JPH1024218A - Purification of hydrocarbon in exhaust gas - Google Patents

Purification of hydrocarbon in exhaust gas

Info

Publication number
JPH1024218A
JPH1024218A JP8181869A JP18186996A JPH1024218A JP H1024218 A JPH1024218 A JP H1024218A JP 8181869 A JP8181869 A JP 8181869A JP 18186996 A JP18186996 A JP 18186996A JP H1024218 A JPH1024218 A JP H1024218A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
carrier
weight
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8181869A
Other languages
Japanese (ja)
Other versions
JP3384255B2 (en
Inventor
Hidehiro Iizuka
秀宏 飯塚
Osamu Kuroda
黒田  修
Hisao Yamashita
寿生 山下
Shigeru Azuhata
茂 小豆畑
Yuichi Kitahara
雄一 北原
Toshio Manaka
敏雄 間中
Seiji Asano
誠二 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18186996A priority Critical patent/JP3384255B2/en
Publication of JPH1024218A publication Critical patent/JPH1024218A/en
Application granted granted Critical
Publication of JP3384255B2 publication Critical patent/JP3384255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently purify a hydrocarbon in an exhaust gas by using a catalyst having a double oxide of La and Al as a carrier and carrying a specific quantity of one of Ce, Rh, Pt, Pd as an active component in a process for oxidizing the hydrocarbon in the waste combustion gas stream to carbon dioxide. SOLUTION: In a pre-catalyst for purifying the hydrocarbon composed of a fuel unburned portion and a partially burnt component in an automobile provided with a exhaust gas treating device for passing the exhaust gas through the pre-catalyst 3 at the time of the start up of an engine 1 and passing the exhaust gas through a main catalyst 4 after the start up, the double oxide of La and Al is used as the carrier, one of Ce, Rh, Pt, and Pd is carried on the carrier as the active component and 5-30wt.% Ce per 100wt.% carrier is particularly used. The double oxide of La and Al is constituted so as to contain 5-30wt.%, preferably 5mol% La as the mixed ratio of La to Al, the balance Al and 100mol% sum of La and Al.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車エンジン等
の内燃機関から排出される燃焼排ガス,調理器具などの
民生用製品から排出される燃焼排ガスあるいは工場や火
力発電所のボイラーなどから排出される燃焼排ガスの浄
化方法及びそれに使用する触媒に係わり、特に内燃機関
起動直後に排出される燃料未燃焼分及び部分燃焼成分か
らなる炭化水素を浄化する方法及びそれに使用する触媒
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion exhaust gas emitted from an internal combustion engine such as an automobile engine, a combustion exhaust gas emitted from a consumer product such as a cooking appliance or a boiler of a factory or a thermal power plant. The present invention relates to a method for purifying combustion exhaust gas and a catalyst used therefor, and more particularly to a method for purifying hydrocarbons composed of unburned fuel and partial combustion components discharged immediately after the start of an internal combustion engine, and a catalyst used therefor.

【0002】本発明による触媒,炭化水素浄化方法は、
自動車エンジンから排出される排ガス中の炭化水素浄化
に好適である。
[0002] The method for purifying catalysts and hydrocarbons according to the present invention comprises:
It is suitable for purifying hydrocarbons in exhaust gas discharged from an automobile engine.

【0003】[0003]

【従来の技術】自動車等の内燃機関から排出される排気
ガスには、一酸化炭素(CO),炭化水素(HC)及び
窒素酸化物(NOx)等の大気汚染物質が含まれてい
る。そこで、排ガスを浄化する触媒が種々検討されてい
る。
2. Description of the Related Art Exhaust gas emitted from an internal combustion engine of an automobile or the like contains air pollutants such as carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx). Therefore, various catalysts for purifying exhaust gas have been studied.

【0004】現在、一般に自動車に装備されている自動
車用排ガス浄化触媒(主触媒と称する)は、所定温度以
上の排ガス温度で三元反応によりCO,HCを酸化し、
NOxを還元することで排ガス中のこれらの成分を無害
化してきた。しかし、従来の触媒位置では、エンジン起
動時においては排ガス流路で熱拡散が起こるため排ガス
温度を低温度から所定温度まで上昇するのに時間が必要
となる。また、一般に自動車用触媒はコージェライト製
ハニカムに触媒材料をコーティングしているが、コージ
ェライトも所定の熱容量を持つため、触媒層を急速に加
熱できない。従って、その間は主触媒を有効に機能させ
ることができない。そこで、エンジン起動時の炭化水素
を浄化することを目的とし、従来の主触媒の位置よりエ
ンジン側にもう一つ炭化水素浄化触媒(前触媒と称す
る)を設ける方法が検討されている。この方法によれ
ば、エンジンから排出される燃焼排ガスが排ガス流路で
あまり冷却されることなく前触媒に達するため、エンジ
ン起動時の炭化水素を主触媒より早い時期に浄化するこ
とができる。
At present, exhaust gas purifying catalysts for automobiles (referred to as main catalysts) generally installed in automobiles oxidize CO and HC by a three-way reaction at an exhaust gas temperature higher than a predetermined temperature.
These components in the exhaust gas have been rendered harmless by reducing NOx. However, at the conventional catalyst position, when the engine is started, heat diffusion occurs in the exhaust gas passage, so that it takes time to raise the exhaust gas temperature from a low temperature to a predetermined temperature. Further, in general, a catalyst for automobiles has a cordierite honeycomb coated with a catalyst material. However, since cordierite also has a predetermined heat capacity, the catalyst layer cannot be rapidly heated. Therefore, the main catalyst cannot function effectively during that time. In order to purify hydrocarbons when the engine is started, a method of providing another hydrocarbon purifying catalyst (referred to as a pre-catalyst) on the engine side from the position of the conventional main catalyst has been studied. According to this method, the combustion exhaust gas discharged from the engine reaches the pre-catalyst without being cooled too much in the exhaust gas passage, so that the hydrocarbon at the time of starting the engine can be purified earlier than the main catalyst.

【0005】炭化水素浄化触媒として白金とロジウムを
Laとアルミニウムの複合酸化物に担持させた触媒(特
公平8−24844号公報)が提案されている。
[0005] As a hydrocarbon purification catalyst, a catalyst in which platinum and rhodium are supported on a composite oxide of La and aluminum (Japanese Patent Publication No. 8-24844) has been proposed.

【0006】[0006]

【発明が解決しようとする課題】前触媒を用いる方法に
おいては、エンジン始動時の低温度の排ガスにおいても
炭化水素を浄化する能力と、エンジン始動時以降では高
温度の排ガスが流れてくるため、高い熱耐久性を持たせ
ることが課題となる。
In the method using the pre-catalyst, the ability to purify hydrocarbons even at low temperature exhaust gas at the time of engine start and the high temperature exhaust gas flow after the engine start, The challenge is to have high thermal durability.

【0007】Laとアルミニウムの複合酸化物は950
℃の温度領域においても高い比表面積を維持し、前触媒
用の担体として好適である。しかし、Ceが1重量%以
上混入されると担体の耐熱性が低下するため、活性金属
は白金とロジウムに限定せざるを得なかった。
The composite oxide of La and aluminum is 950
It maintains a high specific surface even in a temperature range of ° C., and is suitable as a carrier for a precatalyst. However, if Ce is contained in an amount of 1% by weight or more, the heat resistance of the carrier decreases, so that the active metal must be limited to platinum and rhodium.

【0008】本発明の目的は、従来のLaとアルミニウ
ムの複合酸化物に白金とロジウムを担持した触媒よりも
耐熱性の優れた触媒及びそれによる排ガス浄化方法を提
供することにある。
An object of the present invention is to provide a catalyst having better heat resistance than a conventional catalyst in which platinum and rhodium are supported on a composite oxide of La and aluminum, and a method for purifying exhaust gas using the catalyst.

【0009】[0009]

【課題を解決するための手段】本発明では、LaとAl
の複合酸化物を担体とし、該担体に活性成分としてアル
カリ土類金属,希土類金属としてCe,貴金属としてR
h,Pt,Pdの少なくとも一つを担持させ、該担体1
00重量%に対してCeを5〜30重量%とすることに
より上記技術課題を解決した。本発明におけるアルカリ
土類金属にはMgが好適である。
According to the present invention, La and Al are used.
As a carrier, an alkaline earth metal as an active ingredient, Ce as a rare earth metal, and R as a noble metal.
h, Pt, and Pd, and the carrier 1
The above technical problem was solved by setting Ce to 5 to 30% by weight with respect to 00% by weight. Mg is suitable for the alkaline earth metal in the present invention.

【0010】本発明におけるLaとAlの複合酸化物に
は特公平8−24844号公報に記載の技術が適用できる。L
aとアルミニウムの複合酸化物は、LaとAlの混合比
としてLaを1〜20モル%有し、残部はAlで、La
とAlの合計が100モル%、好ましくはLa5モル%
となるよう構成されることが望ましい。LaとAlの複
合酸化物はβ構造を高温度で形成して高比表面積(12
00℃,2時間焼成時20m2/g以上)を維持するた
め、担体に耐熱性を持たせることができる。担体の調製
方法として共沈法,ゾル・ゲル法等を用いることができ
る。
The technique described in Japanese Patent Publication No. 8-24844 can be applied to the composite oxide of La and Al in the present invention. L
The composite oxide of a and aluminum has La as a mixture ratio of La to Al of 1 to 20 mol%, and the balance is Al.
And Al in total of 100 mol%, preferably La 5 mol%
It is desirable to be configured so that The composite oxide of La and Al forms a β structure at a high temperature and has a high specific surface area (12
(20 m 2 / g or more when baked at 00 ° C. for 2 hours), so that the carrier can have heat resistance. As a method for preparing the carrier, a coprecipitation method, a sol-gel method, or the like can be used.

【0011】特公平8−24844号公報に記載の発明におい
ては、Laとアルミニウムの複合酸化物にCeが1重量
%以上混入されると、結晶成長を促進して担体の耐熱性
が低下した。本発明においては、LaとAlの複合酸化
物を調製時にCeを混入させず、燃成処理をして構造を
安定化させた後、Ceを担持することで前記のCe混入
による耐熱性の低下を回避した。本発明の特徴はLaと
アルミニウムの複合酸化物にCeを5〜30重量%担持
することにある。
In the invention described in Japanese Patent Publication No. H8-24844, when Ce is mixed into a composite oxide of La and aluminum in an amount of 1% by weight or more, the crystal growth is promoted and the heat resistance of the carrier is lowered. In the present invention, Ce is not mixed at the time of preparing the composite oxide of La and Al, the structure is stabilized by a calcination treatment, and then Ce is supported, thereby lowering the heat resistance due to the mixing of Ce. Was avoided. A feature of the present invention resides in that 5 to 30% by weight of Ce is supported on a composite oxide of La and aluminum.

【0012】構造を安定化させるためのLaとAlの複
合酸化物の焼成温度は700℃〜1200℃が好まし
い。
The firing temperature of the composite oxide of La and Al for stabilizing the structure is preferably from 700 ° C. to 1200 ° C.

【0013】活性成分として、アルカリ土類金属,希土
類金属としてCe,貴金属としてRh,Pt,Pdの少
なくとも一つを担持させる場合の担持量は、担体100
重量%に対して、Mgを0.5〜2重量%,Ceを5〜
30重量%,Rhを0.05〜0.3重量%,Ptを0.
5〜2.5重量%,Pdを0.5〜2.5 重量%とするこ
とが好ましい。該担持量において、本発明の触媒は95
0℃程度の高温度領域においても高い炭化水素浄化活性
を有する。
The amount of the active ingredient to be supported when alkaline earth metal, rare earth metal is Ce, and noble metal is at least one of Rh, Pt, and Pd,
0.5% to 2% by weight of Mg and 5% to 5% by weight of Ce
30% by weight, 0.05 to 0.3% by weight of Rh, and 0.3% by weight of Pt.
Preferably, the content is 5 to 2.5% by weight and Pd is 0.5 to 2.5% by weight. At this loading, the catalyst of the present invention is 95%
It has high hydrocarbon purification activity even in a high temperature range of about 0 ° C.

【0014】本発明の触媒の活性金属担持順序は、該複
合酸化物担体にまず希土類金属が担持され、該希土類金
属担持担体に貴金属が担持され、最後にアルカリ土類金
属が担持されることが望ましい。担持金属の状態は、希
土類金属は酸化物、貴金属は酸化物または金属、アルカ
リ土類金属は酸化物または炭酸化合物である。担体への
担持方法は、含浸方向,混練方法等がある。また、担持
金属の出発原料は硝酸化合物,塩化物,硫酸化合物,酢
酸化合物,炭酸化合物や有機化合物等を用いることがで
きる。
The active metal supporting sequence of the catalyst of the present invention is such that the rare earth metal is first supported on the composite oxide carrier, the noble metal is supported on the rare earth metal supporting carrier, and finally, the alkaline earth metal is supported. desirable. The state of the supported metal is such that a rare earth metal is an oxide, a noble metal is an oxide or a metal, and an alkaline earth metal is an oxide or a carbonate compound. The supporting method on the carrier includes an impregnation direction, a kneading method, and the like. Further, as a starting material of the supported metal, a nitric acid compound, a chloride, a sulfuric acid compound, an acetic acid compound, a carbonate compound, an organic compound, or the like can be used.

【0015】本発明の触媒において、各成分は以下の機
能により排ガスを定常的に浄化できると考えられる。
In the catalyst of the present invention, it is considered that each component can purify exhaust gas constantly by the following functions.

【0016】Ceは酸素を吸蔵することができるため、
エンジン起動時の空燃比変動における排ガス中の酸素濃
度が変動しても、炭化水素を酸化するのに必要な酸素を
不足なく触媒に供給することができる。
Since Ce can store oxygen,
Even if the oxygen concentration in the exhaust gas fluctuates due to the air-fuel ratio fluctuation when the engine is started, it is possible to supply oxygen necessary for oxidizing hydrocarbons to the catalyst without shortage.

【0017】貴金属は炭化水素と酸素とから二酸化炭素
を生成するための反応場となる。Mgは貴金属と相互作
用して貴金属を微粒化高分散させ、高温度での貴金属の
シンタリングを防止する。従って、Mg担持により炭化
水素と酸素の反応場となる貴金属は高活性化され、かつ
熱耐久性は向上する。
The noble metal serves as a reaction field for producing carbon dioxide from hydrocarbons and oxygen. Mg interacts with the noble metal to atomize and highly disperse the noble metal, thereby preventing sintering of the noble metal at high temperatures. Therefore, the noble metal which becomes a reaction field between the hydrocarbon and oxygen by Mg loading is highly activated, and the heat durability is improved.

【0018】さらに、LaとAlの複合担体を使用する
ことで、900℃以上の高温度領域においても広い担体
比表面積を獲得できることから、触媒の高い耐熱性を維
持することが可能となる。
Furthermore, by using a composite carrier of La and Al, a wide carrier specific surface area can be obtained even in a high temperature region of 900 ° C. or higher, so that high heat resistance of the catalyst can be maintained.

【0019】本発明の触媒は、ストイキ及びリーンバー
ンのいずれの条件下でも高い排ガス中の炭化水素浄化性
能を有する。具体的には、これらの燃焼条件下において
排出される排ガス中の窒素酸化物と炭化水素を二酸化炭
素に効率良く酸化することができる。触媒が、La−A
23担体にCeとPtとPdとMgを担持したものか
らなるときには、極めて高い炭化水素浄化活性および耐
熱性を示すことができる。
The catalyst of the present invention has high performance in purifying hydrocarbons in exhaust gas under both stoichiometric and lean burn conditions. Specifically, nitrogen oxides and hydrocarbons in the exhaust gas discharged under these combustion conditions can be efficiently oxidized to carbon dioxide. The catalyst is La-A
When the carrier is made of a carrier in which Ce, Pt, Pd, and Mg are supported on an l 2 O 3 carrier, extremely high hydrocarbon purification activity and heat resistance can be exhibited.

【0020】本発明の触媒を前触媒として内燃機関エン
ジンの排気系統に搭載することにより、窒素酸化物が車
外へ排出されるのを著しく抑制することができる。具体
的には以下の態様が可能である。
By mounting the catalyst of the present invention as a pre-catalyst in the exhaust system of an internal combustion engine, it is possible to significantly suppress the emission of nitrogen oxides to the outside of the vehicle. Specifically, the following aspects are possible.

【0021】(1)エンジン排ガス流路に設けた前触媒
とその後流に設けた主触媒を有し、これらに順に排ガス
を流通させる排ガス処理装置を設けた自動車とする。
(1) An automobile having a front catalyst provided in an engine exhaust gas flow path and a main catalyst provided in a downstream side thereof, and having an exhaust gas treatment device for sequentially passing exhaust gas to these is provided.

【0022】(2)エンジン排ガス流路に設けた前触媒
とその後流に設けた主触媒を有し、エンジン起動時には
前触媒に排ガスを流通させ、その後は主触媒に排ガスを
流通させる排ガス処理装置を設けた自動車とする。
(2) An exhaust gas treatment device having a front catalyst provided in an engine exhaust gas flow path and a main catalyst provided in a downstream side thereof, wherein the exhaust gas flows through the front catalyst when the engine is started, and thereafter the exhaust gas flows through the main catalyst. Vehicle.

【0023】主触媒には、従来の三元触媒またはリーン
バーン対応触媒等を用いることができる。
As the main catalyst, a conventional three-way catalyst or a catalyst compatible with lean burn can be used.

【0024】さらに、既存の炭化水素浄化触媒と主触媒
を設けたシステムに本発明触媒を組合せることで炭化水
素の浄化効果を高めることができる。例えば、本発明触
媒を前触媒,既存の炭化水素浄化触媒を中触媒,主触媒
を後触媒として、前触媒から中触媒そして後触媒と順に
排ガスを流通させる方法、また、エンジン始動時には前
触媒と中触媒に排ガスを流通させ、その後は後触媒に排
ガスを流通させる方法などがある。
Further, by combining the catalyst of the present invention with an existing system provided with a hydrocarbon purifying catalyst and a main catalyst, the effect of purifying hydrocarbons can be enhanced. For example, using the catalyst of the present invention as a pre-catalyst, an existing hydrocarbon purification catalyst as a middle catalyst, and a main catalyst as a rear catalyst, exhaust gas is circulated in order from the front catalyst to the middle catalyst and the rear catalyst. There is a method of flowing exhaust gas through the middle catalyst, and then flowing exhaust gas through the rear catalyst.

【0025】図1は、本発明の排ガス浄化装置を自動車
に設置した例を示している。図1において、エンジン1
の後流の排ガス流路2に前触媒3、その後段に主触媒4
が設置されている。
FIG. 1 shows an example in which the exhaust gas purifying apparatus of the present invention is installed in an automobile. In FIG. 1, an engine 1
The pre-catalyst 3 in the exhaust gas flow path 2 downstream of the
Is installed.

【0026】図2は、エンジン1の後流の排ガス流路2
に前触媒3、その後段に主触媒4が設置されており、前
触媒をバイパスするバイパス装置5を有した装置例を示
している。
FIG. 2 shows an exhaust gas passage 2 downstream of the engine 1.
1 shows an example of a device in which a front catalyst 3 is provided, and a main catalyst 4 is provided in a subsequent stage, and a bypass device 5 for bypassing the front catalyst is provided.

【0027】該装置により、リーンバーン触媒を主触媒
とする場合、前触媒でNOx浄化に必要な炭化水素が浄
化されることを防止することができる。
[0027] When the lean burn catalyst is used as the main catalyst, this device can prevent hydrocarbons required for NOx purification from being purified by the front catalyst.

【0028】本発明では、前述の従来技術の前触媒の前
(エンジン寄り)に本発明の方法による前触媒を置くこ
とを妨げるものではなく、各種の変形された実施態様が
可能である。
The present invention does not preclude placing the precatalyst according to the method of the present invention in front of the aforementioned prior art precatalyst (closer to the engine), and various modified embodiments are possible.

【0029】図3は、本発明の排ガス浄化装置を自動車
に設置した例を示している。図3において、エンジン1
の後流の排ガス流路2に前触媒3、その後流に従来技術
のHC浄化触媒6、さらにその後流に主触媒4が設置さ
れている。
FIG. 3 shows an example in which the exhaust gas purifying apparatus of the present invention is installed in an automobile. In FIG. 3, the engine 1
A pre-catalyst 3 is provided in the exhaust gas flow path 2 downstream of the fuel cell, a conventional HC purification catalyst 6 is provided in the downstream, and a main catalyst 4 is further provided in the downstream.

【0030】図4は、エンジン1の後流の排ガス流路2
に前触媒3、その後流に従来技術のHC浄化触媒6、さ
らにその後流に主触媒4が設置されており、前触媒とH
C浄化触媒をバイパスするバイパス装置5を有した装置
例を示している。
FIG. 4 shows an exhaust gas passage 2 downstream of the engine 1.
The pre-catalyst 3, the HC purification catalyst 6 of the prior art in the downstream, and the main catalyst 4 in the downstream are also provided.
An example of a device having a bypass device 5 for bypassing a C purification catalyst is shown.

【0031】本発明の触媒は、ディーゼル自動車のディ
ーゼルエンジンから排出される排ガスの処理にも効果を
発揮する。ディーセルエンジンは、酸素過剰の高空燃比
で運転されており、本発明の触媒は酸素含有下において
も優れた活性を示すので、ディーゼルエンジンから排出
される排ガスであっても炭化水素を効率良く浄化するこ
とができる。
The catalyst of the present invention is also effective for treating exhaust gas discharged from a diesel engine of a diesel vehicle. A diesel engine is operated at a high air-fuel ratio with an excess of oxygen, and the catalyst of the present invention exhibits excellent activity even in the presence of oxygen, so that even the exhaust gas discharged from a diesel engine can efficiently purify hydrocarbons. be able to.

【0032】[0032]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

「実施例1」LaとAlの複合酸化物はLa/Alモル
比=5/95となるように硝酸Laと硝酸Alの混合溶
液をアンモニア水を滴下して沈殿させる共沈法で得た。
"Example 1" A composite oxide of La and Al was obtained by a coprecipitation method in which a mixed solution of La nitrate and Al nitrate was added dropwise by dropping ammonia water so that the La / Al molar ratio was 5/95.

【0033】700℃焼成LaとAlの複合酸化物(L
a/Alモル比=5/95)粉末に硝酸Ce溶液を混練
法で含浸した後、200℃で乾燥および700℃で1時
間焼成した。続いて、硝酸Pd溶液とジニトロジアンミ
ンPt硝酸溶液の混合液を混練法で含浸した後、200
℃で乾燥および700℃で1時間焼成した。最後に、硝
酸Mg溶液を同様に含浸し、乾燥および焼成した。以上
により、アルミナ100重量%に対して、Ce23重量
%,Pd1.6重量%,Pt1.6重量%,Mg2重量%
を含有させた。この触媒粉末100gに対し、水400
g,硝酸邂逅アルミナゾル(アルミナ固形分20%)1
00gを3時間ボールミルで混合したスラリーをコージ
ェライト製ハニカム(400セル/inc2)にコーティン
グした。焼成温度は700℃で最終触媒コーティング量
を200g/lとした。
A composite oxide of La and Al fired at 700 ° C. (L
(a / Al molar ratio = 5/95) The powder was impregnated with a Ce nitrate solution by a kneading method, then dried at 200 ° C and fired at 700 ° C for 1 hour. Subsequently, after impregnating a mixed solution of a Pd nitrate solution and a dinitrodiammine Pt nitric acid solution by a kneading method,
C. and fired at 700.degree. C. for 1 hour. Finally, a Mg nitrate solution was similarly impregnated, dried and fired. As described above, based on 100% by weight of alumina, 23% by weight of Ce, 1.6% by weight of Pd, 1.6% by weight of Pt, and 2% by weight of Mg
Was contained. 400 g of water is added to 100 g of the catalyst powder.
g, nitric acid encounter alumina sol (alumina solid content 20%) 1
The slurry obtained by mixing 00 g with a ball mill for 3 hours was coated on a cordierite honeycomb (400 cells / inc 2 ). The firing temperature was 700 ° C. and the final catalyst coating amount was 200 g / l.

【0034】以上の方法によりハニカム状の実施例触媒
1を得た。
By the above method, a honeycomb-shaped example catalyst 1 was obtained.

【0035】また、同様の方法で、Ceを担持し、さら
に硝酸Rh水溶液とジニトロジアンミンPt硝酸溶液の
混合液を混練法で含浸し、同様に乾燥,焼成し、最後に
Mgを担持した触媒粉末をハニカムにコーティングし実
施例触媒2を得た。
Further, in the same manner, Ce is supported, and a mixed solution of an aqueous Rh nitrate solution and a dinitrodiammine Pt nitric acid solution is impregnated by a kneading method, and dried and calcined in the same manner. Was coated on the honeycomb to obtain Example Catalyst 2.

【0036】調製した触媒の組成をまとめて表1に示
す。
Table 1 summarizes the compositions of the prepared catalysts.

【0037】[0037]

【表1】 [Table 1]

【0038】(実験例1)実施例触媒1及び2につい
て、以下の実験方法で炭化水素の浄化性能を評価した。
(Experimental Example 1) The catalysts of Examples 1 and 2 were evaluated for their ability to purify hydrocarbons by the following experimental method.

【0039】実験方法: (1)ハニカム状触媒6cc(17mm角×21mm長さ)を
パイレックス製反応管に充填する。
Experimental method: (1) 6 cc of a honeycomb catalyst (17 mm square × 21 mm length) is charged into a Pyrex reaction tube.

【0040】(2)反応管を環状電気炉に入れて、15
0℃まで昇温する。温度はハニカム入口ガス温度を測定
する。温度が150℃に達し安定した時点で、ストイキ
のモデル排ガス(ストイキモデル排ガスという)の流通
を開始する。ストイキモデル排ガス流通と同時に10℃
/分で昇温し、最終的に500℃まで加熱する。このと
き、30秒に1回の割合で反応管から排出されるガス中
の炭化水素をFID法により測定し、触媒の初期性能を
調べる。
(2) Put the reaction tube in an annular electric furnace,
Heat to 0 ° C. The temperature measures the honeycomb inlet gas temperature. When the temperature reaches 150 ° C. and becomes stable, the circulation of the stoichiometric model exhaust gas (referred to as stoichiometric model exhaust gas) is started. 10 ℃ at the same time as the stoichiometric model exhaust gas distribution
/ Minute, and finally heated to 500 ° C. At this time, the hydrocarbons in the gas discharged from the reaction tube are measured once every 30 seconds by the FID method, and the initial performance of the catalyst is examined.

【0041】(3)(2)の実験終了後、ハニカム状触
媒を900℃で5時間空気焼成し、続いて(1)および
(2)の実験手順に従って、熱処理後の炭化水素浄化性
能を調べる。
(3) After completion of the experiment of (2), the honeycomb catalyst is calcined in air at 900 ° C. for 5 hours, and then the hydrocarbon purification performance after the heat treatment is examined according to the experimental procedures of (1) and (2). .

【0042】ストイキモデル排ガスとしては、NOを
0.1vol%,C36を0.05vol%,COを0.6vol
%,O2 を0.6vol%,H2 を0.2vol% ,水蒸気を
10vol%含み、残部が窒素からなるガスを使用した。
該ガスの乾燥状態(水蒸気を含まない)での空間速度は
30,000/hとした。
As the stoichiometric model exhaust gas, NO was 0.1 vol%, C 3 H 6 was 0.05 vol%, and CO was 0.6 vol.
%, 0.6 vol% of O 2 , 0.2 vol% of H 2 , 10 vol% of steam, and the balance nitrogen.
The space velocity of the gas in a dry state (not including water vapor) is
30,000 / h.

【0043】表2には、初期および焼成処理後の各温度
でのストイキモデル排ガスでの炭化水素(HC)浄化率
を示した。HC浄化率は、下記の式に従って算出した。
Table 2 shows the hydrocarbon (HC) purification rates in the stoichiometric model exhaust gas at various temperatures at the initial stage and after the calcination treatment. The HC purification rate was calculated according to the following equation.

【0044】[0044]

【数1】 (Equation 1)

【0045】[0045]

【表2】 [Table 2]

【0046】枠内:HC浄化率(%) 「実施例2」La23−Al23(La/Alモル比5
/95)複合酸化物100gと水400gと硝酸邂逅ア
ルミナゾル(アルミナ固形分20%)100gを3時間
ボールミルで混合したスラリーをコージェライト製ハニ
カム(400セル/inc2)にコーティングした。焼成温
度は700℃で最終複合酸化物コーティング量を150
g/lとした。
In the frame: HC purification rate (%) "Example 2" La 2 O 3 —Al 2 O 3 (La / Al molar ratio: 5)
/ 95) A slurry obtained by mixing 100 g of the composite oxide, 400 g of water, and 100 g of alumina sol (20% alumina solid content) with nitric acid in a ball mill for 3 hours was coated on a cordierite honeycomb (400 cells / inc 2 ). The firing temperature is 700 ° C and the final composite oxide coating amount is 150
g / l.

【0047】活性成分担持量は複合酸化物100重量%
に対し、Ceを12重量%担持し、Pt1.6重量%と
Pd1.6重量%を担持し、Mgを1重量%、各々含浸
法で担持した。焼成温度は全て700℃である。これら
の活性成分を担持した実施例触媒3を得た。
The active ingredient loading amount is 100% by weight of the composite oxide.
On the other hand, Ce was supported by 12% by weight, Pt by 1.6% by weight and Pd by 1.6% by weight, and Mg by 1% by weight, respectively, by the impregnation method. All firing temperatures are 700 ° C. Example catalyst 3 carrying these active components was obtained.

【0048】実施例触媒3を実施例1の実験例1と同一
の方法で初期(700℃焼成)と900℃,5時間焼成
処理後の炭化水素浄化率を求めた。結果を表3に示す。
Example 3 The catalyst purification rate of the catalyst 3 was determined in the same manner as in Experimental Example 1 of Example 1 at the initial stage (calcination at 700 ° C.) and after the calcination treatment at 900 ° C. for 5 hours. Table 3 shows the results.

【0049】[0049]

【表3】 [Table 3]

【0050】枠内:HC浄化率(%) 「実施例3」実施例触媒1のMg,Ce,Pt,Pdの
担持率を変え、900℃,5時間焼成処理後の触媒の3
00℃におけるHC浄化性能を測定した。実験方法は実
施例1の実験例1と同一とする。図5に、Mg,Ceの
担持率を変えたときの性能を示す。また、図6にPt,
Pdの担持率を変えたときの性能を示す。
In the frame: HC purification rate (%) "Example 3" The catalyst of Example 1 was subjected to a calcining treatment at 900 ° C. for 5 hours while changing the loading ratio of Mg, Ce, Pt, and Pd.
The HC purification performance at 00 ° C. was measured. The experimental method is the same as the experimental example 1 of the first embodiment. FIG. 5 shows the performance when the loading ratio of Mg and Ce was changed. FIG. 6 shows Pt,
The performance when the loading rate of Pd is changed is shown.

【0051】「実施例4」実施例触媒2のRhの担持率
を変えたときのHC浄化性能を調べた。担体をAl23
とし、担体100重量部に対し、Mgは1重量% 、P
tは1.6重量%、Ceは23重量%とした。実験方法
は実施例1の実験例1と同一とする。図7に、900
℃,5時間焼成処理後の触媒の300℃におけるHC浄
化性能を示した。
Example 4 The HC purification performance when the Rh loading rate of the example catalyst 2 was changed was examined. The carrier is Al 2 O 3
Mg is 1% by weight based on 100 parts by weight of the carrier.
t was 1.6% by weight and Ce was 23% by weight. The experimental method is the same as the experimental example 1 of the first embodiment. FIG.
The HC purification performance at 300 ° C. of the catalyst after the calcination treatment at 5 ° C. for 5 hours was shown.

【0052】「実施例5」実施例触媒3のハニカム体積
を1.0L とし、950℃で50時間焼成した実施例触
媒4を調製した。図1に示した触媒配置とし、実車エン
ジンでHC浄化率を評価した。実施例触媒4を前触媒,
三元触媒を主触媒とした。三元触媒の主成分は、Rh,
Pt,Ce,Al23である。4サイクル,2.2L エ
ンジンでLA−4モード運転した。実施例触媒4のLA
−4モード開始から120秒間の平均HC浄化率は40
%であった。また、LA−4モード全体での炭化水素排
出量では0.03g/mileであり、ULEV規制値(0.
04g/mile)を十分満足した。
Example 5 Example Catalyst 4 was prepared by setting the honeycomb volume of Example Catalyst 3 to 1.0 L and calcining at 950 ° C. for 50 hours. With the catalyst arrangement shown in FIG. 1, the HC purification rate was evaluated using an actual vehicle engine. Example catalyst 4 is a pre-catalyst,
A three-way catalyst was used as a main catalyst. The main components of the three-way catalyst are Rh,
Pt, Ce, Al 2 O 3 . The engine was operated in the LA-4 mode on a 4-cycle, 2.2-liter engine. LA of Example Catalyst 4
-4 Average HC purification rate for 120 seconds from mode start is 40
%Met. Further, the hydrocarbon emission amount in the entire LA-4 mode is 0.03 g / mile, which is the ULEV regulation value (0.04 g / mile).
04g / mile).

【0053】「実施例6」実施例触媒3のハニカム体積
を0.12L とし、950℃で50時間焼成した実施例
触媒5を調製した。図3に示した触媒配置とし、実車エ
ンジンでHC浄化率を評価した。実施例触媒5を前触
媒,従来技術によるHC浄化触媒を実施例触媒5の後流
に設置し、さらに該HC触媒の後流に主触媒として三元
触媒を設置した。三元触媒の主成分は、Rh,Pt,C
e,Al23である。4サイクル,2.2L エンジンで
LA−4モード運転した。LA−4モード全体での炭化
水素排出量は、実施例触媒5がない場合では0.05g
/mile であった。しかし、実施例触媒5がある場合で
は、0.03g/mileとなり、ULEV規制値(0.04
g/mile)を十分満足した。
Example 6 Example Catalyst 5 was prepared by setting the honeycomb volume of Example Catalyst 3 to 0.12 L and calcining at 950 ° C. for 50 hours. With the catalyst arrangement shown in FIG. 3, the HC purification rate was evaluated using an actual vehicle engine. Example catalyst 5 was a pre-catalyst, an HC purification catalyst according to the prior art was installed downstream of example catalyst 5, and a three-way catalyst was installed downstream of the HC catalyst as a main catalyst. The main components of the three-way catalyst are Rh, Pt, C
e, Al 2 O 3 . The engine was operated in the LA-4 mode on a 4-cycle, 2.2-liter engine. The amount of hydrocarbon emission in the entire LA-4 mode is 0.05 g in the case where the example catalyst 5 is not provided.
/ Mile. However, when the catalyst of Example 5 is present, the weight becomes 0.03 g / mile, which is the ULEV regulation value (0.04 g / mile).
g / mile).

【0054】「比較例1」実施例触媒1と同様の触媒調
製方法であるが、担体をアルミナとし、Ceを担持した
後、硝酸Sr溶液を用いてアルカリ土類金属Srを担持
し、Rh,Ptを担持した。担体100重量%に対して
Ceを23重量%,Srを18重量%,Ptを1.6重
量%,Rhを0.3重量%とする比較例触媒1を得た。
実験例1と同一の方法で初期と950℃,5時間焼成処
理後の炭化水素浄化率を求めた。結果を表4に示す。9
50℃熱処理後のHC浄化率は著しく低下した。
"Comparative Example 1" This is a catalyst preparation method similar to that of Example Catalyst 1, except that alumina is used as a carrier, Ce is loaded, and an alkaline earth metal Sr is loaded using a Sr nitrate solution. Pt was loaded. Comparative catalyst 1 was obtained in which Ce was 23% by weight, Sr was 18% by weight, Pt was 1.6% by weight, and Rh was 0.3% by weight based on 100% by weight of the carrier.
In the same manner as in Experimental Example 1, hydrocarbon purification rates were determined at the initial stage and after the calcination treatment at 950 ° C. for 5 hours. Table 4 shows the results. 9
The HC purification rate after the 50 ° C. heat treatment was significantly reduced.

【0055】[0055]

【表4】 [Table 4]

【0056】[0056]

【発明の効果】実施例から明らかなように、本発明によ
れば、排ガス中に含まれる炭化水素を効率良く浄化する
ことができる。
As is clear from the examples, according to the present invention, hydrocarbons contained in exhaust gas can be efficiently purified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭化水素浄化装置装備自動車の概念図。FIG. 1 is a conceptual diagram of a vehicle equipped with a hydrocarbon purification device.

【図2】炭化水素浄化装置装備自動車の概念図。FIG. 2 is a conceptual diagram of a vehicle equipped with a hydrocarbon purification device.

【図3】炭化水素浄化装置装備自動車の概念図。FIG. 3 is a conceptual diagram of a vehicle equipped with a hydrocarbon purification device.

【図4】炭化水素浄化装置装備自動車の概念図。FIG. 4 is a conceptual diagram of a vehicle equipped with a hydrocarbon purification device.

【図5】熱処理後の触媒の反応ガス温度300℃におけ
るMg,Ce担持率と炭化水素浄化率の相関図。
FIG. 5 is a correlation diagram between the Mg and Ce carrying rates and the hydrocarbon purification rates at a reaction gas temperature of 300 ° C. of the catalyst after heat treatment.

【図6】熱処理後の触媒の反応ガス温度300℃におけ
るPt,Pd担持率と炭化水素浄化率の相関図。
FIG. 6 is a correlation diagram between Pt and Pd carrying rates and a hydrocarbon purification rate at a reaction gas temperature of 300 ° C. of a catalyst after heat treatment.

【図7】熱処理後の触媒の反応ガス温度300℃におけ
るRh担持率と炭化水素浄化率の相関図。
FIG. 7 is a correlation diagram between the Rh carrying rate and the hydrocarbon purification rate of the catalyst after heat treatment at a reaction gas temperature of 300 ° C.

【符号の説明】[Explanation of symbols]

1…エンジン、2…排ガス流路、3…前触媒、4…主触
媒、5…バイパス装置、6…HC浄化触媒。
DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Exhaust gas flow path, 3 ... Front catalyst, 4 ... Main catalyst, 5 ... Bypass device, 6 ... HC purification catalyst.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小豆畑 茂 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 北原 雄一 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 間中 敏雄 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 浅野 誠二 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shigeru Azuhata 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. Hitachi, Ltd.Automotive Equipment Division (72) Inventor Toshio MANAKA 2520 Address, Ojitakata, Hitachinaka City, Ibaraki Prefecture Hitachi, Ltd.Automotive Equipment Division (72) Inventor Seiji Asano Address Co., Ltd.Automotive Equipment Division, Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】燃焼排ガス流中の炭化水素を触媒反応で二
酸化炭素に酸化する排ガス浄化方法であって、触媒とし
て、LaとAlの複合酸化物を担体とし、該担体に活性
成分としてアルカリ土類金属,希土類金属としてCe,
貴金属としてRh,Pt,Pdの少なくとも一つを担持
させ、該担体100重量%に対してCeを5〜30重量
%とすることを特徴とする炭化水素含有排ガスの浄化方
法。
1. An exhaust gas purification method for oxidizing hydrocarbons in a combustion exhaust gas stream to carbon dioxide by a catalytic reaction, wherein the catalyst comprises a composite oxide of La and Al as a carrier, and the carrier comprises an alkaline earth as an active ingredient. Ce and Rare earth metals
A method for purifying hydrocarbon-containing exhaust gas, wherein at least one of Rh, Pt, and Pd is supported as a noble metal, and Ce is 5 to 30% by weight based on 100% by weight of the carrier.
【請求項2】LaとAlの複合酸化物を担体とし、該担
体に活性成分としてアルカリ土類金属,希土類金属とし
てCe,貴金属としてRh,Pt,Pdの少なくとも一
つを担持させ、該担体100重量%に対してCeを5〜
30重量%としたことを特徴とする炭化水素含有排ガス
の浄化触媒。
2. A composite oxide of La and Al is used as a carrier, and the carrier is loaded with an alkaline earth metal as an active ingredient, Ce as a rare earth metal, and at least one of Rh, Pt, and Pd as a noble metal. 5 to 10% by weight of Ce
A catalyst for purifying exhaust gas containing hydrocarbons, wherein the catalyst content is 30% by weight.
【請求項3】請求項1に記載の方法において、前記担体
100重量部に対し、活性成分としてMgを0.5〜2
重量%,Ceを5〜30重量%,Rhを0.05〜0.3
重量%,Ptを0.5〜2.5重量%,Pdを0.5〜2.
5重量%担持することを特徴とする炭化水素含有排ガス
の浄化方法。
3. The method according to claim 1, wherein Mg is used as an active ingredient in an amount of 0.5 to 2 parts by weight based on 100 parts by weight of the carrier.
Wt%, Ce is 5 to 30 wt%, and Rh is 0.05 to 0.3.
Wt%, Pt is 0.5 to 2.5 wt%, and Pd is 0.5 to 2.5 wt%.
A method for purifying a hydrocarbon-containing exhaust gas, wherein 5% by weight is supported.
【請求項4】請求項1に記載の方法においてLaとAl
の構成比をLaを1〜20モル%,LaとAlの合計は
100モル%、となる複合酸化物とすることを特徴とす
る炭化水素含有排ガスの浄化方法。
4. The method according to claim 1, wherein La and Al are used.
Wherein the composition ratio of La is 1 to 20 mol% and the total of La and Al is 100 mol%.
JP18186996A 1996-07-11 1996-07-11 Internal combustion engine exhaust gas purification method Expired - Fee Related JP3384255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18186996A JP3384255B2 (en) 1996-07-11 1996-07-11 Internal combustion engine exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18186996A JP3384255B2 (en) 1996-07-11 1996-07-11 Internal combustion engine exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH1024218A true JPH1024218A (en) 1998-01-27
JP3384255B2 JP3384255B2 (en) 2003-03-10

Family

ID=16108277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18186996A Expired - Fee Related JP3384255B2 (en) 1996-07-11 1996-07-11 Internal combustion engine exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3384255B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168764A (en) * 2013-03-05 2014-09-18 Toyota Central R&D Labs Inc Oxidation catalyst for diesel exhaust gas and purification method of diesel exhaust gas using the same
JP2015521540A (en) * 2012-06-19 2015-07-30 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Catalyst composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521540A (en) * 2012-06-19 2015-07-30 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Catalyst composition
JP2014168764A (en) * 2013-03-05 2014-09-18 Toyota Central R&D Labs Inc Oxidation catalyst for diesel exhaust gas and purification method of diesel exhaust gas using the same

Also Published As

Publication number Publication date
JP3384255B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
KR100241666B1 (en) Catalyst for purifying oxygen rich exhaust gas
JP3965711B2 (en) Nitrogen oxide purification catalyst and purification method
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
JP3297825B2 (en) Exhaust gas purification catalyst
JP3374569B2 (en) Exhaust gas purification catalyst and purification method
JP2003190790A (en) Catalyst for purifying exhaust gas and system therefor
US6045764A (en) Exhaust gas purifying method and catalyst used therefor
JP3977883B2 (en) Exhaust gas purification catalyst for internal combustion engine
JP4106989B2 (en) Engine exhaust gas purification catalyst
JP3624277B2 (en) Exhaust gas purification catalyst
JP3384255B2 (en) Internal combustion engine exhaust gas purification method
JPH0523593A (en) Exhaust emission control system
JP3272015B2 (en) Exhaust gas purification catalyst
JP2002168117A (en) Exhaust emission control system
JPH10156183A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
JP3826476B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3368750B2 (en) Exhaust gas purification method and catalyst
JPH04114742A (en) Catalyst for purifying exhaust gas
JPH0549940A (en) Exhaust gas purifying device
JP3435992B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPH09225308A (en) Exhaust gas purification catalyst for internal engine and exhaust gas treatment method
JPH08266900A (en) Exhaust gas purifying catalyst and its production
JPH07241467A (en) Method for removing co in exhaust gas from lean burning gas engine
JPH08281105A (en) Clarification catalyst for combustion exhaust gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees