing roller 21.
A gap is formed in which the periphery of 2 can smoothly enter (see FIG. 3A).

【0021】加工ローラ21は円柱状で、その回転軸2
1aが枝管P2 の周壁に沿う方向となっており、一方、
受けローラ22は、円錐台状基部の全周囲を切り込んだ
形状をして、その回転中心軸が枝管P2 の周壁に直交す
る。このため、両ローラ21、22は枝管P2 の周壁を
介在して圧接すると(図5(b))、加圧ローラ21は
枝管周壁を介して受けローラ22のフラットな面に圧接
することとなり、その圧接点も正確となる。
The processing roller 21 has a cylindrical shape and its rotating shaft 2
1a has a direction along the peripheral wall of the branch pipe P 2, whereas,
Receiving roller 22, and the cut's shape all around the frustoconical base portion, the rotation center axis is perpendicular to the peripheral wall of the branch pipe P 2. Therefore, when the rollers 21 and 22 pressed against interposed the peripheral wall of the branch pipe P 2 (FIG. 5 (b)), the pressure roller 21 is pressed against the flat surface of the receiving roller 22 through the branch pipe wall This means that the pressure contact is also accurate.

【0022】各サーボモータMX 、MY ……MS は、図
示しない制御盤(マイクロコンピュータ)によって制御
される。すなわち、例えば、MX は、0.01mm/p
ulseの分解能で制御され、支柱16の移動範囲は2
80mm、最大速度は250mm/secである。MY
は、0.01mm/pulseの分解能で制御され、加
工テーブル15は210mmの範囲で昇降する。M
Z は、0.005°(度)/pulseの分解能で制御
されて、加工テーブル15を回転させる。MT は、0.
024°/pulseの分解能で制御され、水平方向基
準で、アーム19を±45°の範囲で回動する。M
R は、0.024°/pulseの分解能で制御されて
加工ユニットU(シャフト20)を回転させる。M
S は、0.012°/pulseの分解能で制御されて
加工ローラ21を回転する。
Each of the servo motors M X , M Y ... M S is controlled by a control panel (microcomputer) not shown. That is, for example, M X is, 0.01 mm / p
ulse resolution, and the movement range of the support 16 is 2
80 mm, the maximum speed is 250 mm / sec. M Y
Is controlled at a resolution of 0.01 mm / pulse, and the processing table 15 is moved up and down within a range of 210 mm. M
Z is controlled at a resolution of 0.005 ° (degrees) / pulse to rotate the processing table 15. M T is 0.
The arm 19 is controlled at a resolution of 024 ° / pulse, and rotates in a range of ± 45 ° with respect to the horizontal direction. M
R is controlled at a resolution of 0.024 ° / pulse to rotate the processing unit U (shaft 20). M
S rotates the processing roller 21 under the control of a resolution of 0.012 ° / pulse.

【0023】つぎに、枝管P2 (加工テーブル15)の
回転角度θと加工ユニットU(ローラ21、22)の昇
降・回転・傾斜・傾倒の関係に基づく各サーボモータM
X ……の制御について、図6乃至図14を参照して説明
すると、枝管P2 の一回転を所要角度θ0 、例えば10
度(θ0 =10°)間隔に分割すると、枝管P2 の周縁
のcosカーブCは図6のごとくなり、同カーブCにお
いて、ローラ21、22の枝管周方向に対する角度βは
各点の接線角度、加工ローラ21の周方向の送り量Sは
その分割角度間のカーブ長さとなる。また、ローラ2
1、22の枝管軸心方向に対する角度αは各点における
主管P1 周面の接線角度となる。この各角度θ0 、α、
β等に基づき制御する。
Next, each servo motor M based on the relationship between the rotation angle θ of the branch pipe P 2 (working table 15) and the elevation / rotation / rotation / tilt / tilt of the working unit U (rollers 21, 22).
Control of X ......, With reference to FIGS. 6 to 14, the required one rotation of the branch P 2 angle theta 0, for example, 10
When divided into degrees (θ 0 = 10 °) intervals, the cos curve C of the periphery of the branch pipe P 2 becomes as shown in FIG. 6, and in this curve C, the angle β of the rollers 21 and 22 with respect to the branch pipe circumferential direction is set at each point. And the feed amount S of the processing roller 21 in the circumferential direction are the curve lengths between the divided angles. Roller 2
The angles α of the pipes 1 and 22 with respect to the axial direction of the branch pipe are tangent angles of the peripheral surface of the main pipe P 1 at respective points. These angles θ 0 , α,
Control based on β etc.

【0024】すなわち、例えば、主管P1 :400mm
径、枝管P2 :300mm径のT字管の枝管P2 の周縁
の鍔形成加工を行うとすると、各サーボモータMX ……
は下記のごとく制御される。
That is, for example, the main pipe P 1 : 400 mm
Diameter, the branch pipe P 2: When performing a peripheral flange formation process of the branch pipe P 2 of the T-tube 300mm diameter, each of the servo motors M X ......
Is controlled as follows.

【0025】 サーボモータMX は、支柱16の前進
距離を設定するものであり、その演算は、前進距離=基
準距離−枝管半径(基準距離=加工テーブル中心と加工
ユニット待機位置間の距離:一定)で行い、1puls
e=0.01mmの進退量とする(図8参照)。
The servomotor M X is for setting the advance distance of the struts 16, the operation is advance distance = reference distance - branch radius (reference distance = distance between the machining table center and the machining unit standby position: 1)
It is assumed that e = 0.01 mm (see FIG. 8).

【0026】なお、この支柱16の前進後、サーボモー
タMX の制御用マイコンボードは各サーボモータ
(MY 、MR 、MT 、MS 、MZ )の制御マイコンボー
ドに8000パルスの基準信号を一定周波数で送信す
る。これは、MX は支柱16の位置決め終了後は駆動し
ないので、その入力信号(パルス)を基準信号として使
用でき、その発信を他のサーボモータの基準信号に使用
する。
[0026] Note that after advancement of the struts 16, the servo motor M X control microcomputer board each servomotor (M Y, M R, M T, M S, M Z) 8000 pulses criteria to the control microcomputer board Transmit the signal at a constant frequency. This is because the M X after the end positioning of the struts 16 is not driven, can be used the input signal (pulse) as a reference signal, using the call to the reference signal of the other servo motor.

【0027】 サーボモータMY は、加工テーブル1
5を枝管P2 周縁に対応させ、かつそのカーブCに応じ
て昇降させるものであり、そのセッティング時の演算
は、上昇距離=基準距離−枝管の最頂点の長さ(基準距
離=テーブル待機位置と加工ローラ位置間の距離:一
定、枝管の最頂点長さ=最低点長さ+主管半径−(主管
半径2 −枝管半径2 )の平方根、枝管最低点長さ:枝管
径により決まる)で行い、1pulse=0.01mm
の進退量とする(図9参照)。
The servo motor M Y is mounted on the machining table 1
5 to correspond to the branch pipe P 2 perimeter, and it is intended for lifting in accordance with the curve C, the setting operation of the time, the elevating distance = reference distance - top apex of the length of the branch pipe (reference distance = Table the distance between the standby position and the processing roller position: fixed, top apex length of the branch pipe = lowest point length + main radius - (main radius 2 - branch pipe radius 2) of the square root, branch pipe nadir length: branch pipe 1 pulse = 0.01mm
(See FIG. 9).

【0028】また、周縁カーブCに対応させる制御は、
図10に示すように、主管P1 の中心線(x2 軸)から
枝管P2 の周縁円周上の各分割点と主管P1 の外周の交
点におろした垂線の長さHを次式から求め、その差(H
-1−Hn)を変位量とする。H=(A2 −(B・si
nθ)2 )の平方根、H;垂線の長さ、A;主管P1
半径、B;枝管P2 の半径、θ;枝管P2 の管周上の分
割点と枝管の中心点を結ぶ分割線と中心線(y軸)のな
す角(回転角)。
The control corresponding to the peripheral curve C is as follows:
As shown in FIG. 10, following the length H of the perpendicular line drawn at the intersection of the outer circumference of each division point and the main pipe P 1 on the peripheral circumference of the branch pipe P 2 from the center line of the main pipe P 1 (x 2 axis) The difference (H
n −1 −Hn) is defined as a displacement amount. H = (A 2 − (B · si
n.theta) 2) the square root, H; perpendicular length, A; radius of the main pipe P 1, B; radius of the lateral pipe P 2, theta; split point on the tube circumference branch pipe P 2 and the branch pipe central point of (Rotation angle) between the dividing line connecting the center line and the center line (y-axis).

【0029】従って、カーブCの最上位点H0 からつぎ
の10度回転した位置H1 への変位量は、 H0 =(2002 −(150sin90)2 )の平方根 =(2002 −1502 )の平方根 =132.29、 H1 =(2002 −(150sin80)2 )の平方根 =(2002 −(150×147.72)2 )の平方根 =134.83から、 (H0 −H1 )=132.29−134.83=−2.
54となり、テーブル15は2.54mm上昇する。こ
のとき、1パルスが0.01mmであるので2.5/
0.01=250パルス分に相当する。以下同様に10
°ごとの変位量が求められる。
Therefore, the displacement amount from the highest point H 0 of the curve C to the next position H 1 rotated by 10 degrees is H 0 = (200 2 − (150 sin 90) 2 ) square root = (200 2 −150 2) the square root of) = 132.29, H 1 = ( 200 2 - (150sin80) 2) square root = - from (200 2 (150 × 147.72) 2) the square root = 134.83, (H 0 -H 1 ) = 132.29-134.83 = -2.
54, the table 15 rises by 2.54 mm. At this time, since one pulse is 0.01 mm, 2.5 /
It corresponds to 0.01 = 250 pulses. Similarly, 10
The displacement for each ° is obtained.

【0030】 サーボモータMZ は加工テーブル15
を回転させるものであり、1パルスを0.005°に設
定してあるため、10°回転するには、10/0.00
5=2000パルスに相当する。すなわち、サーボモー
タMZ に2000パルスの信号を送り加工テーブルを1
0°回す。
The servo motor M Z is connected to the machining table 15
Since one pulse is set to 0.005 °, to rotate 10 °, 10 / 0.00
5 = 2000 pulses. That is, the machining table feed 2000 pulse signals to the servo motor M Z 1
Turn 0 °.

【0031】 サーボモータMT は加工ローラ21の
傾斜角βを設定するものであり、加工ローラ21は枝管
2 の周縁の傾斜に合わせて傾ける必要があり、隣り合
う各分割点間の曲線Cの傾斜角を求めて傾斜角βとす
る。例えば、図11に示すように、位置0〜位置1間の
円周長さL=300π/36=26.18、高さ変位量
=H1 −H0 =2.54、傾斜角をβとすれば、tan
β=2.5/26.18=0.09549からβ=5.
45°となり、1パルスが0.024°であるから5,
45/0.024=227パルスに相当する。
The servomotor M T is used to set the inclination angle β of the machining roller 21, the processing roller 21 must be tilted in accordance with the inclination of the peripheral edge of the branch pipe P 2, between each division point adjacent curve The inclination angle of C is obtained and set as the inclination angle β. For example, as shown in FIG. 11, a circumferential length L between position 0 and position 1 is L = 300π / 36 = 26.18, an amount of height displacement = H 1 −H 0 = 2.54, and an inclination angle is β. Then tan
β = 2.5 / 26.18 = 0.09549 to β = 5.
45 °, and one pulse is 0.024 °.
45 / 0.024 = 227 pulses.

【0032】 サーボモータMR は加工ローラ21を
枝管P2 の外側に向けて倒し、鍔だし角度(傾倒角度)
αを調整するもので、図12に示すように枝管P2 の分
割点と主管P1 の外周面との交点における接線と該交点
から主管の中心線(x2 軸)におろした垂線がなす角が
αであって、αは次式から求められる。cosα=h/
A(h;枝管円周上の分割点から枝管の中心線におろし
た垂線の長さ、A;主管の半径)。なお、図13から理
解できるように、α=90°−γ、α’=90°−γか
らα=α’となり、cosα’=h/A=cosαとな
って、α’を求めればαとなり、上式はそのようにして
いる。
The servo motor M R tilts the processing roller 21 toward the outside of the branch pipe P 2 , and sets a flange angle (tilt angle).
adjusts the alpha, is perpendicular line drawn from the tangent intersection point of intersection of the dividing point of the branch pipe P 2 and the outer circumferential surface of the main pipe P 1 to the main pipe centerline (x 2 axis) as shown in FIG. 12 The angle formed is α, and α is obtained from the following equation. cosα = h /
A (h; length of a perpendicular drawn from the division point on the circumference of the branch pipe to the center line of the branch pipe, A: radius of the main pipe). As can be understood from FIG. 13, from α = 90 ° −γ and α ′ = 90 ° −γ, α = α ′, and cosα ′ = h / A = cosα. The above formula does so.

【0033】ここで、位置0における傾斜角をα0 とす
れば、cosα0 =h0 /200、h0 =150sin
90=150から、cosα0 =150/200となっ
て、α0 =41.41°、同様に位置1における傾斜角
α1 は、cosα1 =150sin80/200=0.
7386から、α1 =42.39°となり、1パルスが
0.024°であるから位置0では41.41/0.0
24=1725パルス分、傾倒し、位置0から位置1ま
でには42.39−41.41=0.98°変位する。
これは0.98/0.024=41パルス分に相当す
る。
[0033] Here, if the tilt angle at the position 0 and α 0, cosα 0 = h 0 /200, h 0 = 150sin
90 = 150, becomes cosα 0 = 150/200, α 0 = 41.41 °, the inclination angle alpha 1 in the same way position 1, cosα 1 = 150sin80 / 200 = 0.
From 7386, α 1 = 42.39 °, and since one pulse is 0.024 °, at position 0, 41.41 / 0.0
It is tilted by 24 = 1725 pulses and displaced from position 0 to position 1 by 42.39-41.41 = 0.98 °.
This is equivalent to 0.98 / 0.024 = 41 pulses.

【0034】 サーボモータMS は、加工ローラ21
の送り量Sを設定するものであり、10°分の円周長と
テーブル15の昇降変位量からもとめる。すなわち、図
14に示すように、10°分の円周長=300π/36
=26.18、位置0から位置1までのY軸の変位量=
2.54、位置0から位置1までの送り量をSとすれ
ば、S=(26.182 +2.542 )の平方根=2
6.3、ここで、加工ローラ21の外径をrとすれば加
工ローラ21の円周はπrであり、26.3mmは回転
角度に換算すれば、360×26.3/πrとなり、1
パルスは0.012°であるから、360×26.3/
πr/0.012(パルス)に相当する。
The servo motor M S is connected to the processing roller 21
Is set based on the circumferential length of 10 ° and the amount of vertical displacement of the table 15. That is, as shown in FIG. 14, the circumferential length of 10 ° = 300π / 36.
= 26.18, Y-axis displacement from position 0 to position 1 =
Assuming that the feed amount from the position 0 to the position 1 is S, the square root of S = (26.18 2 +2.54 2 ) = 2
6.3, where the outer diameter of the processing roller 21 is r, the circumference of the processing roller 21 is πr, and 26.3 mm is 360 × 26.3 / πr when converted to a rotation angle.
Since the pulse is 0.012 °, 360 × 26.3 /
πr / 0.012 (pulse).

【0035】各サーボモータMX ……は以上のように制
御され、この制御に基づき、枝管P2 の周縁鍔加工はつ
ぎのようにしてなされる。すなわち、まず、制御盤には
主管P1 、枝管P2 の径等の情報を入力し、この情報に
基づき制御盤内では、マイコンにより、枝管P2 の10
°の各分割点におけるテーブル高さ、鍔傾倒角度α、加
工ユニット(鍔)傾斜角β、加工ローラ回転角度、加工
テーブル15の回転角度θの各変位量を演算して記憶す
る。
The respective servo motors M X are controlled as described above. Based on this control, the peripheral flange processing of the branch pipe P 2 is performed as follows. That is, first, the control panel to enter information in diameter of the main pipe P 1, the branch pipe P 2, the control panel on the basis of this information, the microcomputer 10 of the branch pipe P 2
Each displacement amount of the table height, the flange tilt angle α, the processing unit (flange) tilt angle β, the processing roller rotation angle, and the rotation angle θ of the processing table 15 at each division point of ° is calculated and stored.

【0036】この情報入力に前後して、加工テーブル1
5上に枝管P2 を載置して固定する。このとき、主管P
1 への取付管端縁(cos曲線状周縁)を上側にし、そ
のcos曲線を描いて起伏する最頂点を加工ユニットU
(ローラ21、22)の進退軸線上に合せるとともに、
テーブルセンターと枝管P2 のセンターをあわせる(図
7参照)。
Before and after inputting this information, the processing table 1
5 is placed to secure the branch pipe P 2 on. At this time, the main pipe P
1 , the edge of the mounting pipe (cos curve-shaped peripheral edge) is set to the upper side, and the highest vertex which undulates and draws the cos curve is processed unit U
(Rollers 21 and 22)
Fit center of the table center and the branch pipe P 2 (see FIG. 7).

【0037】つぎに、上記入力情報に基づき、枝管P2
の径から支柱16(加工ユニットU)の前進距離を演算
し、その距離に該当するパルス信号をサーボモータMX
に発信する。この発信により、サーボモータMX は駆動
して支柱16を前進させ、加工ユニットUを枝管P1
周縁真上に位置させる。このとき、加工ユニットUの加
工ローラ21と受けローラ22の間の間隙が加工テーブ
ル15上の枝管P2 の周縁の真上に位置している。
Next, based on the input information, the branch pipe P 2
Of the support 16 (the processing unit U) is calculated from the diameter of the servo motor M X
Send to The outgoing servomotor M X is to advance the column 16 is driven to position the machining unit U to the periphery just above the branch pipe P 1. At this time, the gap between the receiving and the processing roller 21 of the unit U roller 22 is positioned directly above the periphery of the branch pipe P 2 on the work table 15.

【0038】真上に位置すれば、主管P1 の径と枝管P
2 の径から加工テーブル15の上昇距離を演算し、距離
に該当するパルス信号をサーボモータMY に発信する。
If it is located directly above, the diameter of the main pipe P 1 and the branch pipe P
The elevating distance of the machining table 15 from the second diameter is calculated, issues a pulse signal corresponding to the distance to the servo motor M Y.

【0039】この発信により、サーボモータMY は所定
のパルス数だけ回転してねじ軸13を駆動し、加工テー
ブル15を所定の高さまで上昇させる。このとき、枝管
2の周縁の最頂点は加工ローラ21と受けローラ22
の間に、接続代aとして約8mm進入するように設定し
ている。
By this transmission, the servo motor M Y rotates by a predetermined number of pulses to drive the screw shaft 13 and raise the working table 15 to a predetermined height. At this time, the uppermost apex of the periphery of the branch pipe P 2 receives the processing roller 21 roller 22
Is set so as to enter about 8 mm as a connection margin a.

【0040】ローラ21、22間に枝管P2 の周縁がセ
ットされれば(図5(a))、エアーシリンダ23を作
動して、枝管周縁を加工ローラ21と受けローラ22で
挟む(同図(b))。こののち、各サーボモータMY
Z 、MT 、MR 、MS の制御用マイコンボードは上述
のMX 制御用マイコンボードからの8000パルスの基
準信号を受信する間に、分割角度θ0 =10度に対応し
て前述のあらかじめ演算された結果に基づくパルス数を
それぞれ出力し、それぞれの駆動軸(ねじ軸13、軸1
5a、アーム19の中心軸、シャフト20、軸21a)
を駆動する。
[0040] If it is the periphery of the branch pipe P 2 between the rollers 21 and 22 set (FIG. 5 (a)), by operating the air cylinder 23, sandwiched by the roller 22 receives a branch pipe periphery and the processing roller 21 ( FIG. After this, each servo motor M Y ,
M Z, M T, while M R, the control microcomputer board M S is for receiving 8000 pulse reference signal from the above-mentioned M X control microcomputer board, described above in response to the divided angle theta 0 = 10 ° Output the number of pulses based on the result calculated in advance for each drive shaft (screw shaft 13, shaft 1
5a, center axis of arm 19, shaft 20, axis 21a)
Drive.

【0041】この駆動により、加工テーブル15が所定
量の昇降・回転を行うとともに、加工ユニットUが所要
の傾斜・傾倒を行い、主管P1 の外周曲面に沿った傾斜
・傾倒角度β、αの鍔aが形成される。すなわち、各サ
ーボモータの制御用マイコンボードは基準軸(MX )の
制御用マイコンボードから送信される10°の変位を示
す8000パルスの基準パルスを受信しながら、その間
に、上述の演算結果に基づいたパルス数をそれぞれのサ
ーボモータMY 、MZ …に発信して各軸(13、15a
……)を順次同調して駆動し、カーブC全周にわたり鍔
加工を遂行する。この加工は1回転で完了してもよい
が、管厚により複数回転で加工を完了することも可能で
あり、むしろその方がスムースに高精度な作業ができ
る。3回転加工で、管厚:0.1〜0.4mmのものを
スムースに加工し得た。
[0041] With this drive, the processing table 15 performs lifting and rotating a predetermined amount, the processing unit U performs the required tilt-leaning inclination-tilt angle along the outer circumference curved surface of the main pipe P 1 beta, the α A flange a is formed. In other words, the microcomputer board for controlling each servo motor receives the reference pulse of 8000 pulses indicating the displacement of 10 ° transmitted from the microcomputer board for controlling the reference axis (M x ), and during that time, receives the above-mentioned calculation result. .. Are transmitted to the respective servo motors M Y , M Z.
...) Are sequentially driven in synchronization with each other to perform the collar processing over the entire circumference of the curve C. This processing may be completed in one rotation, but it is also possible to complete the processing in a plurality of rotations depending on the thickness of the pipe. Rather, the processing can be performed more smoothly and with higher precision. With three-turn processing, a pipe having a thickness of 0.1 to 0.4 mm could be processed smoothly.

【0042】以上の例は主管P1 がストレート管である
が、演算式をかえれば、図15に示すテーパー管P1
も正確な加工が可能である。すなわち、主管P1 がテー
パー管のように枝管P2 の取付部が複雑な場合などの各
種の取付部でも、演算式をえるだけで同じ様に正確に加
工できる。
The above example is main P 1 is a straight tube, In other arithmetic expressions, it is possible to accurately process any taper pipe P 1 shown in FIG. 15. That is, the main pipe P 1 is also a variety of mounting portions, such as when the mounting portion of the branch pipe P 2 is complicated as the tapered pipe, calculation formula can be processed by the same way exactly at obtain.

【0043】加工テーブル15は初期値から1/4回転
したところで回転をとめる。このとき、加工ユニットU
は枝管周縁の起伏の最低部にあり、図5(C)のように
鍔(接続代)aは90°傾倒した状態にある。この状態
は、両ローラ21、22の間隙が横向きのため、受けロ
ーラ22を離して横方向に後退すれば(支柱16が後退
すれば)、加工ユニットUは容易に鍔aから離れ得る。
加工が終了すれば、エアーシリンダ23を解除し、支柱
16は元の位置(基準位置)に後退する。以後、以上の
作用を繰り返して枝管P2 の周縁鍔加工を繰り返す。
The processing table 15 stops rotating when it has turned 1/4 from the initial value. At this time, the processing unit U
Is located at the lowest part of the undulation of the peripheral edge of the branch pipe, and as shown in FIG. 5C, the flange (connection margin) a is in a state of being inclined by 90 °. In this state, since the gap between the rollers 21 and 22 is horizontal, if the receiving roller 22 is separated and retreated in the horizontal direction (if the support 16 is retracted), the processing unit U can easily separate from the flange a.
When the processing is completed, the air cylinder 23 is released, and the column 16 retreats to the original position (reference position). Thereafter, repeated peripheral flange machining of the lateral pipe P 2 repeats the action of more than.

【0044】また、加工テーブル15は、各種の大きさ
(径)のものを取替え可能に準備して、枝管P2 の大き
さ、他の部品との干渉度合等を考慮して、最適なものを
セットするようにする。各駆動軸13、15a……は、
クローズドループ制御サーボ機構として、高精度の位置
決めをして、加工精度を安定させる。さらに、支柱16
の駆動軸(ねじ軸)18、加工テーブル15の昇降軸
(ねじ軸)13にはボールネジ機構を採用して、位置設
定の繰り返し精度が高いものとする。
[0044] Further, the processing table 15 is prepared to replaceable from among various sizes (diameter), the branch pipe P 2 in size, taking into account the interference degree, etc. of the other components, optimal Set things. Each drive shaft 13, 15a...
As a closed-loop control servo mechanism, high-precision positioning is performed to stabilize machining accuracy. Furthermore, the support 16
A ball screw mechanism is adopted for the drive shaft (screw shaft) 18 and the elevating shaft (screw shaft) 13 of the processing table 15 so that the position setting repeat accuracy is high.

【0045】なお、受けローラ22ではなく、加工ロー
ラ21を受けローラ22に対し、進退可能ともし得る。
また、支柱16をスライド板17上で円周運動させると
ともにスライド板17を前後動させる等によって、加工
ユニットUを枝管P2 の周縁に沿って円状に動き得るよ
うにすれば、加工テーブル15は回転するものでなくて
もよい。さらに、支柱16をその長さ方向に二分割し、
その二分割部材をボームねじ機構で連結して、支柱16
を伸縮可能などとして、加工ユニットUを上下動し得る
ようにすれば、加工テーブル15は上下動しないものを
採用し得る。
The processing roller 21 may be able to advance and retreat with respect to the receiving roller 22 instead of the receiving roller 22.
Further, such as by causing back and forth movement of the slide plate 17 causes the circumferential movement of the struts 16 on the slide plate 17, if a machining unit U for movement in a circular shape along the periphery of the branch pipe P 2, the machining table 15 need not be a rotating one. Furthermore, the strut 16 is divided into two in its length direction,
The two parts are connected by a Baume screw mechanism,
If the processing unit U can be moved up and down, for example, by making it extendable, the processing table 15 that does not move up and down can be adopted.

【0046】[0046]

【発明の効果】この発明は、以上のようにしたので、主
管の外周曲面にぴったり沿う鍔(接続代)付きの枝管を
円滑に製造することができる。すなわち、枝管鍔出しの
生産性、安全性及び品質がすこぶる向上する。
As described above, according to the present invention, it is possible to smoothly manufacture a branch pipe with a flange (connection allowance) which closely follows the outer peripheral curved surface of the main pipe. That is, the productivity, safety and quality of the branch pipe flange are greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係るT型接続管の枝管鍔出し装置の
一実施例の概略斜視図
FIG. 1 is a schematic perspective view of an embodiment of a branch pipe flange setting device for a T-type connecting pipe according to the present invention.

【図2】同実施例の正面図FIG. 2 is a front view of the embodiment.

【図3】同実施例の平面図FIG. 3 is a plan view of the embodiment.

【図4】同実施例の右側面図FIG. 4 is a right side view of the embodiment.

【図5】同実施例の鍔加工ユニットの作用説明図FIG. 5 is an explanatory view of the operation of the flange processing unit of the embodiment.

【図6】同実施例の鍔加工作用説明図FIG. 6 is an explanatory view of a collar processing operation of the embodiment.

【図7】同実施例の鍔加工作用説明図FIG. 7 is an explanatory view of a collar processing operation of the embodiment.

【図8】同実施例の鍔加工作用説明図FIG. 8 is an explanatory view of a collar processing operation of the embodiment.

【図9】同実施例の鍔加工作用説明図FIG. 9 is an explanatory view of a collar processing operation of the embodiment.

【図10】同実施例の鍔加工作用説明図FIG. 10 is an explanatory view of a collar processing operation of the embodiment.

【図11】同実施例の鍔加工作用説明図FIG. 11 is an explanatory view of a collar processing operation of the embodiment.

【図12】同実施例の鍔加工作用説明図FIG. 12 is an explanatory view of a collar processing operation of the embodiment.

【図13】同実施例の鍔加工作用説明図FIG. 13 is an explanatory view of a collar processing operation of the embodiment.

【図14】同実施例の鍔加工作用説明図FIG. 14 is an explanatory view of a collar processing operation of the embodiment.

【図15】主管の他例の斜視図FIG. 15 is a perspective view of another example of the main pipe.

【図16】(a)はT型接続管の斜視図、(b)は同枝
管の接続部分の断面図
16A is a perspective view of a T-type connecting pipe, and FIG. 16B is a cross-sectional view of a connecting portion of the same branch pipe.

【符号の説明】[Explanation of symbols]

1 主管 P2 枝管 a 鍔(接続代) α 鍔傾倒角 β 鍔傾斜角 MX 、MY 、MZ 、MT 、MR 、MS サーボモータ U 加工ユニット 10 基台 13 加工テーブル昇降用ねじ軸 15 加工テーブル 15a 加工テーブル回転軸 16 支柱 18 支柱前後移動用ねじ軸 19 加工ユニット傾斜用アーム 20 加工ユニット傾倒用シャフト 21 加工ローラ 22 受けローラ 23 エアシリンダP 1 main P 2 branch pipe a flange (connection margin) alpha flange inclination angle β flange inclination angle M X, M Y, M Z , M T, M R, M S servomotor U processing unit 10 base plate 13 machining table lifting Screw shaft 15 working table 15a working table rotating shaft 16 support 18 support shaft longitudinal movement screw shaft 19 working unit tilting arm 20 working unit tilting shaft 21 working roller 22 receiving roller 23 air cylinder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主管P1 の側面にT型に接続される枝管
2 のその枝管P2の周縁を縁曲げローラで挟持し、そ
の縁曲げローラを枝管周縁全周に亘り移動させ、その周
縁を外方に曲げて鍔出しする装置であって、 上記縁曲げローラと上記枝管P2 の周縁とをその縁周り
に相対的に移動させる回転手段と、前記縁曲げローラと
前記枝管P2 とを相対的に上下方向に移動させる昇降手
段と、前記縁曲げローラを前記縁周りの移動方向に沿っ
て縦方向に傾ける縦傾動手段と、前記縁曲げローラを前
記縁周りの移動方向に対し横方向に傾ける横傾動手段と
を備え、 上記縁曲げローラを、上記回転手段によって枝管P2
縁周りに沿って枝管周縁と相対的に移動させるととも
に、上記昇降手段によって、枝管P2 と相対的に上下方
向に移動させて前記周縁の起伏に対応させ、かつ、上記
縦傾動手段によって前記起伏の傾斜角度に対応させて傾
けるとともに、上記横傾動手段によって上記主管P1
接続曲面に対応させて傾けて、その縁曲げローラにより
枝管P2 縁を全周に亘って所要幅で縦横所要角度に曲げ
ることを特徴とするT型接続管の枝管鍔出し装置。
1. A sandwich with crimping the peripheral edge of the branch pipe P 2 of the lateral pipe P 2 which is connected to the T-type on the side surface of the main pipe P 1 roller, moving over the edge bending roller to the branch pipe periphery all around is a device for issuing flange bending the peripheral edge outwards, and rotating means for relatively moving the peripheral edge of the edge-folding roller and the branch pipe P 2 around its edge, said crimping rollers a lifting means for moving said branch pipe P 2 relatively vertically, and a vertical tilting means for tilting the longitudinal direction of the hemming roller along the moving direction around the rim, the rim around the edge bending roller and a transverse tilting means for tilting with respect to the movement direction in the lateral direction of the hemming roller, with relatively moving the branch pipe circumference along the circumference edge of the branch pipe P 2 by the rotating means, said lifting means Accordingly, the peripheral edge is moved relative to the vertical direction as the branch P 2 Bend down to is associated, and, together with the inclined so as to correspond to the inclination angle of the undulations by the longitudinal tilting means, inclined so as to correspond to the connecting curved surface the main pipe P 1 by the lateral tilting means, the branch pipe by its crimping rollers branch pipe flange out apparatus T type connection tube over the P 2 edges all around, characterized in that bending vertically and horizontally required angle in a required width.
【請求項2】 上記回転手段及び昇降手段が、基台10
上に、上記枝管P2の固定テーブル15をその枝管P2
の軸心周りに回転自在及び昇降自在に設け、その回転及
び昇降をそれぞれ別々のサーボモータMZ 、MY により
なして構成され、 上記縦傾動手段が、上記基台10上の支柱16から前方
に延びたアーム19に上記縁曲げローラを支持し、その
アーム19を、サーボモータMT により前記支柱16の
アーム19の支え点周りに回転させて、前記縁曲げロー
ラを上記縁周りの移動方向に沿って縦方向に傾けるよう
にして構成され、 上記横傾動手段が、サーボモータMR により上記縁曲げ
ローラを上記アーム19の回転軸心に直交する線周りに
回転させて、上記横方向に傾けるようにして構成され、 上記各サーボモータは制御器により相互に同期して制御
されて、上記縁曲げローラが、枝管P2 の縁周りにその
起伏に沿って移動されるとともに、その起伏の上記傾斜
角度及び上記主管P1 の接続周曲面に対応させて傾けら
れて、枝管周縁が全周に亘って所要幅で縦横所要角度に
曲げられて接続代が形成されることを特徴とする請求項
1記載のT型接続管の枝管鍔出し装置。
2. The method according to claim 1, wherein the rotating means and the elevating means are mounted on a base.
Above, the branch pipe P 2 a fixed table 15 of the branch pipe P 2
Provided in freely rotatable and the lift about the axis, the rotation and lifting separate each servomotor M Z, is configured to form a M Y, the vertical tilting means, forward from the posts 16 on the base 10 the hemming roller and the support, the arm 19 to arm 19 which extends, is rotated by a servo motor M T around supporting point of the arm 19 of the strut 16, the movement direction around the edge of the edge-folding rollers The horizontal tilting means rotates the edge bending roller around a line orthogonal to the rotation axis of the arm 19 by the servo motor M R , and are configured as inclined, each servo motor is controlled in synchronism with each other by the controller, together with the crimping roller is moved along the undulations around the edge of the branch pipe P 2, its The inclination angle and the angled in correspondence with the connection circumferential curved surface of the main pipe P 1 undulations, characterized in that the branch pipe peripheral connection allowance bent vertically and horizontally required angle in a required width over the entire circumference is formed The branch pipe flange forming device for a T-type connection pipe according to claim 1, wherein
【請求項3】 上記縁曲げローラは、枝管P2 の周縁内
面に当てがわれる加圧ローラ21と、枝管周縁外面に当
てがわれる受けローラ22とから成り、前記加圧ローラ
21はその回転軸心が枝管P2 の周縁内面に沿い、前記
受けローラ22はその回転軸心が枝管P2 の周縁外面に
直交するように位置されており、その両ローラ21、2
2の一方は他方に対し進退可能となっていることを特徴
とする請求項1又は2に記載のT型接続管の枝管鍔出し
装置。
Wherein said crimping rollers includes a branch pipe pressure roller 21 against cracking in the peripheral inner surface of the P 2, consists receiving rollers 22 for the covering divided into branch pipes peripheral outer surface, the pressure roller 21 that along the rotation axis is the periphery the inner surface of the lateral pipe P 2, the receiving roller 22 is positioned so that its rotational axis is perpendicular to the peripheral outer surface of the lateral pipe P 2, the two rollers 21,2
3. The branch pipe flange forming device for a T-type connecting pipe according to claim 1, wherein one of the two is movable with respect to the other. 4.
JP04927397A 1997-03-04 1997-03-04 Branch pipe flange setting device for T type connection pipe Expired - Fee Related JP3154951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04927397A JP3154951B2 (en) 1997-03-04 1997-03-04 Branch pipe flange setting device for T type connection pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04927397A JP3154951B2 (en) 1997-03-04 1997-03-04 Branch pipe flange setting device for T type connection pipe

Publications (2)

Publication Number Publication Date
JPH10244322A true JPH10244322A (en) 1998-09-14
JP3154951B2 JP3154951B2 (en) 2001-04-09

Family

ID=12826248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04927397A Expired - Fee Related JP3154951B2 (en) 1997-03-04 1997-03-04 Branch pipe flange setting device for T type connection pipe

Country Status (1)

Country Link
JP (1) JP3154951B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050965A (en) * 2009-07-28 2011-03-17 Ck Metals Co Ltd Flange forming machine of tubular material
CN109502070A (en) * 2018-11-27 2019-03-22 江山市泓睦体育用品有限公司 A kind of dumbbell plate sealed in unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050965A (en) * 2009-07-28 2011-03-17 Ck Metals Co Ltd Flange forming machine of tubular material
CN109502070A (en) * 2018-11-27 2019-03-22 江山市泓睦体育用品有限公司 A kind of dumbbell plate sealed in unit

Also Published As

Publication number Publication date
JP3154951B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
US3732613A (en) Method and device for friction welding
JPS6336888B2 (en)
US4865243A (en) Sizing tool for a machine for the longitudinal seam welding of rounded can bodies
WO1982000607A1 (en) Method and apparatus for manufacturing a metal pipe
CN113909766B (en) Intersecting line weld joint welding equipment and method
JPH07106541B2 (en) Wide-angle toric lens manufacturing method and apparatus
JP3154951B2 (en) Branch pipe flange setting device for T type connection pipe
KR900008892B1 (en) Process and apparatus for machining tubular parts
JP3547640B2 (en) Conical pipe manufacturing equipment
JP4820039B2 (en) Cavity processing method and apparatus for continuous casting mold
JPS6152951A (en) Method of screw rolling
JP2669682B2 (en) Equipment for manufacturing electrodes for fine shape processing
CN212821949U (en) Longitudinal processing and prefabricating device for exposed flat steel of grounding device
JPH0516952B2 (en)
CN217018098U (en) Steel pipe forming device
JPH04183565A (en) Method and device for grinding female thread crest
JPH08187517A (en) Forming roll and clamp for pipe mill
JPH0796330A (en) Taper bending device
SU1186321A1 (en) Apparatus for bending propeller baldes of annular blanks
CN220591378U (en) Reinforcing steel bar rounding equipment for producing prestressed steel cylinder concrete pipe
JPH06217Y2 (en) Pipe fusing device
JPS63150108A (en) Grooving device
JPH0417735B2 (en)
JPH02263518A (en) Adjustor for angle of straightening roll
JP3240912B2 (en) Metal tube bending apparatus and U tube cold bending method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees